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Abstract

Existing self-supervised methods in natural
language processing (NLP), especially hier-
archical text classification (HTC), mainly fo-
cus on self-supervised contrastive learning, ex-
tremely relying on human-designed augmen-
tation rules to generate contrastive samples,
which can potentially corrupt or distort the
original information. In this paper, we tend
to investigate the feasibility of a contrastive
learning scheme in which the semantic and syn-
tactic information inherent in the input sam-
ple is adequately reserved in the contrastive
samples and fused during the learning pro-
cess. Specifically, we propose an information
lossless contrastive learning strategy for HTC,
namely Hierarchy-aware Information Lossless
contrastive Learning (HILL), which consists of
a text encoder representing the input document,
and a structure encoder directly generating the
positive sample. The structure encoder takes
the document embedding as input, extracts the
essential syntactic information inherent in the
label hierarchy with the principle of structural
entropy minimization, and injects the syntac-
tic information into the text representation via
hierarchical representation learning. Experi-
ments on three common datasets are conducted
to verify the superiority of HILL.

1 Introduction

Self-supervised learning (SSL) has exhibited re-
markable success across various domains in deep
learning, empowering models with potent represen-
tation capabilities. Based on these achievements,
researchers have incorporated contrastive learning
into hierarchical text classification (Wang et al.,
2022a), a challenging sub-task within the realm of
text multi-label classification. Beyond processing
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Figure 1: Comparison between HILL and previous
methods. (a) Previous work use structure encoder in
data augmentation. (b) Our method extracting syntactic
information in information lossless learning paradigm.

text samples, hierarchical text classification meth-
ods should handle a predefined directed acyclic
graph in the corpus, referred to as the label hi-
erarchy. While language models such as BERT
(Devlin et al., 2019) are pretrained on textual data,
their efficacy in handling structural input is limited.
Consequently, researchers have introduced a Graph
Neural Network (GNN)-based encoder to establish
a dual-encoder framework for HTC (Zhou et al.,
2020; Deng et al., 2021; Chen et al., 2021).

Although the structure encoder contributes to
representing the label hierarchy, the dual-encoder
framework simply blends the outputs of encoders.
In an effort to integrate the label hierarchy into
BERT, Wang et al. (2022a) propose a contrastive
learning framework, in which BERT functions as
a siamese network (Bromley et al., 1993) accept-
ing both the raw text and the masked text, where
the mask is generated by the structure encoder.
However, their contrastive learning process essen-
tially relies on data augmentation, even with the
involvement of the structure encoder in the mask-
ing process, as depicted in Figure 1(a). Accord-
ing to the data processing inequality (Cover and
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Thomas, 2006), applying data augmentation to the
raw text may potentially erase sufficient semantic
information relevant to downstream prediction.

To maximally preserve the semantic information
in the text and effectively leverage the structural en-
coder in the contrastive learning process for HTC,
we tend to inject the essential information inher-
ent in the label hierarchy into text representations
rather than augmenting the input document. As
shown in Figure 1(b), our structure encoder di-
rectly generates feature vectors by fusing textual
and structural information, in contrast to masking
the text as illustrated in Figure 1(a). Following the
insights of Li and Pan (2016), where structural en-
tropy encodes and decodes the essential structure
of the original system to support its semantic anal-
ysis. Since hierarchical text classification holds
both semantic and syntactic information, we aim
to design our model with the guidance of struc-
tural entropy. Specifically, we implement a suite
of algorithms to minimize the structural entropy
of label hierarchies by constructing their coding
trees. Subsequently, we design a structure encoder
to perform representation learning on coding trees,
in which the leaf-node embeddings are initialized
by the text encoder while the non-leaf node embed-
dings are iteratively obtained from bottom to top.
Afterward, the structure encoder generates an over-
all representation of the coding tree, which serves
as a contrastive sample for the text encoder. Ad-
ditionally, we provide a definition of information
lossless learning and prove that the information
retained by our approach is the upper bound of
any augmented data. In comparison with other
contrastive and supervised learning methods, our
model achieves significant performance gains on
three common datasets. Overall, the contributions
of our work can be summarized as follows:

• To realize information lossless learning, we
decode the essential structure of label hierar-
chies through the proposed algorithms under
the guidance of structural entropy, supporting
the semantic analysis for HTC.

• We propose a contrastive learning framework,
namely HILL, which fuses the structural in-
formation from the label hierarchies into the
given document embeddings, while the seman-
tic information from the input document is
maximally preserved.

• We define information lossless learning for
HTC and prove that the information retained

by HILL is the upper bound of any other
augmentation-based methods.

• Experiments conducted on three common
datasets demonstrate the effectiveness
and efficiency of HILL. For repro-
ducibility, source code is available at
https://github.com/Rooooyy/HILL.

2 Related Works

Hierarchical Text Classification. Existing
works for HTC could be categorized into local
and global approaches (Zhou et al., 2020). Local
approaches build multiple models for labels in
different levels in the hierarchy, conveying the
information from models in the upper levels to
those in the bottom (Kowsari et al., 2017; Shimura
et al., 2018; Banerjee et al., 2019; Huang et al.,
2019). On the contrary, global studies treat HTC as
a flat multi-label classification problem(Gopal and
Yang, 2013; You et al., 2019; Aly et al., 2019; Mao
et al., 2019; Wu et al., 2019; Rojas et al., 2020).

Recently, Zhou et al. (2020) introduce a dual-
encoder framework consisting of a text and a graph
encoder to separately handle the text and the label
hierarchy. Based on HiAGM (Zhou et al., 2020),
Chen et al. (2020a) jointly model the text and labels
in the hyperbolic space. Chen et al. (2021) formu-
late HTC as a semantic matching problem. Deng
et al. (2021) introduce information maximization
to capture the interaction between text and label
while erasing irrelevant information.

Given the success of Pretrained Language Mod-
els (PLMs), researchers attempt to utilize their pow-
erful abilities in HTC. Wang et al. (2022a) propose
a contrastive learning framework for HTC to make
BERT learn from the structure-encoder-controlled
text augmentation. Wang et al. (2022b) introduce
prompt tuning and construct dynamic templates for
HTC. Jiang et al. (2022) encode the global hier-
archies with BERT, extract the local hierarchies,
and feed them into BERT in a prompt-tuning-like
schema. Despite their success, neither existing con-
trastive learning nor prompt tuning methods try to
improve the structure encoder.

Contrastive Learning. Inspired by the pretext
tasks in GPT (Radford and Narasimhan, 2018) and
BERT (Devlin et al., 2019), researchers originally
proposed contrastive learning in computer vision
(Chen et al., 2020b; He et al., 2020), addressing
the limitations of previous methods in training with
massive unlabeled visual data. Numerous studies
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Figure 2: An example of our model with K = 3. We first feed the document D into the text encoder to extract the
semantic information. Next, the structure encoder takes label hierarchy GL as input and constructs the optimal
coding tree TL with Algorithm 1 under the guidance of structural entropy. In the hierarchical representation learning
module, the leaf node embeddings are initialized by the document embeddings, and the representations of non-leaf
nodes are learned from bottom to top. The structure encoder finally generates an information lossless positive view
for the text encoder, which is formulated in Section 3.4 and proved in Appendix C.

have shown that the key to contrastive learning lies
in the construction of positive pairs (Tian et al.,
2020; Caron et al., 2020; Jaiswal et al., 2020; Grill
et al., 2020), especially in natural language process-
ing (Wu et al., 2020; Yan et al., 2021; Meng et al.,
2021; Pan et al., 2022).

Structural Entropy. Structural entropy (Li and
Pan, 2016) is a natural extension of Shannon en-
tropy (Shannon, 1948) on a structural system,
which could measure the structure complexity of
the system. Non-Euclidean data, especially graph
data, is a typical structured system. The structural
entropy of a graph is defined as the average length
of the codewords obtained by a random walk under
a specific coding scheme, namely coding tree (Li
and Pan, 2016). In the past few years, structural
entropy has been successfully applied in commu-
nity security (Liu et al., 2019) graph classification
(Wu et al., 2022b; Yang et al., 2023), text classi-
fication (Zhang et al., 2022), graph pooling (Wu
et al., 2022a), graph contrastive learning (Wu et al.,
2023), and node clustering (Wang et al., 2023).

3 Methodology

In this section, we first give a problem definition of
hierarchical text classification. Next, we elaborate
on the working process of the text encoder (in Sec-
tion 3.2) and the structure encoder (in Section 3.3)
of the proposed HILL. Theoretical analysis is fur-
ther given to reveal the information lossless prop-
erty of HILL for HTC in Section 3.4. Overall, the

framework of HILL is shown in Figure 2.

3.1 Problem Definition
In hierarchical text classification, the label set is
predefined and represented as a directed acyclic
graph, namely the label hierarchy. Every label that
appears in the corpus corresponds to a unique node
on the hierarchy. Each non-root node is pointed by
only one node in the upper levels, i.e. its parent
node. In the ground-truth label set Y of any sam-
ple, a non-root label yi always co-occurs with its
parent nodes, put differently, for any yi ∈ Y , the
parent node of yi is also in Y . Given a document
D to be classified, where D = {w1, w2, . . . , wN}
is commonly treated as a sequence with N tokens,
an HTC model should predict a subset Ŷ of the
complete label set Y.

3.2 Text Encoder
Our framework is compatible with multiple docu-
ment representation models. To maintain consis-
tency with previous works, we utilize BERT (De-
vlin et al., 2019) as the text encoder.

First, the input document D is tokenized into a
sequence with N tokens and then padded with two
special tokens:

D̃ = {[CLS], w1, w2, . . . , wN , [SEP ]}, (1)

where [CLS] and [SEP ] are respectively recog-
nized as the beginning and the end of the document.

Next, the BERT encoder takes the padded doc-
ument D̃ as input and generates hidden repre-
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sentations of each token, formally, HBERT =
FBERT (D̃), where HBERT ∈ R(N+2)×dB is the
token embedding matrix while FBERT (·) denotes
the holistic BERT model. Afterward, the [CLS]
embedding is taken as the representation of the en-
tire document. That is, hD = H

[CLS]
BERT = H0

BERT ,
where hD ∈ RdB is the document embedding, and
dB is the hidden size of BERT.

3.3 Structure Encoder
To implement information lossless contrastive
learning in the structure encoder, we propose an
algorithm to extract structural information from the
label hierarchy via structural entropy (Li and Pan,
2016) minimization and a hierarchical represen-
tation learning mechanism to inject the structural
information into text embeddings. Thereafter, the
structure encoder generates a positive view of the
document that retains both semantic and structural
information losslessly.

Structural Entropy. In Li and Pan (2016), the
structural entropy of a graph G = (VG, EG) is
defined as the average length of the codewords
obtained by a random walk under a specific coding
pattern named coding tree, formally,

HT (G) = −
∑

v∈T

gv
vol(G)

log
vol(v)

vol(v+)
, (2)

where v is a non-root node of coding tree T which
represents a subset of VG, v+ is the parent node of
v on the coding tree. gv represents the number of
v’s cut edges on G. vol(G) denotes the volume of
graph G while vol(v) and vol(v+) is the sum of
the degree of nodes partitioned by v and v+.

The height of the coding tree should be fixed
to formulate a certain coding scheme. Therefore,
the K-dimensional structural entropy of the graph
G determined by the coding tree T with a certain
height K is defined as:

HK(G) = min
{T |height(T )≤K}

HT (G). (3)

More details about structural entropy and coding
trees are provided in Appendix A.

Structural Entropy Minimization. To mini-
mize the structural entropy is to construct the opti-
mal coding tree of graph G. Thus, we design two
algorithms to heuristically construct a coding tree
T with height K. In Algorithm 1, we take VG as the
leaf nodes, connect them directly to the root node

vTr , and call Algorithm 2 to construct an initial cod-
ing tree T . Algorithm 2 creates a new coding tree
T of height 1 with v and iteratively compresses
two child nodes from the children set C(v) of root
node v in the first while loop (lines 3-6), prioritiz-
ing the nodes that result in the largest reduction in
structural entropy. Since tree T’s height may ex-
ceed K, in the second while loop (lines 7-10), we
iteratively remove non-leaf nodes of T, prioritiz-
ing nodes with the smallest entropy increase upon
deletion. Afterward, leaf nodes of T might have
different heights, contradicting the definition of
coding trees. Thus, we adopt the operation in line
11 to align leaf nodes. Algorithm 2 always returns
a coding tree T with height 2. Algorithm 1 will
iteratively invoke Algorithm 2 until the height of
T reaches K. More precisely, each iteration within
the while loop will increment the height of T by
1 by calling Algorithm 2 on the root node vTr or
on all nodes in V 1

T , depending on the reduction in
structural entropy. More details about the proposed
algorithms can be found in Appendix B.

Algorithm 1 Greedy Coding Tree Construction
Input: A graph G = (VG, EG) and a positive
integer K.
Output: Coding tree T = (VT , ET ) of the graph
G with height K.

1: V 1
T := {vTr }, V 0

T := C(vTr ) := VG;
2: T = Algo. 2(v := vTr );
3: while T.height < K do
4: T1 = T.merge(Algo. 2(v := vTr ));
5: T2 = T.merge({T = Algo. 2(v :=

v̂)|∀v̂ ∈ V 1
T });

6: T = (HT1(G) < HT2(G)) ? T1 : T2;
7: end while
8: return T ;

Hierarchical Representation Learning. After
calling Algorithm 1(GL = (VG, EG),K), we
get a coding tree TL = (VTL

, ETL
) of label hi-

erarchy GL with TL.height = K . For rep-
resentation learning, reformulate the label hier-
archy and its coding tree as triplets: GL =
(VGL

, EGL
, XGL

), TL = (VTL
, ETL

, XTL
) where

XGL
∈ RY×dV is derived from document embed-

ding hD via two-dimensional projector, formally,
XGL

= ϕproj(hD). ϕproj(·) consists of a (Y× 1)

Due to different scopes, we use T and T to distinguish
the coding trees in Algorithm 1 and Algorithm 2.

In the implementation, we apply pruning strategies to
improve the efficiency, but they are omitted here for clarity.
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Algorithm 2 2-level sub-coding tree construction.
Input: A node v.
Output: Coding tree T = (VT, ET) with height 2.

1: vTr := v, V 0
T := C(v);

2: ∀v ∈ V 0
T, v.parent := vTr , C(vTr ) := v ∪

C(vTr )
3: while |C(vTr )| > 2 do
4: (vα, vβ) = argmax

(v,v′)
{HT(G) −

HT.compress(v,v′)(G)}
5: T.compress(vα, vβ)
6: end while
7: while T.height > 2 do
8: vi = argmin

v
{HT.remove(v)(G) −

HT(G)}
9: T.remove(vi)

10: end while
11: T.align()
12: return T

and a (dB × dV ) feed-forward network, where
dV is the hidden size for vertices. Meanwhile,
XTL

= {X0
TL

, X1
TL

, . . . , XK
TL

} represents the node
embeddings of V i

TL
, i ∈ [0,K].

In Algorithm 1, the leaf nodes V 0
TL

are initial-
ized with VGL

, thus X0
TL

:= XGL
. Furthermore,

{V k
TL

|k ∈ [1,K]} is given by Algorithm 1 while
their node embeddings {Xk

TL
|k ∈ [1,K]} need to

be fetched. Based on the structure of coding trees,
we design a hierarchical representation learning
module. For xkv ∈ Xk

TL
in the k-th layer,

xkv = ϕk
FFN (

∑
n∈C(v)

xk−1
n ), (4)

where v ∈ V k
T , xkv ∈ RdV is the feature vector

of node v, and C(v) represents the child nodes
of v in coding tree TL. ϕi

FFN (·) denotes a feed-
forward network. The information from leaf nodes
propagates layer by layer until it reaches the root
node. Finally, to capture the multi-granular infor-
mation provided by nodes at different levels, we
utilize Equation 5 to integrate information from
each layer of TL:

hT =

K⊔

k=1

η({xkv |v ∈ V k
TL

}), (5)

where
⊔
(·) indicates the concatenation operation.

η(·) could be a feature-wise summation or averag-
ing function. hT ∈ RdT is the final output of the
structure encoder.

3.4 Contrastive Learning Module
Positive Pairs and Contrastive Loss. We expect
the text encoder and the structure encoder to learn
from each other. Thus, the document embedding
hD and structural embedding hT of the same sam-
ple form the positive pair in our model. Consider-
ing hD and hT might be in different distributions,
we first project them into an embedding space via
independent projectors, formally,

h = W 2
DReLU(W 1

D · hD + bD) (6)

ĥ = W 2
TReLU(W 1

T · hT + bT ), (7)

where h and ĥ are the projected vectors of hD and
hT . W 1

D, W 2
D, bD, W 1

T , W 2
T , and bT are weights

of projectors.
Next, we utilize NT-Xent loss (Chen et al.,

2020b) to achieve contrastive learning. Let hi and
ĥi denote the projected positive pair of the i-th doc-
ument in a batch, the contrastive learning loss Lclr

is formulated as:

Lclr = −log
eε(hi,ĥi)/τ

∑|B|
j=1,j ̸=i e

ε(hj ,ĥj)/τ
, (8)

where |B| denotes the batch size, τ is the temper-
ature parameter, and ε(h, ĥ) is a distance metric
implemented by cosine similarity h⊤ĥ

||h||·||ĥ|| .

Information Lossless Contrastive Learning for
HTC. Information lossless learning dose not im-
ply retaining any input data. It is preserving the
minimal but sufficient information, i.e., the mutual
information required by the downstream task. This
is how we define information lossless learning for
hierarchical text classification:

Definition 1 In HTC, the mutual information be-
tween inputs and targets can be written as:

I((GL ◦ D);Y ), (9)

where GL ∈ G,D ∈ D are random variables
for the label hierarchy GL and the document D.
I(X1;X2) denotes the mutual information between
random variables X1 and X2. ◦ indicates any in-
put combination of GL and D
Definition 2 Given a function F ⊆ FT × FG,
which is an arbitrary fusion of a text and a struc-
ture encoder. Define the optimal function F∗ if and
only if F∗ satisfies:

F∗ = argmax
F⊆FT×FG

I(F(GL ◦ D); (GL ◦ D)). (10)
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That is, F∗retains the most mutual information be-
tween the input random variables and the encoded
random variables. Apparently, F∗ is a determinis-
tic mapping as the embedding F∗(GL ◦D) is fixed
for downstream prediction when given (GL ◦D).
Thus, for any random variable ξ,

I(F∗(GL ◦ D); ξ) = I((GL ◦ D); ξ). (11)

When ξ = Y , we could have,

I(F∗(GL ◦ D);Y ) = I((GL ◦ D);Y ). (12)

Theorem 1 Given a document D and the coding
tree TL of the label hierarchy GL. Denote their
random variable as D, TL, and GL. For any aug-
mentation function θ, we have,

I((TL ◦ D);Y ) ≥ I(θ(GL,D);Y ). (13)

The proof for Theorem 1 is given in Appendix C.

Supervised Contrastive Learning. Following
the training strategy of previous contrastive learn-
ing methods for HTC, we train HILL with classi-
fication loss and contrastive loss simultaneously.
After executing the structure encoder, the docu-
ment embedding hD and its positive view hT are
concatenated and fed into the classifier along with
the sigmoid function:

P = Sigmoid([hD;hT ] ·Wc + bc), (14)

where Wc ∈ R(dB+dT )×|Y| and bc ∈ R|Y| are
weights and bias of the classifier while |Y| is the
volume of the label set. For multi-label classifica-
tion, we adopt the Binary Cross-Entropy Loss as
the classification loss:

LC = − 1

|Y|

|Y|∑

j

yj log(pj) + (1− yj)log(1− pj), (15)

where yj is the ground truth of the j-th label while
pj is the j-th element of P .

Overall, the final loss function can be formulated
as:

L = LC + λclr · Lclr. (16)

where λclr is the weight of Lclr.

Dataset |Y| Avg(|Y)|) Depth # Train # Dev # Test
WOS 141 2.0 2 30,070 7,518 9,397

RCV1-v2 103 3.24 4 20,833 2,316 781,265
NYTimes 166 7.6 8 23,345 5,834 7,292

Table 1: Summary statistics of the three datasets.

4 Experiment

4.1 Experiment Setup
Datasets and Evaluation Metrics. Experiments
are conducted on three popular datasets in HTC.
RCV1-v2 (Lewis et al., 2004) and NYTimes (Sand-
haus, Evan, 2008) consists of news articles, while
WOS (Kowsari et al., 2017) includes abstracts of
academic papers. Each of these datasets is anno-
tated with ground-truth labels existing in a pre-
defined hierarchy. We split and preprocess these
datasets following (Wang et al., 2022a). The statis-
tics of these datasets are shown in Table 1. The ex-
perimental results are measured with Micro-F1 and
Macro-F1 (Gopal and Yang, 2013). Micro-F1 is
the harmonic mean of the overall precision and re-
call of all the test instances, while Macro-F1 is the
average F1-score of each category. Thus, Micro-F1
reflects the performance on more frequent labels,
while Macro-F1 treats labels equally.

Implementation Details. For the text encoder,
we use the BertModel of bert-base-uncased and
update its parameters with Adam (Kingma and Ba,
2015) as the initial learning rate is 3e-5. For all
three datasets, the hidden sizes dB, dV , dT are all
set to 768. ϕk

FFN in Equation 4 is implemented
by K independent multi-layer perceptions which
consists of 2-layer linear transformations and non-
linear functions. The batch sizes are set to 24 for
WOS and NYTimes while 16 for RCV1-v2. The
η(·) in Equation 5 is implemented by a summation
for WOS and NYTimes while averaging for RCV1-
v2. The learning rate of the structure encoder is
set to 1e-3 for WOS, 1e-4 for RCV1 and NYTimes.
The weight of contrastive loss λclr is respectively
set to 0.001, 0.1, 0.3 for WOS, RCV1, and NY-
Times. The optimal height K of coding trees goes
to 3, 2, and 3.

Baselines. We compare HILL with self-
supervised only models including HiAGM(Zhou
et al., 2020), HTCInfoMax (Deng et al., 2021),
HiMatch (Chen et al., 2021) and their BERT-based
version and a contrastive learning model HGCLR
(Wang et al., 2022a). HiAGM, HTCInfoMax, and
HiMatch use different fusion strategies to model
text-hierarchy correlations. Specifically, HiAGM
proposes a multi-label attention (HiAGM-LA) and
a text feature propagation technique (HiAGM-TP)
to get hierarchy-aware representations. HTCIn-
foMax enhances HiAGM-LA with information
maximization to model the interaction between
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Model
WOS RCV1-v2 NYTimes Average

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Supervised Learning Models

TextRCNN (Zhou et al., 2020) 83.55 76.99 81.57 59.25 70.83 56.18 78.65 64.14
HiAGM (Zhou et al., 2020) 85.82 80.28 83.96 63.35 74.97 60.83 81.58 68.15
HTCInfoMax (Deng et al., 2021) 85.58 80.05 83.51 62.71 - - - -
HiMatch (Chen et al., 2021) 86.20 80.53 84.73 64.11 - - - -

Supervised Learning Models (BERT-based)
BERT † 85.63 79.07 85.65 67.02 78.24 65.62 83.17 70.57
BERT (Chen et al., 2021) 86.26 80.58 86.26 67.35 - - - -
BERT+HiAGM † 86.04 80.19 85.58 67.93 78.64 66.76 83.42 71.67
BERT+HTCInfoMax † 86.30 79.97 85.53 67.09 78.75 67.31 83.53 71.46
BERT+HiMatch † 86.70 81.06 86.33 68.66 - - - -

Contrastive Learning Models
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 78.86 67.96 84.15 72.49
HILL(Ours) 87.28 81.77 87.31 70.12 80.47 69.96 85.02 73.95

Table 2: Experimental results of our proposed model on three datasets and their average performance. The supervised
learning models (in the upper part) originally take TextRCNN (Lai et al., 2015) as the text encoder. For fairness,
we compared with their BERT-based versions implemented by Wang et al. (2022a) (in the middle part). The best
results are marked in bold. “-” means not reported or not applicable.

text and hierarchy. HiMatch treats HTC as a
matching problem by mapping text and labels into
a joint embedding space. HGCLR makes BERT
learn from the structure encoder with a controlled
document augmentation.

4.2 Results and Analysis

The main results are presented in Table 2. In the
supervised-only models, HTCInfoMax enhances
HiAGM through the maximization of mutual in-
formation principles. HiMatch treats HTC as a
matching problem, and the reported results stand
out as the best among these models. The replace-
ment of TextRCNN with BERT has minimal impact
on the relative ranking of their outcomes. This im-
plies that the text encoder primarily influences the
overall effectiveness of their models, while their
specific merits are determined by their efforts be-
yond the text encoder. To some extent, it also indi-
cates that their text encoder and structure encoder
operate independently.

HGCLR is the inaugural contrastive learning ap-
proach for HTC. Despite the involvement of the
structure encoder, the positive sample construc-
tion in HGCLR still relies on data augmentation.
Conversely, our model effectively utilizes the syn-
tactic information extracted by the structure en-
coder, enabling cooperation between the text en-
coder and the structure encoder. Specifically, the
proposed HILL surpasses all supervised learning
models and the contrastive learning model across
all three datasets. Our model demonstrates average
improvements of 1.85% and 3.38% on Micro-F1

and Macro-F1 compared to vanilla BERT. In com-
parison with HGCLR, our model achieves nearly
a 2% performance boost on both RCV1-v2 and
NYTimes. Additionally, the improvement in WOS
is notable, though slightly less than that observed
in the other two datasets. A likely reason is that
BERT is pretrained on news corpus, and the do-
main knowledge acquired may differ from that of
paper abstracts. However, this could also indicate
effective collaboration between the text encoder
and the structural encoder in our framework. As
the text encoder learns robust features, the struc-
tural encoder becomes increasingly powerful, and
vice versa.

Ablation Models
RCV1-v2

Micro-F1 Macro-F1
HILL 87.31 70.12
r.p. GIN (Xu et al., 2019) 86.48 69.30
r.p. GAT (Velickovic et al., 2018) 86.51 68.12
r.p. GCN (Kipf and Welling, 2017) 86.24 68.71
r.m. Lclr 86.51 68.60
r.m. Algorithm 1 86.67 67.92

Table 3: Performance when replacing or removing some
components of HILL on the test set of RCV1-v2. r.p.
stands for the replacement and r.m. stands for remove.
The results of r.m. Lclr and r.m. Algorithm 1 are both
obtained from 5 runs under different random seeds, each
of which is distinguished from HILL’s at a significant
level of 95% under a one-sample t-test.

4.3 Ablation Studies
The necessity of proposed methods. We con-
duct ablation studies by removing one component
of our model at a time while keeping other con-
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Figure 3: Test performance of HILL with different height K of the coding tree on three datasets.

ditions consistent whenever possible. The results
of the ablation studies are presented in Table 3.
To demonstrate the effectiveness of proposed hier-
archical representation learning, we replaced the
structure encoder with three commonly used graph
neural networks including GCN (Kipf and Welling,
2017), GAT (Velickovic et al., 2018), and GIN (Xu
et al., 2019). All of them are fed with the label
hierarchy GL and the document embedding hD to
initialize node embeddings. For GCN and GAT, the
number of layers is set to 2 while other parameters
are the default settings in PyTorch-Geometric (Fey
and Lenssen, 2019). Regarding GIN, the combine
function is a 2-layer multi-layer perception with
ϵ = 0, and the iteration is set to 3. We find that
the hierarchical learning module outperforms all
graph encoders on RCV1-v2, which empirically
proves that syntactic information extraction is suc-
cessful in HILL. Moreover, the performance of
the supervised-only model (r.m. Lclr) declines by
0.92% and 2.17%, underscoring the necessity of
contrastive learning. Additionally, we directly feed
the initial coding tree, i.e., a coding tree within the
root node vr connecting to the leaf nodes, into
the structure encoder. The model (r.m. Algo-
rithm 1) exhibits performance decreases of 0.73%
and 3.14%, emphasizing the effectiveness of struc-
tural entropy minimization. Results and analysis on
the other two datasets can be found in Appendix D.

The Height K of Coding Trees. The height of
the coding tree affects the performance of HILL.
Higher coding trees may involve more explosive
gradients. To investigate the impact of K, we run
HILL with different heights K of the coding tree
while keeping other settings the same. Figure 3
shows the test performance of different height cod-
ing trees on WOS, RCV1-v2, and NYTimes. As K
grows, the performance of HILL sharply degrades.
The optimal K seems to be unrelated to the heights

of label hierarchies, since the heights of the three
datasets are 2, 4, and 8, while the optimal K is 3,
2, and 3. On the contrary, the optimal K is more
likely to positively correlate with the volumes of
label set Y, 141, 103, and 166.

WOS RCV1-v2 NYTimes
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Figure 4: The number of trainable parameters (M) and
the average training time (s) of our model and HGCLR
on WOS, RCV1-v2, and NYTimes.

Time-and-Memory-Saving Contrastive Learn-
ing. The structure encoder of HILL is consider-
ably smaller than that of HGCLR, as the kernel
of hierarchical representation learning consists of
only K multi-layer perceptions, while Graphormer
(Ying et al., 2021) is built upon multi-head atten-
tion. In this comparison, we assess the number
of learnable parameters and the training speed of
HILL in contrast to HGCLR. Specifically, we set
the hidden state sizes of both HILL and HGCLR
to 768, with batch sizes set to 16. The count of
trainable parameters is determined by the numel(·)
function in PyTorch (Paszke et al., 2019), excluding
those related to BERT. As indicated in Figure 4, our
model exhibits significantly fewer parameters than
HGCLR, averaging 7.34M compared to 19.04M.
Additionally, the training speed is evaluated after
20 epochs of training. The average training time
for HILL is 789.2s, which is half the time taken by

Both of them converge around the 20th epoch.
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HGCLR (1504.7s). Overall, this analysis suggests
that the efficient architecture of HILL contributes
to its status as a time- and memory-saving model.

5 Conclusion

In this paper, we design a suite of methods to ad-
dress the limitations of existing contrastive learning
models for HTC. In particular, we propose HILL,
in which the syntactic information is sufficiently
fused with the semantic information after structural
entropy minimization and hierarchical representa-
tion learning. Theoretically, we give the definition
on information lossless learning for HTC and the
information extracted by HILL is proved to be the
upper bound of other contrastive learning based
methods. Experimental results demonstrate the
effectiveness and efficiency of our model against
state-of-the-arts.
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Limitations

In Table 2, we only provide the results of HILL
and HGCLR when using BERT as the text encoder.
Due to the focus on designing the structure encoder,
we do not report results on a smaller model, for in-
stance, TextRCNN, or a larger language model as
the text encoder. On the other hand, we adopt su-
pervised contrastive learning in accordance with
the settings of HGCLR. The performance of HILL
under contrastive-supervised two-stage training re-
mains to be explored.
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Original Graph � Coding Tree � & Structural Entropy

Determined T.B.D

Figure 5: An illustration of coding trees and structural entropy. The coding tree T provides us with multi-granularity
partitions of the original graph G, as shown by the three partitions in the example. Structural entropy is defined as
the average amount of information of a random walk between two nodes in VG, considering all nodes partitioned
(encoded and decoded) by coding tree T . Under the guidance of structural entropy, coding tree T could reveal the
essential structure of graph G.
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A A Brief Introduction to Structural
Entropy and Coding Trees

The exhaustive definitions and theorems of coding
trees and structural entropy are originated by Li and
Pan (2016). Here, we just briefly introduce some
key concepts which are crucial to this paper. An
illustration of coding trees and structural entropy
is shown in Figure 5.

Coding tree. A coding tree T = (VT , ET ) of
graph G = (VG, EG) is a tree that satisfies:

I. Denote vTr as the unique root node of
T , Vζ as the leaf-node set of T , and
T.height the height of T . The node set
of T is VT , which consists of a few sub-
sets, that is, VT = {V 0

T , V
1
T , . . . , V

T.height
T }.

V T.height
T := vTr , V

0
T := Vζ .

II. Each node v ∈ VT is the marker (Li and Pan,
2016) of a subset of VG. For instance, vTr is
the marker VG, while each vζ ∈ Vζ marks a
single node in VG.

III. For any V ∈ {V 0
T , V

1
T , . . . , V

T.height
T }. All

nodes in V has the same height (depth) and
any subset of V represents a partition of VG.
Specifically, V 0

T = Vζ is an element-wise par-
tition for VG as there exists a one-to-one cor-
respondence for nodes in Vζ and VG. While
V T.height
T = vTr is the overall partition for VG

as vTr marks the integrity of VG.

Structural Entropy. As coding trees can be re-
garded as coding patterns for graphs, the struc-
tural entropy of a graph is defined as the average
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Original Graph � Initial Coding Tree �

Figure 6: The initialization stage of Algorithm 1, in
which a 1-height coding tree is constructed.

amount of information under a determined coding
tree. Specifically, as depicted in Figure 5, when
a random walk on graph G progresses from node
v1 to node v3, a portion of the information is en-
coded by their parent node v+, and at this point,
only the information from v+ to v3 remains to be
determined. Meanwhile, the conditional entropy
H(v3|v1) is then reduced to H(v3|v+). Thus, we
have:

H(v3|v1) = H(v3|v+) = −log
vol (v3)

vol (v+)
, (17)

where vol(v3) denotes the degree of v3 while (v+)
is the total degree of its children, i.e. vol(v+) =
vol(v1) + vol(v3) + vol(v5). Structural entropy
of a graph G is defined as the average amount of
information required to determine during a random
walk between two accessible nodes. According to
the derivation procedure provided by Li and Pan
(2016), we have:

HT (G) = −
∑

v∈T

gv
vol(G)

log
vol(v)

vol(v+)
, (18)

where gv represents the number of v’s cut edges
on G, vol(G) denotes the volume of graph G, and

gv
vol(G) indicates the probability of a random walk
on G involving the leaf nodes marked by v.

B Explanations for The Proposed
Algorithms

Definitions for Algorithm 1 and Algorithm 2.
Given a coding tree T = (VT , ET ), we define some
attributes and member functions of T as follows,

A. Given any two nodes vα, vβ ∈ VT . If (α, β) ∈
ET , call vα the parent of vβ , and vβ a child
of vα, which is denoted as vβ ∈ C(vα),
vβ.parent = vα.

Conditional entropy should be defined with random vari-
ables, but we omit them here for simplicity.

��
�

�� ��

��
�

��

�� ��

(a) An example of compressing leaf node vα and vβ .
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(b) The final result after executing lines 3-6.

Figure 7: An illustration of T.compress(·) operation.
(a) A single execution of T.compress(vα, vβ). (b) The
final state after executing lines 3-6 in Algorithm 2.
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(a) An example of deleting an intermediate node v.
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(b) The final result after executing lines 7-10.

Figure 8: An illustration of T.delete(·) operation. (a)
A single execution of T.delete(v). (b) The final state
after executing lines 7-10 in Algorithm 2.

B. Function compress(·, ·). As illustrated in
Figure 7(a), given any vα, vβ ∈ C(vTr ).
compress(vα, vβ) will spawn a new node
vγ , remove vα, vβ from C(vTr ), make vγ be
their parent, and add vγ to C(vTr ). After
that, vα.parent = vβ.parent = vγ , and
vγ ∈ C(vTr ) while vα, vβ /∈ C(vTr ).

C. Function delete(·). As depicted in Fig-
ure 8(a), given any v ∈ VT , v ̸= vr. delete(v)
could remove v from VT and attach all its
children to the parent of v. That is, ∀vµ ∈
C(v), vµ.parent := v.parent.

D. Function align(). For any leaf node vζ ∈ Vζ ,
align() will insert a new node between vζ and
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Figure 9: An illustration of T.align() operation.
T.align() will align the height (depth) of all the leaf
nodes to satisfy the definition of coding trees.
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Figure 10: An illustration of lines 3-7 in Algorithm 1.

vζ .parent until the depth of vζ reaches K.
align() ensures that all leaf nodes of T reach
the same height (depth) K thereby satisfying
the definition of a coding tree. Figure 9 shows
an example of align() operation.

E. Function merge(·). For any node v̂ ∈ VT ,
Algorithm 1(v̂) returns a new coding tree
T with height equals to 2. T.merg(T) will
replace the sub-tree of T rooted by v̂ with T.

Note that all the operations above update ET

accordingly. In no case does ET contain self-loops
or skip connections. That is, for any (vα, vβ) ∈ ET ,
|vα.height− vβ.height| ≡ 1.

Illustrations for Algorithm 1 and Algorithm 2.
Here, we present several diagrams to deliver a run-
ning example of proposed algorithms.

As shown in Figure 6, the original graph G is
fed into Algorithm 1 and initialized as a 1-height
coding tree T , in which all nodes in VG are treated
as leaf node and directly connect to a new root
node vTr . Thereafter, Algorithm 1 will call Algo-
rithm 2 several times to construct a coding tree of
the specified height K.

Each invocation of Algorithm 2 takes a non-leaf
node v in tree T as input and yields a (sub-)coding
tree T with a height of 2 wherein v acting as the
root. Algorithm 2 first initializes T in a similar
procedure to that illustrated in Figure 6. Subse-
quently, in the first while loop (lines 3-6), we sys-
tematically compress the structural entropy by iter-

atively combining two children of root node v with
T.compress(·, ·), prioritizing those nodes result-
ing in the largest structural entropy reduction. Ulti-
mately, the maximal reduction in structural entropy
is achieved, resulting in the creation of a full-height
binary tree, as depicted in Figure 7(b). Given that
the full-height binary tree may exceed the specified
height of 2, we rectify this by condensing the tree
through the invocation of T.delete(·) in the sec-
ond while loop (lines 7-10). The complete deletion
process is illustrated in Figure 8(b). It is important
to note that after condensation, tree T comprises
leaf nodes with varying heights, which violates the
definition of coding trees. To address this, in line
11, we employ T.align() to introduce inter-nodes.
An example of T.align() is illustrated in Figure 9.

Once T returned, Algorithm 1 merges T into T
at the original position of v. Since v is selected
from either vTr or V 1

T , both of which derive sub-
tree(s) with height 1, merging T of height 2 will
increase the height of T by 1. As depicted in Fig-
ure 10, Algorithm 1 aims to iteratively invoke Algo-
rithm 2 and integrate the returned T until T reaches
height K. The decision of whether Algorithm 2 is
invoked on vTr or V 1

T depends on which of the two
selections results in less structural entropy for the
merged coding tree T .

C Proof for Theorem 1

Proof. According to Li and Pan (2016), structural
entropy decodes the essential structure of the orig-
inal system while measuring the structural infor-
mation to support the semantic modeling of the
system. Thus, we have,

I(F∗(GL ◦ D);Y ) =I(F∗(TL ◦ D);Y ). (19)

Considering the data processing inequality (Cover
and Thomas, 2006) for data augmentation, we
would have,

I((GL,D);Y ) ≥ I(θ(GL,D);Y ), (20)

where θ is a general data augmentation function
acting on (GL◦D). Integrating the above equations,
we have,

I((TL ◦ D);Y )
(a)
=I(F∗(TL ◦ D);Y ) (21)
(b)
=I(F∗(GL ◦ D);Y ) (22)
(a)
=I((GL ◦ D);Y ) (23)
(c)

≥I(θ(GL ◦ D));Y ). (24)
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Ablation Models
WOS RCV1-v2 NYTimes

Micro-F1 (∆) Macro-F1 (∆) Micro-F1 (∆) Macro-F1 (∆) Micro-F1 (∆) Macro-F1 (∆)

HILL 87.28 81.77 87.31 70.12 80.47 69.96
r.p. GIN (Xu et al., 2019) 86.67 (-0.61) 80.53 (-1.24) 86.48 (-0.83) 69.30 (-0.82) 79.43 (-1.04) 68.53 (-1.43)
r.p. GAT (Velickovic et al., 2018) 86.58 (-0.70) 80.41 (-1.36) 86.51 (-0.80) 68.12 (-2.00) 79.46 (-1.01) 69.11 (-0.85)
r.p. GCN (Kipf and Welling, 2017) 86.40 (-0.88) 80.47 (-1.30) 86.24 (-1.07) 68.71 (-1.41) 79.42 (-1.05) 69.33 (-0.63)
r.m. Lclr 86.96 (-0.32) 81.37 (-0.40) 86.51 (-0.80) 68.60 (-1.52) 79.64 (-0.83) 68.90 (-1.06)
r.m. Algorithm 1 86.21 (-1.07) 79.88 (-1.89) 86.67 (-0.64) 67.92 (-2.20) 79.63 (-0.84) 68.74 (-1.22)

Table 4: Performance when replacing or removing some components of HILL on the test set of WOS, RCV1-v2, and
NYTimes. r.p. stands for the replacement and r.m. stands for remove. The results of r.m. Lclr and r.m. Algorithm 1
are both obtained from 5 runs under different random seeds, each of which is distinguished from HILL’s at a
significant level of 95% under a one-sample t-test. ∆ denotes the decrements.

where (a), (b), and (c) could be referred to Equa-
tion 12, Equation 19, and Equation 20, respectively.
Here, we have concluded the proof that the informa-
tion encoded by HILL is lossless, which is the up-
per bound of any other augmentation-based meth-
ods. □

D Ablation Studies on WOS and
NYTimes

Table 4 present the results of the ablation experi-
ments on WOS and NYTimes, respectively. The
experimental setups are consistent with Section 4.3.
From the results, we observe that the hierarchical
representation learning module proposed in this
paper outperforms all other structure encoder vari-
ants on WOS (Kowsari et al., 2017) and NYTimes
(Sandhaus, Evan, 2008). Additionally, when HILL
skips Algorithm 1 and completes the representa-
tion learning directly on the initial encoding tree,
a significant performance drop is observed on all
three datasets.

Although the results of the r.m. Lclr for all
three datasets fall short of the original HILL re-
sults, the performance gap on WOS is less pro-
nounced compared to RCV1-v2 and NYTimes. No-
tably, as mentioned in Section 4.1, the contrastive
learning weight λclr employed on WOS is also the
smallest among the three datasets (0.001 vs. 0.1
and 0.3). However, this does not imply that intro-
ducing contrastive learning to WOS is a failure,
as contrastive learning still results in substantial
improvements. A more appropriate statement is
that WOS reaps lower benefits due to contrastive
learning. We attribute this to two factors. Firstly,
there exists a substantial distributional gap between
the WOS data and the pre-training data of BERT
(Devlin et al., 2019). As depicted in Table 2, the
performance gains achieved by replacing TextR-
CNN (Lai et al., 2015) in each baseline with BERT
on WOS are comparatively lower than those on

the other datasets. HTCInfoMAX (Deng et al.,
2021) even exhibits a performance degradation.
Secondly, the maximum label depth of WOS is
2, significantly lower than that of RCV1-v2 (4) and
NYTimes (8). This suggests that the label hierarchy
of WOS contains less essential structural informa-
tion, resulting in a comparatively smaller gain in
the hierarchy-aware contrastive learning process.
Nevertheless, the experimental results withstand
the t-test, adequately demonstrating the advantages
of contrastive learning.
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