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Abstract

Diffusion models have achieved state-of-the-art
synthesis quality on both visual and audio tasks,
and recent works further adapt them to textual
data by diffusing on the embedding space. In
this paper, we conduct systematic studies of
the optimization challenges encountered with
both the embedding space and the denoising
model, which have not been carefully explored.
Firstly, the data distribution is learnable for em-
beddings, which may lead to the collapse of the
embedding space and unstable training. To alle-
viate this problem, we propose a new objective
called the anchor loss which is more efficient
than previous methods. Secondly, we find the
noise levels of conventional schedules are insuf-
ficient for training a desirable denoising model
while introducing varying degrees of degenera-
tion in consequence. To address this challenge,
we propose a novel framework called noise
rescaling. Based on the above analysis, we pro-
pose Difformer, an embedding diffusion model
based on Transformer. Experiments on vari-
eties of seminal text generation tasks show the
effectiveness of the proposed methods and the
superiority of Difformer over previous state-of-
the-art embedding diffusion baselines.1

1 Introduction

A wave of diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020b) is sweep-
ing the generation tasks (e.g., image and audio syn-
thesis) recently, showing their great capacity for
high-quality data generation. Diffusion models are
a family of iterative generative models, which are
trained to recover corrupted data and then gener-
ate data by gradually refining samples from the
pure noise. This procedure enables the model to
make subtle refinements of output samples in a

*Equal contribution.
†Corresponding author.
1Code is available at https://github.com/zhjgao/

difformer

multi-step denoising process, and thus generate
high-fidelity and diverse samples (Dhariwal and
Nichol, 2021; Nichol and Dhariwal, 2021; Ho and
Salimans, 2021; Rombach et al., 2022; Chen et al.,
2020; Kong et al., 2020).

The booming achievements in vision and audio
domains inspire researchers to delve into the realm
of text generation. Diffusion models introduce a
novel noising paradigm and a training objective
other than token prediction, establishing an alterna-
tive form of language models, which exhibits the
potential to foster an enhanced comprehension of
language modeling. From a higher perspective, this
investigation generalizes the diffusion model across
modalities, and further contributes to a unified mul-
timodal framework (Bao et al., 2023; Tang et al.,
2024). Nonetheless, the exploration is still at an ini-
tial stage. Recent works (Li et al., 2022; Gong et al.,
2022; Strudel et al., 2022) basically convert the
discrete tokens to embeddings and then utilize con-
tinuous diffusion models to generate them, which
can be termed embedding diffusion models. These
preliminary attempts follow the original model to
deal with the embeddings, with little consideration
of the unique properties and the optimization chal-
lenges of the embedding space and the denoising
model.

In this paper, we explore the embedding diffu-
sion model from two perspectives separately, i.e.,
the embedding space and the denoising model,
based on which we conduct a thorough study re-
spectively. Firstly, for diffusion models on image
and audio generation, the ground truth data is sta-
tionary during training. In contrast, it is learnable
for the textual data (i.e., embeddings), which may
cause the collapse of the embedding space and in-
troduce instability to the training of the model. To
avoid the collapse caused by dynamically shifting
embedding parameters, we propose an anchor loss
function to attain well-distributed embeddings and
stabilize the training process. The detailed analysis
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is presented in Section 3.1.
Secondly, in Section 3.2, we find that in the

high dimensional embedding space, the insuffi-
cient noise results in a simple denoising task, which
causes the degeneration of the model. To tackle this
challenge, we propose a novel framework named
noise rescaling, which is orthogonal to the choice
of the noise schedule and applicable to any existing
schedules. Specifically, we define an index termed
degeneration score as a measurement of the degree
of degeneration. Guided by the degeneration score,
we can apply a noise rescaling procedure to prevent
the model from degenerating.

Based on the above discussion, we propose an in-
tegrated framework of Difformer, a denoising diffu-
sion Transformer model. We conduct experiments
on a variety of important text generation tasks in-
cluding machine translation, text summarization,
paraphrasing, text simplification, and question gen-
eration. On these benchmark datasets, Difformer
outperforms diffusion-based and iteration-based
non-autoregressive baselines and achieves state-of-
the-art performance among embedding diffusion
models. Further experiments demonstrate the supe-
riority of Difformer over baselines including LLMs
in quality, diversity, and efficiency, emphasizing
the potential of diffusion models for text generation
in the era of LLMs.

2 Background

Diffusion Models Denoising diffusion proba-
bilistic models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) utilize a forward process to perturb
the data with Gaussian noise, and a reverse pro-
cess to restore the data symmetrically. Ho et al.
(2020) develop the approach by specific param-
eterizations, achieving comparable sample qual-
ity with state-of-the-art generative models such as
GANs (Goodfellow Ian et al., 2014). After that,
great improvements have been made by many fol-
lowing works (Song et al., 2020a; Dhariwal and
Nichol, 2021; Nichol and Dhariwal, 2021; Rom-
bach et al., 2022) both in quality and efficiency.
Given a data sample z0 ∈ Rd, the denoising diffu-
sion probabilistic model gradually perturbs it into
a pure Gaussian noise zT ∼ N (0, I) through a
series of latent variables z1, · · · , zT in the forward
process:

q(zt|z0) = N
(
zt;
√
ᾱtz0, β̄tI

)
,

where ᾱt, β̄t are hyper-parameters controlling the
noise level added at timestep t, which form the

noise schedule. Usually, these hyper-parameters
are set to satisfy ᾱt :=

∏t
i=0 αi, αt + βt = 1, and

ᾱt + β̄t = 1. The reverse process is parameterized
as:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) ,

where µθ(·) and Σθ(·) are the predicted mean and
covariance of q(zt−1|zt), and θ denotes the model
parameters. After parameterization, we utilize a
simplified variational lower-bound as the objective
function

Lvlb = Ez0,zt,t

[
∥ẑ0(zt, t)− z0∥2

]
, (1)

where ẑ0(zt, t) is the model prediction of the orig-
inal data z0 given zt. The detailed derivation can
be found in Appendix B.

Diffusion Models for Text Generation The
breakthrough of diffusion models on continuous
data encourages people to explore their potential
on discrete textual data. The definition of forward
and reverse processes is the key question for dif-
fusion models. Recent works mainly follow two
directions.

Firstly, discrete diffusion models on categori-
cal distributions are proposed (Hoogeboom et al.,
2021; Austin et al., 2021; Savinov et al., 2021; Reid
et al., 2022), by which sentences are corrupted and
refined at the token level. However, these kinds of
corruption are coarse-grained. Attempts have been
made to explore modeling on surrogate represen-
tations of discrete data such as analog bits (Chen
et al., 2022) and simplex (Han et al., 2023). Never-
theless, these representations carry little semantic
information about tokens, which implies that the
distances in this space can not accurately reflect
semantic correlations between tokens.

In contrast, embedding diffusion models (Li
et al., 2022; Strudel et al., 2022; Gong et al., 2022;
Ye et al., 2023) introduce an additional embed-
ding step and rounding step in the forward and
reverse processes respectively. The embedding step
converts tokens into learnable or pre-trained em-
beddings, which carry semantic information, and
then a continuous diffusion process is able to add
Gaussian noise to these embeddings, achieving a
fine-grained noising procedure. Mathematically,
given a sequence of tokens y = [y1, y2, · · · , yn],
the embedding step can be denoted as z0 ∼
N (eϕ(y), β0I) where eϕ(·) denotes the embed-
ding lookup function. The rounding step turns pre-
dicted embeddings back to discrete tokens, which
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Figure 1: An overview of the Difformer, including the proposed techniques, i.e., the anchor loss, and the noise
rescaling.

can be expressed as a softmax distribution over the
vocabulary pϕ(y|z0), and is trained by an extra loss
function Lround = Ey,z0 [− log pϕ(y|z0)]. The pa-
rameters of this step and the embedding step are
tied. The final loss function is written as:

Ltext = Lvlb + Lround.

Nevertheless, these works directly adapt con-
tinuous diffusion models to embeddings, without
considering the gap between the learnable embed-
ding space and the stationary image or audio data,
as well as the distinctive requirements of the de-
noising model established on the embedding space.

3 Methodology

This section elucidates the challenges inher-
ent in optimizing embedding diffusion models
and presents our corresponding solutions. We
start with an introduction to the model architec-
ture. The model architecture is based on Trans-
former (Vaswani et al., 2017), which consists
of an encoder and a decoder. The decoder, as
the main stem component, is considered as two
separate parts in this paper, namely the embed-
dings eϕ = [e1, e2, · · · , eV ] ∈ Rd×V , eϕ(y) =
[ey1 , ey2 , · · · , eyn ] and the denoising model fθ(·),
which denotes the stacked decoder layers. Notably,
this paper define z0 = eϕ(y). The encoder pro-
vides the representation x = Encoder(x) of the
condition sentence x = [x1, x2, · · · , xm].

3.1 Collapse of the Embedding Space
Analysis of the Collapse Problem The data
space is usually fixed for continuous data (e.g., im-
age and audio), while it is learned from scratch

for discrete textual data (i.e., embeddings), which
therefore shifts dynamically during training. Orig-
inal diffusion models rely on the loss function
Eq. (1) to learn to estimate the clean data sam-
ple z0. Nevertheless, when directly adapting this
objective to the embedding diffusion model, the
embedding space will collapse. As a result, the
embeddings of different tokens will be less dis-
tinguishable and non-uniformly distributed in the
space, which considerably limits the representa-
tion capacity and quality of the embeddings. On
the contrary, the model could achieve better perfor-
mance with more isotropic embeddings (Gao et al.,
2018; Li et al., 2020).

Recent works of diffusion on embeddings (Li
et al., 2022; Gong et al., 2022) introduce the round-
ing loss Lround from the derivation of the varia-
tional lower bound, which discriminates the cor-
rect embeddings from others given their noised
counterparts, therefore enforces the embeddings
are distinguishable and informative, alleviating the
collapse objectively. We could regard this addi-
tional loss function as a regularization term for the
embeddings. Nonetheless, only a minor level of
perturbation is involved from y to z0, thereby the
rounding loss is only able to apply a relatively weak
constraint on the embeddings.

Our empirical evidence also corroborates the lim-
itation of the rounding loss. We observe that the
rounding loss undergoes a steep descent and falls to
near zero in the initial stages of training, which im-
plies the rounding loss can be effortlessly addressed
and fails to conduct strong enough regularization to
the embeddings. Therefore, the embedding space
is undesirable and eventually leads to unsatisfac-
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tory performance. Concurrently, the instability in
training also emerges as a problem during training.
Even if careful tuning of the hyper-parameters is
performed to relieve anisotropy, the performance
is still inferior.

Anchor Loss To emphasize the effect of the reg-
ularization term, we propose a training objective
named the anchor loss

Lanchor = E(x,y),zt,t[− log pϕ(y|ẑ0(zt,x, t))].

Compared with Lround, Lanchor utilizes the model
prediction of z0 as the input, which involves a large
discrepancy with z0 due to the prediction error
of the denoising model. Consequently, to ensure
these highly noisy representations are identified
as the correct tokens, the anchor loss employs a
stronger regularization to the embeddings to pre-
vent collapse. Additionally, besides Lvlb, the an-
chor loss creates another pathway between the de-
noising model and the target sentences, through
which the model could receive feedback from the
ground truth, maintaining the training stability. Fi-
nally, our training objective is written as

L = Lvlb + Lanchor. (2)

Empirically, we use self similarity (Ethayarajh,
2019) as the anisotropy score to measure the sever-
ity of collapse:

ANI =
1

V (V − 1)

V∑

i=1

V∑

j=1,j ̸=i

cos(ei, ej).

Essentially, the higher the anisotropy score is, the
more severe the collapse is. The anisotropy score
as well as the performance obtained by each loss
function can be found in Table 1. With only Lvlb
or Ltext, the anisotropy score demonstrates that
the embeddings are non-uniformly distributed, re-
sulting in unsatisfactory results. On the contrary,
the embeddings are well-distributed across the en-
tire space with the anchor loss, and thus the model
reaches competitive performance (in BLEU (Pa-
pineni et al., 2002)). Alternatively, utilizing pre-
trained embeddings and freezing them during train-
ing could also avoid collapse. As shown in the
experimental results, the frozen embeddings alle-
viate the collapse remarkably, however, they are
suboptimal for the problem. Detailed discussion
can be found in Appendix C.3.

Loss ANI BLEU

Lvlb 0.99 0.07
Ltext 0.32 27.89
L 0.03 34.48

Table 1: The anisotropy score and performance of each
loss function on the IWSLT14 De-En dataset with linear
schedule.

3.2 Degeneration of the Denoising Model
Analysis of the Degeneration Problem The de-
sign of the noise schedule, which determines the
amount of noise added to the data at each step, has
significant influences on both forward and reverse
processes. Intuitively, denoising is a more challeng-
ing task for the model with higher levels of noise,
and becomes easier when insufficient corruption is
applied, where the model can generate the correct
embeddings without depending on the condition
and context. As a consequence, the model tends
to degenerate to a trivial solution. Here, we pro-
vide in-depth analyses of this problem. We start
by defining the degenerated model, which discards
the conditioning information and generates each
embedding by choosing the nearest ones indepen-
dently:

Definition 1. For a noised input zt =
[zt,1, zt,2, · · · , zt,n], the Degenerated Model is de-
fined as

fdg(zt;x) =

[
argmin
ey∈eϕ

L(zt,i, ey)

]n

i

,

where

L(zt,i, ey) = ∥zt,i − ey∥2 − log pϕ(y|zt,i).

It can be proved that when insufficient noise is in-
troduced during training, the denoising model tends
to fall as the degenerated model defined above.

Theorem 1. Given embeddings eϕ ∼
Nd×V (0, σeI), the probability of the degen-
erated model being a global minimum of the
objective function L for θ converges to 1 as β̄ → 0
and d→∞.

We leave the proof and illustrations of this theo-
rem in Appendix A.

This phenomenon could be verified quantita-
tively. To analyze the capacity of the denoising
model at each noise level, we evaluate the BLEU
score of ẑ0 generated by the model at different
timesteps. To eliminate the impact of the noise
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Figure 2: (a) BLEU score of models fed with pure Gaussian noise zT on the IWSLT14 De-En dataset. The value
of t is normalized to [0, 1]. (b) DGSt with different widely used schedules. (c) The sqrt schedule rescaled with
different values of the rescaling factor.

schedule, we feed the model with zT , i.e., the pure
noise, rather than zt. As illustrated in Fig. 2a,
the BLEU score drops dramatically at ts with low
noise levels, and the range with low scores occu-
pies nearly half of the axis. In other words, the
model degenerates significantly and extensively,
implying the noise levels brought by the schedule
are far from being sufficient.

Noise Rescaling In most text generation tasks,
a degenerated model is undesirable, as it fails to
maintain contextual coherence and condition con-
sistency, both of which are crucial for the task. We
propose a universal noise rescaling framework to
alleviate the degeneration. To achieve this, we start
by defining the degree of degeneration to guide the
rescaling. Intuitively, as supported by the proof of
Theorem 1, the tendency toward degeneration is
highly related to the accuracy of the degenerated
model. Thus we define a mathematical representa-
tion of the overall degree of degeneration:

Definition 2. The DeGeneration Score (DGS) of
a specific noise schedule is

DGS(ᾱ, β̄) =
1

T

∫ T

0
DGSt(ᾱt, β̄t) dt,

where DGSt is the classification accuracy of the
degenerated model at t

DGSt = P (fdg(zt) = z0),

ᾱ and β̄ are functions or discrete series represent-
ing the noise schedule, and zt ∼ N

(√
ᾱtz0, β̄tI

)
.

Note that we do not set the constraint ᾱt + β̄t = 1
here.

Fig. 2b illustrates DGSt of several widely uti-
lized noise schedules, including linear (Ho et al.,
2020), cosine (Nichol and Dhariwal, 2021) and

Schedules DGS BLEU

Linear 0.47 32.21
Cosine 0.77 26.61
Sqrt 0.77 22.70

Table 2: The degeneration score of several noise sched-
ules proposed by prior works, and their performance on
the IWSLT14 De-En dataset.

sqrt (Li et al., 2022), with DGS listed in Table 2.
From the table, we can notice that the schedule with
a lower degeneration score yields a better BLEU
score, which reflects the relationship between the
degeneration score and the overall performance.

Based on the degeneration score, we first specify
a threshold DGSMAX to the degeneration score, to
impose a restriction on the noise added to the em-
beddings, under which we expect the model will
not degenerate. Then we introduce a factor to the
noise schedule named the rescaling factor, ampli-
fying the noise added to the embeddings to ensure
that the noise schedule satisfies the restriction im-
posed by DGSMAX, which can be written as

{
ᾱ′
t = ᾱt

β̄′
t = F 2β̄t

, (3)

where ᾱt and β̄t denote the original schedules,
ᾱ′
t and β̄′

t denote the schedule coefficients after
rescaling, and F is the rescaling factor. Through
experiments in Section 4.3, we find this simple
but effective adjustment brings significant improve-
ment. In Appendix D, we present an approach for
searching F given a specific DGSMAX, accompa-
nied by a pre-computed function table to facilitate
future research. Alternatively, we can also derive a
variance-preserving (Song et al., 2020b) variant of
the rescaling factor, which satisfies the constraint
ᾱ′
t + β̄′

t = 1 (details in Appendix C.8). In Fig. 2c
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we show the shape of the sqrt schedule rescaled by
different values of F . As demonstrated in Fig. 2a,
with our rescaling technique, the degeneration of
the denoising model experiences a substantial alle-
viation in both degree and occupancy.

3.3 Difformer

Based on the analysis of the challenges encountered
with embedding diffusion models, we introduce
Difformer, a denoising diffusion model with Trans-
former, with the proposed techniques including the
anchor loss and the noise rescaling technique. An
overview of the model is demonstrated in Fig. 1.

Length Prediction and 2D Parallel Decoding
Unlike traditional autoregressive models where the
sequence length is implicitly decided by the EOS
token, diffusion models generate all tokens in a non-
autoregressive manner, where the length should be
modeled explicitly. Previous works (Li et al., 2022;
Gong et al., 2022; Strudel et al., 2022) usually gen-
erate a sequence with the maximum length and
cut off the content after the EOS token. In this
paper, we utilize a more efficient way by explic-
itly predicting the target length with the encoder
output (Lee et al., 2018), i.e., pθ(n|x), and a nega-
tive log-likelihood loss function is added to Eq. (2)
while training.

A unique benefit of this approach is that we can
conduct 2D parallel decoding in inference. Firstly,
we can consider top-b1 lengths from the length pre-
dictor to generate candidates with different lengths.
Secondly, for each length, we can also generate
b2 candidates by sampling different initial noises
from the prior. The final prediction is selected from
the total b = b1 × b2 candidates that minimize the
expected risk (Kumar and Byrne, 2004) w.r.t. a met-
ric such as BLEU or PPL. We term two kinds of
beams as length beam and noise beam respectively.
We conduct a study on the impact of b1 and b2 in
Appendix C.6. In summary, both beams introduce
improvements, and b1 influences more.

Acceleration in Inference Diffusion models are
trained with thousands of forward steps, but it
would be extremely time-consuming to iterate all
steps in inference. For Difformer, we pick a sub-
set {τ1, τ2, · · · , τK} of size K from the full diffu-
sion trajectory {1, 2, · · · , T} for generation (Song
et al., 2020a; Nichol and Dhariwal, 2021). Corre-
spondingly, the generated sample should be drawn
from q(zτi−1 |zτi , ẑ0(zτi ,x, τi)). In consequence,

the time complexity of generation is reduced from
O(T ) to O(K).

4 Experiments

4.1 Experimental Setup

To evaluate the proposed Difformer model, we con-
duct experiments on five conditional text genera-
tion tasks including machine translation, text sum-
marization, paraphrasing, text simplification, and
question generation.

Datasets For machine translation, mainly follow-
ing previous works (Gu et al., 2018; Guo et al.,
2019; Ghazvininejad et al., 2019), three bench-
mark datasets WMT14 En-De (Bojar et al., 2014),
WMT16 En-Ro (Bojar et al., 2016) and IWSLT14
De-En (Cettolo et al., 2014) are inclued. For text
summarization, experiments are conducted on Gi-
gaword (Graff et al., 2003; Rush et al., 2015). In
addition, following previous non-autoregressive
text generation works (Gu et al., 2018, 2019;
Ghazvininejad et al., 2019), for machine translation
and text summarization tasks, we adopt sequence-
level knowledge distillation (Kim and Rush, 2016)
on the original training set to alleviate the multi-
modality problem. For paraphrasing, text simplifi-
cation, and question generation tasks, we mainly
follow (Gong et al., 2022) to conduct experiments
on Quora Question Pairs (QQP)2, Wiki-Auto (Jiang
et al., 2020) and Quasar-T (QT) (Dhingra et al.,
2017) respectively. The data split of the above
datasets can be found in Appendix E.

Metrics We report the tokenized BLEU and the
SacreBLEU (Post, 2018) for machine translation
tasks, and the ROUGE (Lin, 2004) for summa-
rization. As for paraphrasing, text simplification,
and question generation tasks, tokenized BLEU,
ROUGE-L, and BERTScore (Zhang et al., 2019)
are utilized.

Baselines We mainly compare our method with
recent embedding diffusion models, including Dif-
fuSeq (Gong et al., 2022), SeqDiffuSeq (Yuan et al.,
2023), and DiNoiSer (Ye et al., 2023), which ex-
tend Diffusion-LM (Li et al., 2022) to the sequence-
to-sequence scenario. We further compare to a re-
cent score-based model CDCD (Dieleman et al.,
2022). CMLM (Ghazvininejad et al., 2019) is also
included, a non-autoregressive model with iterative

2https://www.kaggle.com/c/
quora-question-pairs
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Models b
WMT14 En-De WMT16 En-Ro IWSLT14 De-En Gigaword

BLEU BLEU BLEU ROUGE-1/2/L

Transformer 1 26.37 32.76 32.62 36.78/17.79/34.10
Transformer 5 27.37 33.59 33.91 37.54/18.80/34.93
CMLM 1 26.56* 32.75* 26.41 34.41/15.61/32.17
CMLM 5 27.03* 33.08* 31.76 36.33/17.82/33.83

DiffuSeq 1 13.73 23.37 27.03 28.50/10.10/26.00
DiffuSeq 10 15.37 25.45 28.78 31.17/12.23/29.24
SeqDiffuSeq 1 23.63† 23.98 28.65 30.28/11.72/28.40
SeqDiffuSeq 10 24.24† 26.17 30.03 31.90/12.36/29.22
DiNoiSer 5 26.08‡ 32.57‡ 32.23‡ -
DiNoiSer 50 26.29‡ 32.59‡ 32.48‡ -

Difformer 1 26.74⇑ 32.52⇑ 32.91⇑ 35.45/16.46/32.87⇑

Difformer 10 27.70⇑ 33.18⇑ 34.48⇑ 37.12/18.25/34.60⇑

Difformer 20 27.74 33.36 34.48 37.64/18.75/35.01

Table 3: The performance of the proposed Difformer and the baseline methods. *, † and ‡ indicate results reported
by Ghazvininejad et al. (2019), Yuan et al. (2023) and Ye et al. (2023) respectively. Other results are from our
implementation. ⇑ indicates that Difformer outperforms all diffusion-based baselines with the same beam size b.

Models b
QQP Wiki-Auto QT

B R-L BS B R-L BS B R-L BS

Transformer 1 29.65 59.88 84.28 41.68 58.15 81.40 16.83 35.87 63.97
Transformer 5 30.83 61.20 85.29 43.86 58.48 81.71 16.45 35.59 63.91

DiffuSeq 10 24.13 58.80 83.65 36.22 58.49 81.26 17.31 36.65 61.23
SeqDiffuSeq 1 23.28 - 82.91 37.09 - 82.11 17.20 - 61.35
SeqDiffuSeq 10 24.34 - 84.00 37.12 - 82.14 17.46 - 61.74
DiNoiSer 10 26.07 - - 35.36 - - - - -
DiNoiSer 20 25.42 - - 36.94 - - - - -

Difformer 1 28.52⇑ 60.15 83.80⇑ 40.37⇑ 59.56 81.96 16.03 35.06 61.05
Difformer 10 30.43⇑ 61.25⇑ 85.02⇑ 40.77⇑ 59.86⇑ 82.21⇑ 16.66 36.15 63.29⇑

Difformer 20 30.52⇑ 61.08 85.02 40.84⇑ 59.88 82.29 16.88 36.28 63.32

Table 4: The performance of the proposed Difformer on the QQP, Wiki-Auto, and QT datasets. B, R-L, and BS
stand for the BLEU, ROUGE-L, and BERTScore respectively. The results of DiffuSeq, SeqDiffuSeq, and DiNoiSe
are from their paper. ⇑ indicates that Difformer outperforms all diffusion-based baselines with the same beam size b.

decoding, which can be considered as a discrete
diffusion model (Austin et al., 2021). In addition,
we report the performance of Transformer as the
autoregressive baseline.

Implementation Details We set diffusion step
T = 2000, embedding dimension d = 128, the
threshold of the degeneration score DGSMAX =
0.15, and use the sqrt noise schedule. Following
previous works (Li et al., 2022; Strudel et al., 2022),
we also utilize the self-conditioning (Chen et al.,
2022) which is shown effective in improving the
final performance. More details of experiment set-
tings can be found in Appendix E.

4.2 Results
The main results are listed in Tables 3 and 4. With
a little abuse of notation, we use b to represent
the size of beam search for the Transformer base-

line, as well as the size of parallel decoding (i.e.,
b = b1 × b2). As can be observed from experimen-
tal results, the proposed Difformer outperforms
both the diffusion-based and iteration-based non-
autoregressive baselines on most of the datasets
with different choices of b, and even performs com-
parably with the autoregressive Transformer model.
Specifically, the significant improvements of Dif-
former over the diffusion baselines confirm the
challenges that occur to embedding diffusion mod-
els for text generation tasks and the effectiveness of
the proposed solutions. Compared with CMLM, an
iteration-based non-autoregressive baseline, Dif-
former outperforms on various datasets consis-
tently. Moreover, benefiting from the stochastic
nature of diffusion models, Difformer is able to
conduct 2D parallel decoding over the length and
noise beam at the same time, increasing its flexibil-
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Models b SacreBLEU

CDCD 1 19.30
CDCD 10 19.70
SeqDiffuSeq 1 19.16
SeqDiffuSeq 10 19.76
DiNoiSer 5 24.25
DiNoiSer 50 24.62

Difformer 1 22.80
Difformer 10 24.10
Difformer 50 24.90

Table 5: SacreBLEU scores on the raw WMT14 En-De
dataset. The results of the baselines are as reported in
their paper.

Models b SacreBLEU

DiNoiSer 5 25.70
DiNoiSer 50 25.90

Difformer 10 26.20

Table 6: SacreBLEU scores on the distilled WMT14
En-De dataset. The results of DiNoiSer are as reported
in their paper.

ity and potential to obtain better results. We further
compare with baselines on the raw and distilled
WMT14 En-De training set with SacreBLEU3 as
the metric. As shown in Table 5 and Table 6, the
proposed Difformer achieves better results with the
same number of b. Due to the page limit, we leave
results of more metrics and baselines in Appen-
dices C.1 and C.2, which also validate the superior-
ity of Difformer.

4.3 Analyses

Ablation Study We study the effects of the pro-
posed components, which are listed in Table 7.
Firstly, while previous embedding diffusion works
usually utilize the rounding loss function, we find it
does not provide satisfactory results, which echoes
our findings in Section 3.1. By replacing Lround
with Lanchor, the problem is largely alleviated with
significant performance improvements. The en-
hancement from noise rescaling also reinforces our
findings in Section 3.2 that the model suffers from
a degeneration problem. Besides, the integration of
the anchor loss and noise rescaling yields the best
performance.

Inference Speed Continuous diffusion models
usually rely on hundreds or thousands of reverse
steps in inference to guarantee the quality of the

3The signature is nrefs:1|case:mixed|eff:no|-
tok:13a|smooth:exp|version:2.2.0

Anchor
Loss

Noise
Rescaling BLEU

16.96
✓ 22.70

✓ 27.89
✓ ✓ 34.48

Table 7: The ablation study on the proposed components.
Results are conducted on the IWSLT14 De-En dataset
with b = 10.

Models K Speed BLEU

Transformer n 6.05 33.91
CMLM 10 11.80 31.76

DiffuSeq 2000 0.06 28.78
DiffuSeq 1000 0.12 23.91
DiffuSeq 500 0.23 0.96
SeqDiffuSeq 2000 0.05 30.03

Difformer 2000 0.03 34.09
Difformer 20 6.30 34.19
Difformer 10 11.40 34.13
Difformer 1 39.51 30.14

Table 8: The inference speed and corresponding perfor-
mance of the proposed Difformer and the baselines. The
speed is represented as sentences per second. Results
are conducted on the IWSLT14 De-En with b = 10 and
batch size = 1, without early stopping (see Section 4.3).

generated samples (Li et al., 2022; Gong et al.,
2022; Strudel et al., 2022). In contrast, we find
that Difformer is able to achieve considerably good
performance with much fewer reverse steps. In
Table 8, we evaluate the BLEU score and inference
speed by varying the number of reverse steps. The
conclusions are two-fold. Firstly, Difformer per-
forms robustly w.r.t.K, especially compared with
diffusion-based baselines. We attribute this advan-
tage to the anchor loss, as it facilitates learning
a well-distributed embedding space, and connects
ẑ0 with solid ground truth labels, which reduce
the obscurity of predictions. Correspondingly, the
inference speed of Difformer outperforms the au-
toregressive model Transformer by 6 times and the
iterative non-autoregressive model CMLM by 3
times when K is small, showing the potential of
deploying Difformer to online systems.

Diversity To conduct a comprehensive evalua-
tion of Difformer, we incorporate 4-gram diver-
sity (div-4) (Deshpande et al., 2019) as the diver-
sity metric on the QQP dataset, and expand our
comparison with LLMs, including GPT-2 (Radford
et al., 2019) and GPVAE-T5 (Du et al., 2022). Ac-
cording to Fig. 3, we observe that the adjustment
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Figure 3: Comparison of generation quality and diver-
sity of baselines and Difformer on the QQP dataset.
Results of baselines are from (Gong et al., 2022).

of DGSMAX introduces a trade-off between gener-
ation quality and diversity. Specifically, the model
trained with a smaller DGSMAX manifests reduced
diversity but improved quality. We assume that this
is attributed to the stronger restrictions imposed by
this DGSMAX leading to a higher determinacy. No-
tably, under the condition DGSMAX = 0.15 and
without noising rescaling, Difformer demonstrates
superior performance over the baselines including
LLMs in terms of quality and diversity respectively.

Generation Quality Dynamics To investigate
the dynamics of generation quality during the re-
verse process, we extract ẑ0 at intermediate reverse
steps and evaluate their BLEU scores. The results
are illustrated in Fig. 4. For the original noise, in
the first third of the reverse process, the generation
quality continuously increases as expected. How-
ever, there is a noticeable performance decline in
the latter part, where the model degenerates grad-
ually. When noise rescaling is applied, a notable
improvement can be observed, manifesting that the
degeneration problem is alleviated as discussed in
Section 3.2. This observation also motivates us to
propose an early stopping technique, terminating
the decoding process at a proper intermediate step
to retain a high-quality output.

Threshold of the Degeneration Score We fur-
ther analyze the influence of different values of
DGSMAX in Table 9. From the table, we can notice
that, as DGSMAX decreases, the BLEU score in-
creases at first, and declines afterward. The former
is reasonable since a small DGSMAX mitigates the
degeneration problem. However, if DGSMAX is
too small, a large rescaling factor causes the noise
schedule to become a constant, as illustrated in
Fig. 2c. Therefore, the multistep denoising process
degenerates into a one-step process. In conclusion,

0% 25% 50% 75% 100%
Reverse Process

31.0

31.5

32.0

32.5

BL
EU

Original
W/ Noise Rescaling

Figure 4: The intermediate BLEU score of ẑ0 within a
decoding process.

DGSMAX Rescaling Factor BLEU

0.05 7.0 33.88
0.15 4.0 34.48
0.50 2.0 32.54
0.77 1.0 22.70

Table 9: The performance with varying DGSMAX. The
last row represents the model without noise rescaling.
Results are obtained on the IWSLT14 De-En dataset
with b = 10.

a moderate DGSMAX is sufficient to maintain a
balance between the degeneration of the model and
the denoising process. More results with schedules
other than sqrt can be found in Appendix C.4.

5 Conclusion

In this paper, we conduct a thorough study of the
challenges when optimizing an embedding diffu-
sion model on discrete textual data, and propose the
corresponding solutions. Firstly, to tackle the chal-
lenge of embedding collapse and instability in train-
ing caused by the dynamic nature of embeddings,
we introduce an anchor loss to regularize the em-
beddings and stabilize the training simultaneously.
Secondly, we derive a novel noise rescaling frame-
work based on theoretical analysis, which notably
alleviates the degeneration of the denoising model
resulting from inadequate noise. Finally, integrated
with the aforementioned techniques, we present
Difformer, a denoising diffusion model based on
Transformer. Difformer demonstrates superior per-
formance on various benchmark text generation
tasks, outperforming prior diffusion-based models
as well as iterative non-autoregressive models.

Limitations

The improvement brought by the proposed tech-
niques is promising. However, embedding diffu-
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sion models converge relatively slowly in training.
For instance, compared with CMLM, Difformer
requires around double the training time to reach
convergence, although it is more efficient than prior
diffusion models. Moreover, due to the cost of the
search for the rescaling factor, it is performed of-
fline and the factor is static during training.
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A Proof of Theorem 1

Following we give the proof of Theorem 1. We
start by proving two lemmas. The first one gives
the limit of the loss objective if provided insuf-
ficient small noise in a high-dimensional space.
And the second one proves that the accuracy of
the degenerated model converges to 1 on the same
condition. Finally, Theorem 1 can be conducted.

Lemma 1. Assume the embeddings eϕ ∼
Nd×V (0, σeI), then

∀ε > 0, lim
β̄→0
d→∞

P (L(zt, z0) < ε) = 1,

which can be rewritten as

L(zt, z0)
P−−−→

β̄→0
d→∞

0.

Also, ∀ei ∈ eϕ and ei ̸= z0,

L(zt, ei)
P−−−→

β̄→0
d→∞

2σ2
e .

Proof.

L(zt,z0) = ∥zt − z0∥2 − log pϕ(yz0 |zt)

= ∥zt∥2 + ∥z0∥2 −
2

d
zt · z0

− log
exp(zt · z0)∑V
i=1 exp(zt · ei)

= ∥zt∥2 + ∥z0∥2 −
2

d
zt · z0

+ log

(
1

+

V∑

i ̸=yz0

exp(zt · ei − zt · z0)

)
,

where ∥·∥2 represents mean square error (MSE),
and yz0 is the token index of z0. Since zt ∼
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N
(√

1− β̄tz0, β̄tI
)

, which can be written as

zt =
√
1− β̄tz0 +

√
β̄tε, where ε ∼ N (0, I),

we get

L(zt,z0) =

(
2− β̄ − 2

√
1− β̄

)
∥z0∥2 + β̄∥ε∥2

+ 2

(√
β̄ − β̄2 −

√
β̄

)
z0 · ε
d

+ log

(
1 (4)

+
V∑

i ̸=yz0

exp(g(z0, ε, ei, z0) · d)
)
,

(5)

where

g(a, b, c,d) =

√
1− β̄

a · c
d

+

√
β̄
b · c
d

−
√
1− β̄

a · d
d
−
√
β̄
b · d
d

. (6)

According to Khinchin’s law,

∥z0∥2 =
1

d

d∑

i=1

z20,i
P−−−→

β̄→0
d→∞

E(z20,i) = σ2
e .

Similarly, the rest terms can be calculated. Based
on the continuous mapping theorem, we can substi-
tute these values into Eqs. (4) and (6) as

g(z0, ε, ei,z0)
P−−−→

β̄→0
d→∞

1 · 0 + 0 · 0− 1 · σ2
e − 0 · 0

= −σ2
e ,

L(zt, z0)
P−−−→

β̄→0
d→∞

0 · σ2
e + 0 · 1 + 0 · 0

+ log(1

+ (V − 1) exp(−σ2
e · ∞))

= 0.

Similarly,

L(zt, ei) =
(
1− β̄

)
∥z0∥2 + β̄∥ε∥2 + ∥ei∥2

+ 2

√
β̄ − β̄2

z0 · ε
d

− 2

√
1− β̄

z0 · ei
d

− 2

√
β̄
ε · ei
d

+ log

(
1

+

V∑

j ̸=i

exp(g(z0, ε, ej , ei) · d)
)

P−−−→
β̄→0
d→∞

2σ2
e .

Lemma 2. Assume the embeddings eϕ ∼
Nd×V (0, σeI), then for a single noised embedding
zt, the output of the degenerated model

fdg(zt)
P−−−→

β̄→0
d→∞

z0.

Proof. According to Lemma 1, ∀ei ∈ eϕ and ei ̸=
z0, we know

L(zt, z0)
P−−−→

β̄→0
d→∞

0,

and,
L(zt, ei)

P−−−→
β̄→0
d→∞

2σ2
e .

Since 0 < 2σ2
e , according to the limiting inequal-

ity,

lim
β̄→0
d→∞

P (L(zt, z0) < L(zt, ei)) = 1,

which means

lim
β̄→0
d→∞

P

(
z0 = argmin

e∈eϕ
L(zt, ei)

)
= 1.

Hence,

fdg(zt) = argmin
e∈eϕ

L(zt, ei)
P−−−→

β̄→0
d→∞

z0.
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Proof of Theorem 1. From Lemma 2,

fdg(zt)
P−−−→

β̄→0
d→∞

z0.

Following the proof of Lemma 1, it is obvious that

lim
z→z0

L(z, z0) = L(z0, z0)
P−−−→

β̄→0
d→∞

0.

According to the law of the limit of compositions,

L(fdg(zt), z0)
P−−−→

β̄→0
d→∞

0. (7)

∀θ′, if

L(fθ′(zt, t), z0)
P−−−→

β̄→0
d→∞

L′ > 0,

from limiting inequality,

lim
β̄→0
d→∞

P (L(fdg(zt), z0) < L(fθ′(zt, t), z0)) = 1,

which means that the probability of fdg being a
global minimum ofL for θ converges to 1 as β̄ → 0
and d→∞.

Otherwise, if

L(fθ′(zt, t), z0)
P−−−→

β̄→0
d→∞

0,

fθ′ satisfies the above conclusion that θ′ is also a
global minimum.

Finally, if L(fθ′(zt, t), z0) diverges, then
fθ′(zt, t) diverges, indicating fθ′ is an unstable
model, or converges to infinity.

Notably, though the condition β̄ → 0 and
d → ∞ seem too strong, our empirical results
exhibit a fast coverage speed of Eq. (7) in prac-
tice. Fig. 5 showcases the loss of the degenerated
model, i.e., L(fdg(zt), z0) with varying levels of
noise and embedding dimensions. According to
the figure, even under a dimension of 64, a β̄ of
0.15 is sufficiently small to ensure the loss con-
verges to 0. Under higher dimensions, like 128,
we can observe that approximately 50% of β̄ ob-
tains zero loss, which significantly emphasizes the
tendency of degeneration. A similar tendency is
also revealed by the model capacity decreasing in
Fig. 2a.
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Figure 5: The loss of the degenerated model fdg with
varying levels of noise and embedding dimensions.

B Detailed Derivation of the Objective

For a data sample z0, given a series of latent vari-
ables z1, · · · , zT which form a Markov chain, we
start with the definition of the forward process:

q(zt|zt−1) = N (zt;
√
αtzt−1, βtI) ,

where αt and βt represent the noise schedule, and
αt + βt = 1, zT ∼ N (0, I). Then the distribu-
tion of the latent variable at any timestep can be
determined by

q(zt|z0) = N
(
zt;
√
ᾱtz0, β̄tI

)
,

where ᾱt :=
∏t

i=0 αi and β̄t := 1− ᾱt.

The objective of diffusion models is to generate
a denoising series to fit the reversion of the forward
process, called the reverse process. The reverse
process also forms a Markov chain, and is fixed to
the learned Gaussian transitions

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) ,

where µθ(·) and Σθ(·) are learnable variables. The
covariance is set to be a constant as Σθ(zt, t) =
σ2
t I following Ho et al. (2020).

The variational lower-bound can be derived from
the negative log-likelihood as:

E[− log pθ(z0)] ≤ Eq

[
− log

pθ(z0:T )

q(z1:T |z0)

]
= Lvlb.
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Then according to the Markov property,

Lvlb = Eq

[
− log

p(zT )
∏T

t=1 pθ(zt−1|zt)∏T
t=1 q(zt|zt−1)

]

= Eq


−

∑

t≥1

log
pθ(zt−1|zt)
q(zt|zt−1)


+ C1

= Eq

[
−
∑

t>1

log
pθ(zt−1|zt)
q(zt−1|zt, z0)

− log pθ(z0|z1)
]
+ C2

= Eq

[∑

t>1

KL[q(zt−1|zt, z0)∥pθ(zt−1|zt)]

− log pθ(z0|z1)
]
+ C2,

where KL[·∥·] denotes the KL divergence. Here,
q(zt−1|zt, z0) has the closed form

q(zt−1|zt, z0) = N
(
zt−1; µ̃t(zt, z0), β̃tI

)
,

and 



µ̃t(zt, z0) = ξtz0 + λtzt

ξt =

√
ᾱt−1βt
1− ᾱt

λt =

√
αt(1− ᾱt−1)

1− ᾱt

.

Let

Lt−1 = KL[q(zt−1|zt, z0)∥pθ(zt−1|zt)],

using the formula for the KL divergence of Gaus-
sian distributions, we can derive

Lt−1 =
1

2σ2
t

∥µ̃t(zt, z0)− µθ(zt, t)∥2.

We further parameterize µθ(zt, t) :=
µ̃t(zt, ẑ0(zt, t)), where ẑ0(zt, t) is the model
prediction of the original data z0. Consequently,

Lt−1 =
1

2σ2
t

∥ξtz0 + λtzt − (ξtẑ0(zt, t) + λtzt)∥2

+ C3

=
λ2
t

2σ2
t

∥z0 − ẑ0(zt, t))∥2 + C3.

For the last term,

− log pθ(z0|z1) = 1

2σ2
1

∥z0 − µ̃1(z1, ẑ0(z1, 1))∥2 + C4.

Models WMT14 En-De IWSLT14 De-En
COMET COMET

Transformer 0.8286 0.7894
CMLM 0.8226 0.7736

Difformer 0.8257 0.7875

Table 10: The COMET scores of Difformer and base-
lines. All results are reported by our implementation.

Noting that




ξ1 =

√
1(1− α1)

1− α1
= 1

λ1 =

√
α1(1− 1)

1− α1
= 0

,

the term can be converted as

− log pθ(z0|z1) =
λ1

2σ2
1

∥z0 − ẑ0(z1, 1)∥2 + C4

= Lt−1|t=1 + C ′
4,

which can be combined with the sum of the KL
terms.

Finally, ignoring constant terms and weight fac-
tors, the training objective becomes

Lvlb = Ez0,zt,t

[
∥ẑ0(zt, t)− z0∥2

]
.

C Additional Experimental Results

C.1 More Metrics in Translation
We evaluate the COMET (Rei et al., 2020) score
of Difformer as well as baselines on the translation
task in Table 10. Combined with BLEU, these
results also confirm the performance of Difformer,
and its comparability with autoregressive models.

C.2 Comparison with More Baselines
As our research in this work focuses on optimiza-
tion challenges of embedding diffusion models, we
mainly compare Difformer with existing diffusion-
based models. To evaluate the promising perfor-
mance of Difformer, we extend our comparisons to
include results from established traditional mod-
els, such as mBART (Liu et al., 2020), Leven-
shtein Transformer (Gu et al., 2019), DisCo (Kasai
et al., 2020), Fully NAT (Gu and Kong, 2021), and
DA-Transformer (Huang et al., 2022). The results
are presented in Table 11. It is worth noting that
mBART is a pre-trained language model, which em-
ploys significantly larger datasets in training, and it
is more than 10 times larger in terms of parameter
number. Through the results, the performance of
Difformer is still competitive even against more
recent and stronger baselines.
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Models b BLEU

mBART 5 30.50

Levenshtein Transformer 5 27.27
DisCo 5 27.34
Fully NAT 1 27.49
DA-Transformer 200 27.78

Difformer 5 27.61

Table 11: BLEU scores on the WMT14 En-De dataset.
All results are as reported in their paper.

Setting ANI BLEU

Lvlb 0.99 0.07
Ltext 0.32 27.89
L 0.03 34.48
L w/ fixed CMLM embeddings 0.02 30.14

Table 12: The anisotropy score and performance of
different settings on the IWSLT14 De-En dataset with
the linear schedule.

C.3 Study of Frozen Embeddings

Section 3.1 discusses the collapse problem arising
from learnable embeddings and introduces the an-
chor loss to prevent collapse and ensure stability
of training. Alternatively, replacing the embedding
space with a pre-trained one is also a solution to
address this problem, and our preliminary exper-
iments explore this possibility. The correspond-
ing experimental results can be found in Table 12.
From the table, the embeddings from pre-trained
CMLM alleviate the collapse problem notably, and
the performance obtained by each setting is highly
related to ANI, which echos our findings in Sec-
tion 3.1. Moreover, our proposed method exhibits a
substantial improvement compared with the model
with pre-trained embeddings. We attribute this to
the possibility that the embeddings from traditional
models are suboptimal for diffusion models.

C.4 Study of DGSMAX with Different
Schedules

We further provide more results with different val-
ues of DGSMAX and schedules in Table 13. From
the table, we can notice that the degeneration prob-
lem exists widely in noise schedules, and the pro-
posed noise rescaling framework enhances the per-
formance of schedules consistently. Furthermore,
the rescaling factor of sqrt is more sensitive to
DGSMAX.

C.5 Study of the Dimension of the
Embeddings

Prior works mainly use an embedding dimension
of 128 (Li et al., 2022; Gong et al., 2022; Yuan
et al., 2023), and we also find the model is quite
hard to work with a higher embedding dimension
like 256 or 512. Intuitively, higher dimensional em-
bedding space is sparser, and embeddings require
more noise to diffuse from their nearest neighbor
region. Therefore, the model encounters more se-
vere degeneration in this space if provided with
insufficient noise. From Table 14, a larger rescal-
ing factor is demanded to reach the same DGSMAX

in a higher dimensional embedding space. On the
other hand, a low-dimensional embedding space
may result in a limited capacity for representation.
With noise rescaling, models with different em-
bedding dimensions work successfully and achieve
similar results, showing the robustness of the pro-
posed noise rescaling framework. Additionally, the
noise rescaling framework augments the scalability
of embedding diffusion models and actualizes the
potential of application on large-scale datasets and
tasks.

C.6 Study of Beam Size
We study the influence of the 2D parallel decoding
hyper-parameters, i.e., the length beam size b1 and
noise beam size b2 described in Section 3.3. As
shown in Table 15, we find that length and noise
beams both boost the generation quality and are
complementary to each other. The length beam
brings more significant improvements, while a suf-
ficiently large b = b1 × b2 leads to the saturation
of the BLEU score.

C.7 Noise Rescaling in Sampling
Since noise rescaling is a technique to alleviate
a training problem, it is not applied in sampling.
We study the sampling quality when applying the
noise rescaling in decoding steps. As illustrated in
Table 16, the noise rescaling in sampling is harmful
to sampling quality due to no requirement of large
noise in the reverse process.

C.8 Variance-Preserving Rescaling Factor
The variance-preserving variant of the rescaling
factor can be defined as




ᾱ′
t =

ᾱt

ᾱt + F 2β̄t

β̄′
t =

F 2β̄t
ᾱt + F 2β̄t

, (8)
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DGSMAX
Linear Cosine Sqrt

RF BLEU RF BLEU RF BLEU

0.05 21.0 31.99 41.0 31.64 7.0 33.88
0.15 6.0 33.09 12.5 33.36 4.0 34.48
0.50 - - 3.0 33.01 2.0 32.54

- 1.0 32.21 1.0 26.61 1.0 22.70

Table 13: The performance with varying DGSMAX and noise schedule. Where RF stands for the rescaling factor.
Refer to Table 2, DGS of linear is less than 0.50, thus the result of linear with DGSMAX = 0.50 is empty. The last
row represents the model without noise rescaling. Results are obtained on the IWSLT14 De-En dataset with b = 10.

d Rescaling Factor BLEU

64 2.5 32.11
128 4.0 34.48
256 6.0 34.41
512 8.5 34.33

Table 14: The performance with varying dimensions
of the embedding space. Results are obtained on the
IWSLT14 De-En dataset with b = 10 and DGSMAX =
0.15.

b1 b2 BLEU

1 1 32.91

1 9 33.53
3 3 34.33
5 2 34.43
9 1 34.48

5 4 34.52
7 3 34.48
9 2 34.44

10 5 34.52

Table 15: The performance with varying b1 and b2. Re-
sults are obtained on the IWSLT14 De-En dataset.

where F is the rescaling factor. We can derive
that ᾱ′

t + β̄′
t = 1 and the signal-to-noise ratio of

the rescaled schedule satisfies SNR′
t = SNRt/F 2,

where SNRt = ᾱt/β̄t. The VP rescaling factor
performs similarly to the original version, which is
listed in the Table 17.

C.9 Controllable Generation

Due to the distinctive iterative generation process,
one of the advantages of diffusion models is that
they support flexible and fine-grained control over
the outputs, such as syntax tree, length, prefix, and
suffix (Li et al., 2022). We validate the length condi-
tioning ability for Difformer in Table 18. Through
the cases, the length of generations is well-matched
with the condition, highlighting the controllability
of Difformer.

NR in Sampling BLEU

34.48
✓ 33.51

Table 16: The BLEU score with noise rescal-
ing (DGSMAX = 0.15) in sampling. Results are ob-
tained on the IWSLT14 De-En dataset with b = 10.

C.10 Case Study

To qualitatively analyze the dynamics of the gener-
ation quality at the instance level, we select several
representative cases in Table 22. The generation
results in Table 22 illustrate the characteristics of
Difformer. Specifically, after the first few steps,
the model is able to transform random words into
noised but human-readable sentences, and with the
reverse process progressing, these sentences are
refined gradually. However, as the process enters
the final steps, the model at these timesteps suffers
from the degeneration problem and loses the ability
to improve the outputs, even corrupts previously
correct words. This dynamics is also reflected in
Fig. 4, and emphasizes the necessity of noise rescal-
ing and early stopping techniques. On the other
hand, Difformer achieves comparable quality with
the autoregressive baseline, and generates more
coherent and consistent sentences compared with
traditional non-autoregressive models.

D Search of Rescaling Factor

To decide F , we can perform either brute-force
or binary search. Without loss of generality, the
approach of brute-force search is presented in Al-
gorithm 1. For the computation of DGS, we firstly
regard fdg as an equivalent nearest neighbor clas-
sifier, then utilize a Monte Carlo method to esti-
mate DGSt at some of the timesteps, and finally
compute the average of all values of DGSt. Algo-
rithm 2 illustrates this process. Since our theorem is
based on the assumption that eϕ ∼ Nd×V (0, σeI),
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DGSMAX Variance Preserving Rescaling Factor BLEU

0.05
7.0 33.88

✓ 9.5 33.80

0.15
4.0 34.48

✓ 4.5 33.99

0.50
2.0 32.54

✓ 2.0 31.77

0.77 - 1.0 22.70

Table 17: The performance with varying DGSMAX and variance-preserving rescaling factor. Results are obtained
on the IWSLT14 De-En dataset with b = 10.

Length Generations

5 our imagination is even reality.

10
our imagination is a force that can
even create reality.

15
our imagination, in fact, is a
force that can even create a
reality.

Target imagination is a force that can
actually manifest a reality.

Table 18: Cases when applying length control.

Algorithm 1 Search F

Input: Noise schedule ᾱ, β̄, threshold of degenera-
tion score DGSMAX, search interval ∆F
Output: F

1: F ← 1
2: while true do
3: Rescale ᾱ′ and β̄′ from ᾱ and β̄ using F

according to Eq. (3) or Eq. (8)
4: DGS← DGS

(
ᾱ′, β̄′)

5: if DGS ≤ DGSMAX then
6: return F
7: end if
8: F ← F +∆F
9: end while

we initialize it with a normal distribution, and the
computation of DGS can be independent of real
embeddings and approximated before training. For
the convenience of future research, we provide a
pre-computed function table of DGS and the corre-
sponding rescaling factors in Table 19.

E Experimental Settings

We build our model based on Trans-
former (Vaswani et al., 2017) and use
transformer-iwslt-de-en config for the
IWSLT dataset, transformer-base config for
WMT and summarization datasets. For other

Algorithm 2 Compute DGS

Input: Noise schedule ᾱ, β̄, embeddings eϕ,
timestep set T , repeat times N
Output: DGS

1: DGS← 0
2: for all t ∈ T do
3: DGSt ← 0
4: for all z0 ∈ eϕ do
5: for i← 1 to N do
6: Sample zt ∼ N

(√
ᾱtz0, β̄tI

)

7: if fdg(zt) = z0 then
8: DGSt ← DGSt + 1
9: end if

10: end for
11: end for
12: DGSt ← DGSt/(N × V )
13: DGS← DGS +DGSt
14: end for
15: DGS← DGS/|T |
16: return DGS

datasets, to conduct fair comparisons with Dif-
fuSeq, we set the model dimension to 768 and the
feed-forward intermediate dimension to 3072. We
tokenize sentences and segment each token into
subwords by Byte-Pair Encoding (Sennrich et al.,
2016). The training process takes nearly one day
on 8 NVIDIA V100 GPUs for the WMT datasets
and the Gigaword dataset, while nearly 12 hours
on one NVIDIA V100 GPU for the other datasets.
In inference, we downsample the diffusion step to
20, i.e., K = 20, and stop the decoding process 5
steps earlier, which is much faster than previous
works (Li et al., 2022; Gong et al., 2022) while
maintaining the performance. Each reported result
is the average of 3 runs. The dataset splits we used
are listed in Table 20. All datasets can be used for
research purposes. The detailed hyper-parameters
are listed in Table 21.
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DGSMAX
Linear Cosine Sqrt

10K 20K 40K 10K 20K 40K 10K 20K 40K

0.05 21.0 20.0 19.0 41.0 38.5 37 7.0 6.5 6.0
0.10 9.5 9.0 9.0 19.0 18.5 18.0 5.0 4.5 4.5
0.15 6.0 5.5 5.5 12.5 12.0 11.5 4.0 4.0 3.5
0.20 4.0 4.0 4.0 9.0 9.0 8.5 3.5 3.5 3.0
0.30 2.5 2.5 2.5 6.0 5.5 5.5 2.5 2.5 2.5
0.50 - - - 3.0 2.5 2.5 2.0 2.0 1.5

Table 19: The DGSMAX and corresponding rescaling factors with different vocabulary sizes and noise schedules.
We perform the search in the 128-dimensional embedding space at the interval of 0.5, and σe = 1.

Splits WMT14
En-De

WMT16
En-Ro

IWSLT14
De-En Gigaword QQP Wiki-

Auto QT

Training 4, 500, 966 608, 319 160, 215 3, 803, 957 144, 715 677, 751 116, 953
Validation 3, 000 1, 999 7, 282 189, 651 2, 048 2, 048 2, 048
Test 3, 003 1, 999 6, 750 1, 951 2, 500 5, 000 10, 000

Table 20: The dataset splits used in our experiments.

Hyper-parameters WMT14
En-De

WMT16
En-Ro

IWSLT14
De-En Gigaword QQP Wiki-

Auto QT

Architecture
dmodel 512 512 512 512 768 768 768
demb 128 128 128 128 128 128 128
dffn 2048 2048 1024 2048 3072 3072 3072
Heads 8 8 4 8 12 12 12
Encoder Layers 6 6 6 6 6 6 6
Decoder Layers 6 6 6 6 6 6 6
Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU

Diffusion
Steps 2000 2000 2000 2000 2000 2000 2000
Schedule sqrt sqrt sqrt sqrt sqrt sqrt sqrt
DGSMAX 0.15 0.15 0.15 0.15 0.15 0.15 0.20
Self-Conditioning ✓ ✓ ✓ ✓ ✓ ✓ ✓
Training
Steps 300K 300K 300K 300K 50K 30K 100K
Batch Size (Tokens) 64K 64K 8K 64K 8K 64K 64K
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Adam β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Learning Rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 3× 10−4

Warmup 10K 10K 10K 10K 10K 10K 5K
Clip Gradient 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Dropout 0.1 0.1 0.3 0.1 0.1 0.1 0.1
Length Predict Factor 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Label Smoothing 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Inference
Steps 20 20 20 20 20 20 20
Early Stopping 5 5 5 5 5 5 5

Table 21: The model architectures and hyper-parameters used in our experiments.
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Case 1

Source ich denke , dass es schwer wird, sie zu treffen, aber ich denke, es ist es auf
jeden fall wert, einige wirklich bekannte marken anzusprechen.

Target i think that you’re going to have a hard time meeting with them, but i think it’s
certainly worth pursuing a couple big, really obvious brands.

Progress Generation

0%
i think it’s going to meet you, but i i it it definitely worth talking sing some
really known brands.

25%
i think it’s hard to meet you, but i think it’s definitely worth mating some really
known brands.

50%
i think it’s hard to meet you, but i think it’s definitely worth approaching some
really known brands.

75%
i think it’s hard to meet you, but i think it’s definitely worth approaching some
really known brands.

100%
i think it’s hard to meet you, but i think it’s definitely worth approaching some
really known brks.

Transformer i think it’s hard to meet you, but i think it’s worth addressing some really
familiar brands, i think.

CMLM i think it’s hard to meet you, but i think it’s worth saying some really known
brands.

Case 2

Source und wenn wir mit einem körper konfrontiert sind, der für uns tatsächlich etwas sehr
anderes darstellt, verwirrt uns das in hinblick auf diese kategorisierungen.

Target and when we’re faced with a body that actually presents us something quite different,
it startles us in terms of those categorizations.

Progress Generation

0%
and when we’re confronted with a body which is actually something very different
for us, we’re confused in in terms of these categorization.

25%
and when we’re confronted with a body that is actually something very different
for us, we’re confused it in terms of categcategorization.

50%
and when we’re confronted with a body that’s actually something very different for
us, we’re confusing it in terms of these categorization.

75%
and when we’re confronted with a body that’s actually something very different for
us, we’re confusing it in terms of these categorization.

100%
and when we’re confronted with a body that’s actually something very different for
us, we’re confusing it in terms of these categorizes.

Transformer and when we’re faced with a body, which actually represents something very different
for us, it confuses us in terms of these categorization.

CMLM and when we’re faced with a body that actually represents something very different
for us, it confuses us in terms of these categorization.

Case 3

Source um also das blinken zu beschleunigen oder zu verlangsamen, drehen sie einfach an
diesem knopf und er macht den impuls schneller oder langsamer.

Target so to make this blink faster or slower, you would just turn this knob and basically
make it pulse faster or slower.

Progress Generation

0%
so to accelerate or flck slow slow down, , just turn on buttbuttand it makes pulse
faster or slow wer.

25%
so to accelerate the ck or slow it down, just turn on this button and makes the
impulse faster or slow down.

50%
so to accelerate the blind or slow it down, just turn on this button and makes the
impulse faster or slow down.

75%
so to accelerate the blind or slow it down, just turn on this button and makes the
impulse faster or slower.

100%
so to accelerate the blind or slow it down, just turn on this button and makes the
impulse faster or slower.

Transformer so to slow the blind up or slow the blind down, you just turn that button, and it
makes the pulse faster or slower.

CMLM so to speed your blind up or slow down, just turn on that button and it makes the
pulse faster or slow.

Table 22: Cases of intermediate generation results during the whole generation process, compared with baselines.
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