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Abstract

In this paper we study the fine-tuning of pre-
trained large high-resource language models
(LLMs) into many-to-one multilingual ma-
chine translators for extremely-low-resource
languages such as endangered Indigenous lan-
guages. We explore those issues using datasets
created from pseudo-parallel translations to
English of The Bible written in 39 Brazilian
Indigenous languages using mBART50 and
WMT19 as pre-trained models and multiple
translation metrics. We examine bilingual and
multilingual models and show that, according
to machine translation metrics, same-linguistic
family models tend to perform best. However,
we also found that many-to-one multilingual
systems have a tendency to learn a “rogue”
strategy of storing output strings from the train-
ing data in the LLM structure and retrieving
them instead of performing actual translations.
We show that rephrasing the output of the train-
ing samples seems to solve the problem.

1 Introduction

With the explosion in popularity of Large Language
Models (LLMs), there is currently a de facto stan-
dard to create machine translators (MTs) for low-
resource languages: take one LLM pre-trained on
a large corpus with self-supervised techniques and
fine-tune it using a much smaller parallel down-
stream corpus in that language (Lee et al., 2022a).
That usually results in better translation accuracy
than with a model trained from scratch but with
limited data (Adelani et al., 2022). For under-
resourced languages, it is also common to improve
translation quality even further by the use of data
from multiple languages and large multilingual
models (Saleh et al., 2021).

In this work we show experimentally that the
reality of creating translators for extremely low-
resource languages is, unfortunately, much more
difficult. Notably, we show that when performing

such “standard” fine-tuning of multilingual LLMs,
we have to be very careful on interpreting results
which rely only on average scores of reference-
based translation quality metrics. We present a case
where improved averaged measurements, instead
of signifying better machine translators, are in fact
the result of a “rogue” model which stores outputs
from the training data and retrieves them as canned
outputs. In other words, the fine-tuned model hal-
lucinates translations by generating texts which
are disconnected to the input: they are perfectly-
memorized reproductions of training samples. Be-
cause the MT sometimes succeeds in producing a
“perfect”, high-score with a memorized answer, the
average score of the model is inflated, higher than
other approaches, although the model is, in fact,
totally inappropriate for the actual task.

We present strong evidence that the memoriza-
tion side-effect is a result of the inclusion of rep-
etitions of target texts in training set, which is an
artifact of many-to-one translators, since the mem-
orization effect directly increases with the number
of languages in the multilingual model. We then
show that rephrasing the target text helps to avoid
memorization without affecting translation quality
and that is a viable solution for many other applica-
tions since now is feasible to create rephrasings of
texts with LLMs.

Our findings come in a context where multi-
lingual fine-tuning of LLMs is often used when
extremely-low-resource languages are involved. In
our experiments we fine-tuned pre-trained LLMs
to make MTs from 39 Brazilian Indigenous lan-
guages (BILs) to English1. Those languages are
typical of scenarios where there is almost no data
available for training but we can find translations
of official documents or religious texts to fine-tune

1Although the mainly spoken language of Brazil is Por-
tuguese, in this work we focus on generating English language
to avoid uncontrollable negative effects from text generation
quality issues of LLMs in Portuguese.
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existing models, that is, often with many-to-one
or one-to-many mappings of the same texts to a
higher-resourced language such as English.

For our experimental study, we compiled a par-
allel corpus with pseudo-alignments of verses from
The Bible, and fine-tuned two commonly-used
LLMs, i.e. mBART50 and WMT19, relying on one
bilingual and two multilingual fine-tuning strate-
gies. The results are evaluated with three standard
reference-based metrics for machine translation,
i.e. the n-gram based BLEU score and the trained
neural metrics named BLEURT and BERTScore.

To quantify the memorization behavior and to
provide evidence that our many-to-one multilingual
MTs became content retrievers, we implement a
memorization metric based on finding the smallest
distance of the generated text to target sentences
in the training set, in this case the verses from
The Bible in English. Our metric suggests that
the problem worsens as more languages are added
to the training set. We then show that, by using
rephrases of the output verses from 10 different
versions of Ghe Bible in English, we can build
a multilingual translator for 10 BILs of the same
linguistic family in which the memorization issues
virtually disappear.

The main contribution of this paper is to show
that automatic evaluation metrics can be deceiv-
ing in extremely-low-resource scenarios and how
important it is to perform different forms of eval-
uation of the outputs, including qualitative inspec-
tions. This paper also shows that strictly following
well-known approaches from the NLP literature,
such as multilingual training, can result in mod-
els with undesired memorization effects. We also
propose and demonstrate that such undesired be-
haviour can be fixed with rephrasings which can be
easily generated with current days’ LLMs.

2 Related Work

Most of the recent impressive results of NLP have
been observed with English and a few other lan-
guages. Despite efforts in expanding such research
for other languages (Aharoni et al., 2019; Goyal
et al., 2022; NLLB Team et al., 2022; Aji et al.,
2022), results have been limited, covering at best
about 200 languages (NLLB Team et al., 2022),
leaving behind almost 7,000 other languages. In
Brazil, none of the about 200 Indigenous languages
spoken in the country are covered by LLMs. Many
of the Brazilian Indigenous Languages (BILs), sim-

ilarly to other extremely-low-resource languages
languages in the world, are endangered, facing the
challenge of disappearing in just a few decades
from today. Pinhanez et al. (2023) provide a good
discussion on why and how AI can contribute to the
survival of such languages, and at same, the bene-
fits to AI of working with endangered languages.

One big challenge in scaling up the current AI
progress to more languages is the data-hunger
needs of current NLP models. Since the vast
majority of the languages in the world are low-
resourced or extremely-low-resourced, one hope
to overcoming this data-scarcity issue is the use
of self-supervised pre-trained models and fine-tune
such models to downstream tasks such as MT. In
that case, the general-purpose language knowledge
of the pre-trained model is transferred and reused
in a context of a much smaller training set through
fine-tuning of its parameters (Lee et al., 2022a).

Another way to circumvent the lack-of-data
problem is to use multilingual models, where data
from several languages are combined (Aharoni
et al., 2019; Dabre et al., 2020). The main as-
sumption is that multilingual models can leverage
the shared linguistic characteristics of related lan-
guages, expanding the utility of very small datasets.
But the non-deliberated use of extra languages may
worsen the performance, a phenomenon usually
called negative transfer (Saleh et al., 2021).

A more particular approach, common in some
extremely-low-resource languages such as Indige-
nous languages, is to rely on multi-way multilin-
gual corpora, in either many-to-one or one-to-many
directions (Dabre et al., 2019; Mueller et al., 2020).
The same monolingual text, translated to many lan-
guages, is used in the training set multiple times
as either source or target text (Mager et al., 2021).
Typically those texts are official documents and reli-
gious texts, such as The Bible (Mayer and Cysouw,
2014; Bollmann et al., 2021; Vázquez et al., 2021;
Nagoudi et al., 2021; Adelani et al., 2022). One ef-
fect of such approach is that samples appear repeat-
edly in the training set, either as source or target
texts, what can trigger a known problem in LLMs:
memorization (Carlini et al., 2023).

Memorization in LLMs consists of generating
identical or nearly-identical reproduction of train-
ing samples during inference time. Notice that
memorization can be beneficial for some applica-
tions, such as closed-book Q&A, and it is not nec-
essarily a type of overfitting (Tirumala et al., 2022).
But in terms of machine translation, given that it
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has been shown that removing duplications is ben-
eficial in terms of improving translation quality of
MT systems (Lee et al., 2022b; Ramírez-Sánchez
et al., 2020), we explore here whether the nega-
tive impact of duplications on translation quality
is due to the memorization of duplicated training
samples. Together with other factors such as model
size and vocabulary size (Kharitonov et al., 2021),
duplication of examples in the training set is known
to sometimes produce memorization (Zhang et al.,
2021; Carlini et al., 2023).

3 Translating Indigenous Languages

Creating machine translators and other NLP tools
with extremely-low data resources is of key impor-
tance for Indigenous languages and in particular for
the about 2,800 languages which are in danger of
disappearing in the world (Moseley, 2010). Mod-
ern NLP technology tools may not only be a way to
contribute to the vitalization of those languages but
also paths to propagate the culture and support the
political rights of their communities (Mager et al.,
2018; Zhang et al., 2022; Liu et al., 2022; Pinhanez
et al., 2023).

In this paper we explore particular issues and
difficulties faced by the construction of machine
translators for languages which are spoken by hun-
dreds or at most thousands of people, often in semi-
isolated conditions and with extremely low pres-
ence in the web, making web crawling and crowd-
sourcing unfeasible ways to gather data.

Our main source of data are the many transla-
tions to Indigenous languages of the The Bible.
Since it is structured in numbered verses, it is rel-
atively easy to create quasi-parallel datasets (that
is, the translations may differ in style), as done in
other works (Mayer and Cysouw, 2014; Adelani
et al., 2022). It is possible to use The Bible as
data for many of the BILs, since it has been trans-
lated into many of those languages by Christian
churches (Franchetto, 2008). We understand that
there are important ethical, historical, and cultural
issues around the use of The Bible as a source of
data for Indigenous languages, which we discuss
in detail in Section 9 at the end of the paper.

3.1 Brazilian Indigenous Languages

Brazil was home to about 270 Indigenous lan-
guages according to the Census of 2010, the last
comprehensive assessment of linguistic diversity in

Name Acron Branch Family Speakers Train Test Total
Bororó bor Macro-Jê Bororó 1035 1861 202 2063
Apinayé apn Macro-Jê Jê 1386 877 75 952
Kaingáng kgp Macro-Jê Jê 19905 5695 917 6612
Kayapó txu Macro-Jê Jê 5520 2669 510 3179
Xavánte xav Macro-Jê Jê 11733 1275 342 1617
Karajá kpj Macro-Jê Karajá 3119 2828 333 3161
Maxakali mbl Macro-Jê Maxakali 1024 5566 905 6471
Rikbaktsa rkb Macro-Jê Rikbaktsa 10 3560 710 4270
Mawé maw Tupi Mawé 8103 6381 970 7351
Mundurukú myu Tupi Mundurukú 3563 3110 190 3300
Guajajára gub Tupi Tupi-Guarani 8269 4956 934 5890
Guaraní (West Bolivia) gnw Tupi Tupi-Guarani NA 5263 970 6233
Guaraní (East Bolivia) gui Tupi Tupi-Guarani NA 5263 924 6187
Guaraní Kaiowá kgk Tupi Tupi-Guarani 24368 3034 479 3513
Guaraní Mbyá gun Tupi Tupi-Guarani 3248 6340 970 7310
Guaraní (Paraguay) gug Tupi Tupi-Guarani NA 5196 970 6166
Ka'apor urb Tupi Tupi-Guarani 1241 3380 436 3816
Kaiabi kyz Tupi Tupi-Guarani 673 2187 280 2467
Nheengatu (LGA) yrl Tupi Tupi-Guarani 3771 5035 691 5726
Tenharim pah Tupi Tupi-Guarani 32 3215 844 4059
Jamamadí-Kanamanti jaa no branch Arawá 217 4759 715 5474
Kulina Madijá cul no branch Arawá 3043 4319 697 5016
Paumarí pad no branch Arawá 166 3653 372 4025
Apurinã apu no branch Aruak 824 6329 970 7299
Palíkur plu no branch Aruak 925 6137 904 7041
Paresí pab no branch Aruak 122 6381 970 7351
Teréna ter no branch Aruak 6314 6381 970 7351
Wapixána wap no branch Aruak 3154 5081 853 5934
Kadiwéu kbc no branch Guaikurú 649 4523 793 5316
Apalaí apy no branch Karib 252 5548 970 6518
Bakairí bkq no branch Karib 173 4000 317 4317
Hixkaryána hix no branch Karib 52 4270 472 4742
Makuxi mbc no branch Karib 4675 4900 940 5840
Nadëb mbj no branch Makú 326 5213 811 6024
Nambikwára nab no branch Nambikwára 951 2774 844 3618
Kashinawá (Peru) cbs no branch Pano-Tacanan 3588 2136 130 2266
Tukano tuo no branch Tukano 4412 3750 846 4596
Yanomámi guu no branch Yanomámi 12301 1283 196 1479
Tikúna tca no branch no family 30057 3097 386 3483
TOTAL 39 3 16 169201 162225 25808 188033

Indigenous Languages # Aligned Sentences

Table 1: Indigenous languages and corresponding size
of the datasets used in the study. Language name,
branch, family, and number of speakers (considers only
who speak the language at home in an Indigenous land
in Brazil) according to the table 1.13 of the Indigenous
data of the Brazilian census of 2010 (IBGE, 2010).

Brazil (IBGE, 2010)2. Those languages were spo-
ken by approximately 800 thousand people (IBGE,
2010), half of them living in Indigenous lands.
Storto (2019) provides a good overview of the his-
tory, structure, and characteristics of BILs. Al-
most all of those languages are considered en-
dangered (Moseley, 2010). We adopted here
the Indigenous language classification, nomencla-
ture, and data from the 2010 Brazilian Census by
IBGE (IBGE, 2010) and language acronyms ac-
cording to ISO 639-3.

3.2 The The Bibles Dataset

We consider in this work 39 Indigenous languages
spoken in Brazil of which we were able to find
translations for the New Testament of The Bible,
a book which comprises about 7,000 verses in its
English versions. Table 1 lists the 39 Indigenous
languages used in this work, comprising 36 spoken
primarily in Brazil and 3 other Guaraní languages
used mostly in Paraguay and Bolivia but also spo-
ken in some areas in Brazil.

2There is some discussion about the accuracy of those
numbers, see (Franchetto, 2020; Storto, 2019).
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This dataset, henceforth called The Bibles, was
obtained in its majority from the ebible website3.
A few other languages of our dataset were obtained
from the YouVersion online platform4. The Bibles
dataset consists of 188,033 parallel verses from the
New Testament in English and in the 39 Indigenous
languages listed in table 1. The parallelism among
translations of the same verse, performed by the
authors, has a reasonable quality although we are
aware that the source of the translations comes from
different versions of The Bible in several languages
and has diverse narrative styles.

To avoid cross-contamination in the decoder and
allow us to study memorization issues without data
leakage between the training and test sets, we used
the Matthew chapter from the New Testament as the
source of test set and the remainder as the training
set. We are aware that there are some similarity
among verses could happen between the book of
Matthew and the other synoptic gospels, but we see
the existence of some similarity as positive, since in
most practical multi-language training setup there
will be some level of similar sentences.

The resulting training sets for the fine-tuning
strategies vary in size (see Table 1). The bilin-
gual models were fine-tuned, on average, with
4,160 pairs of sentences. To fine-tune Tupi-Guarani
family models, the training set comprised 43,869
sentence pairs, and for the all languages models,
162,225 training pairs were used for fine-tuning.

4 Experimental Study

In this section we describe the methodology and re-
sults of fine-tuning LLMs into machine translators
for the 39 BILs presented in Table 1. The transla-
tion direction is always from a BIL to English.

4.1 Methodology

We employed two distinct LLMs in the fine-tuning
process. The first LLM is mBART50 (Tang
et al., 2020), which is an extended version of
mBART (Liu et al., 2020). With 680M parameters,
mBART50 is pre-trained with masked language
modeling on 203M sentences. This model is a
common choice for training multilingual MTs for
low-resource languages (Lee et al., 2022a; Chen
and Abdul-Mageed, 2022).

The second LLM is WMT19 (Ng et al., 2019),
which is a 315M-parameter German-to-English ma-

3https://ebible.org/download.php
4https://www.bible.com/en-GB/

chine translator pre-trained on about 28M pairs of
translated sentences and more than 500M back-
translated sentences. This model is not as popular
as mBART in the MT literature but was chosen
because of its smaller size and good performance
in decoding English texts.

We downloaded the models from Hugging-
Face56. Both were fine-tuned with a learning rate
of 2−5 and a batch size of 16. mBART50 was
trained for 4 epochs and WMT19 for 5.

Our evaluation considers three different fine-
tuning strategies, that result in three different types
of models, and two groups of test sets. First, we
consider bilingual (BL) models, created by fine-
tuning each of the LLMs on source-to-target pairs
exclusively from each of the BILs on Table 1, yield-
ing 39 different bilingual models. Second, we con-
sider the extreme multilingual case where we fine-
tune each of the LLMs with all languages (AL) at
once. Third, we created in-between multilingual
solutions, the Tupi-family (TF) models, where the
training set comprises only the 10 languages be-
longing to the Tupi-Guarani family: Guaraní of
Paraguay, Bolivia (2), Kayowá, and Mbyá; Guaja-
jára, Ka’apor, Kaiabi, Nheengatu, and Tenharim.

With the goal of measuring the impact of the
previously-mentioned models, we defined two dis-
tinct sets of experiments. The first one, BL39 vs
AL39, considering all 39 BILs in a single test set,
so that we can compare the impact of a bilingual
model against a multilingual one trained with all
the languages, i.e. BL vs AL. The second set is
BL10 vs TF10 vs AL10, where we focus in com-
paring the BL models not only against AL but also
against TF which is more targeted at Tupi-family
languages. For the latter, the test set contains only
the 10 languages used to train the TF models.

We used three metrics to evaluate the results,
combining the traditional BLEU score (Papineni
et al., 2002) with more recent neural-based met-
rics which are considered to be more robust and
better correlated with human scores (Freitag et al.,
2022). For BLEU, we compute the average of
sentence-level BLEU scores7 computed with the
SacreBLEU Python package (Post, 2018). For the

5https://huggingface.co/facebook/mbart-large-50
6https://huggingface.co/facebook/wmt19-de-en
7We are aware that corpus-level BLEU is usually used

to assess system-level scores, but this choice allows us to
compute standard deviations, which are important indicators
of memorization issues, as we discuss later. Also, that allowed
us compare all metrics with the same methodology, which is
difficult to do with corpus-level BLEU.
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BLEURT std BERTScore std BLEU std BLEURT std BERTScore std BLEU std

BL10 0.368 0.079 0.876 0.025 9.520 8.554 0.346 0.068 0.858 0.031 6.265 6.273

TF10 0.385 0.116 0.879 0.036 12.325 16.218 0.346 0.077 0.861 0.030 6.626 8.188

AL10 0.323 0.095 0.859 0.029 6.393 11.345 0.314 0.083 0.854 0.027 5.312 10.061

BL39 0.343 0.070 0.867 0.025 7.152 6.653 0.327 0.063 0.845 0.032 4.618 4.901

AL39 0.316 0.087 0.856 0.027 5.525 9.963 0.307 0.073 0.851 0.024 4.422 8.171

TF10 to BL10 5% 47% 0% 43% 29% 90% 0% 13% 0% -2% 6% 31%

AL to BL10 -12% 20% -2% 16% -33% 33% -9% 21% 0% -14% -15% 60%

AL39 to BL39 -8% 24% -1% 9% -23% 50% -6% 15% 1% -24% -4% 67%

mBART WMT19

Table 2: Summary of the average and standard deviation scores in different test sets of languages for the fine-tuning
of mBART50 and WMT19 to different models for all metrics.

MODEL LANGUAGE ORIGINAL EXPECTED GENERATED GENERATED VERSE

mBART50-AL39 Apalaí

oty se hma tykase jezu eya. moxiã umũkuru tõ 
asakoro tuisame tyriko toto, amaro, tuisa 
konõtome toehse awahtao, toiro ãpotunuru 
wino, toiro opozery wino, enara, tykase nohpo 
eya.

he said to her, what do you want she replied, 
permit these two sons of mine to sit, one at your 
right hand and one at your left, in your kingdom.

jesus said to him, foxes have dens and the birds 
in the sky have nests, but the son of man has no 
place to lay his head. Luke 9:58

mBART50-AL39 Mawé

mi'i tupono are'e pywo ti aru meiũran wuat'i yi 
wato hap ok tã aikotã haryporia minug waku 
uhetiat hap ta'atuhenoi henoi e. wuat'i ywania ti 
aru ikuap wakuap uhetiat iminug hap e.

i tell you the truth, wherever this gospel is 
proclaimed in the whole world, what she has 
done will also be told in memory of her.

i tell you the truth, this generation will not pass 
away until all these things take place. 

Mark 13:30

mBART50-AL40 Nheengatu
asui aintaurasu iakanga pratu upe aintauxari 
arama ixupe ae kua kunyamuku, asui urasu ae 
imaya supe.

his head was brought on a platter and given to 
the girl, and she brought it to her mother.

so they seized him, killed him, and threw his 
body out of the vineyard. Mark 12:8

mBART50-AL39 Apurinã
xirataãtxi apisa ikinimane nipokota, iãta itxa. 
kiki, sito ĩtaniriuata. ikara atokokanera itxa noee 
maporo ãki iereẽtini õti.

you will be hated by everyone because of my 
name. but the one who endures to the end will 
be saved. 

for in those days before the flood, people were 
eating and drinking, marrying and giving in 
marriage, until the day noah entered the ark.

Mark 13:13

mBART50-TF10 Guaraní 
Mbyá

ejopy ha'vy ndeperáta, tereo, mba'eta takykue py 
ou va'ekue pe avi ame'ẽxe pẽvy ame'ẽa rami.

take what is yours and go. i want to give to this 
last man the same as i gave to you.

i say this to your shame is there no one among 
you wise enough to settle disputes between 
fellow christians 

1 Corinthians 6:5

mBART50-TF10 Paresí
hatyo xowaka bolokonai hatyo haliyita 
nisakoatita.

a large herd of pigs was feeding some distance 
from them.

i wish that you would be patient with me in a 
little foolishness but indeed you are being 
patient with me 

2 Corinthians 11:1

mBART50-TF10 Wapixána
sariapa upishaan ĩdyaun. ukian, kanom dikin 
wuruꞌu, naꞌiki kanom uu wuruꞌu saada-kariwaiz 
puraata idaꞌa

jesus said to them, whose image is this, and 
whose inscription

and the stars in the sky fell to the earth like a fig 
tree dropping its unripe figs when shaken by a 
fierce wind 

Revelation 6:13

mBART50-TF10 Kaingáng
ã ra jesus tóg mẽ kỹ ag mỹ ãjag tỹ ne jé fi mỹ 
kaga han nẽ he mũ. inh jykre ki króm fi tóg.

but jesus rebuked him silence come out of him when jesus learned of this, he said to them, why 
are you bothering this woman she has done a 
good service for me.

Mark 1:25

Table 3: Examples of outputs of mBART50-AL39 and mBART50-TF10 showing test samples where an almost
literal version of a different Bible verse is generated, including the reference to the generated verse.

neural-based metrics, we consider BLEURT (Sel-
lam et al., 2020) and BERTScore (Zhang et al.,
2020).

4.2 Study Results

Table 2 shows the average and standard deviation
scores in the different test sets of the languages
for the fine-tuning of mBART50 and WMT19 to
different fine-tuning strategies, for all three metrics.

Overall, mBART50 seems to perform slightly
better than WMT19 but with higher standard devi-
ation, and the three metrics afford similar results
comparatively. The three models yield similar re-
sults but the bilingual ones present smaller standard
deviation when all languages are considered. The
TF10 model seems to perform slightly better than
the bilingual models but with a higher standard
deviation. As we show in the next section, high
standard deviations are, in fact, a symptom that the

the translation model has started to perform what
we call rogue memorization, that is, it has become
a retriever of the contents of the training set.

A complementary view on the effects of the high
standard deviations can be observed with the dis-
tribution of BLEU scores computed with samples
from the training set, as show in Figure 1. From
these distributions we can clearly observe that the
BL39 and BL10 models (both for mBART50 and
WMT19) usually result in right-skewed normal dis-
tributions, while for AL39 and AL10 the shapes
of the distributions resemble more binomial dis-
tributions. We can also observe some shift to a
binomial distribution in the TF10 model in the case
of mBART50.

5 Memorization Issues

By examining the actual output of the mBART50-
AL39 model, we saw cases where the output trans-
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(a) mBART-BL39 (b) mBART-AL39 (c) mBART-BL10 (d) mBART-TF10 (e) mBART-AL10

(f) WMT19-BL39 (g) WMT19-AL39 (h) WMT19-BL10 (i) WMT19-TF10 (j) WMT19-AL10

Figure 1: Distribution of BLEU scores of samples from the training set for mBART50 (top) and WMT19 (bottom).

distinct 
 

outputs

distinct 
to 

expected 

inputs to 
distinct 
output

distinct 
outputs

distinct 
to 

expected

inputs to 
distinct 
output 

AL39 3951 15% 7 : 1 4494 17% 6 : 1
BL39 24351 94% 1: 1 24001 93% 1 : 1
expected 25808 100% 1 : 1 25808 100% 1 : 1
AL10 2452 33% 3 : 1 2506 33% 3 : 1
TF10 6405 85% 1: 1 7219 96% 1 : 1
BL10 7057 94% 1 : 1 7297 97% 1 : 1
expected 7498 100% 1 : 1 7498 100% 1 : 1

WMT19

MODEL

mBART50

Table 4: Number of distinct outputs and proportions of
input to distinct outputs for the different models.

lation was not only an incorrect translation, but
a literal verse of The Bible, easily found through
a search procedure in the Internet. We saw sim-
ilar cases in the mBART50-TF10 model and in
the WMT19-AL39. Examples of some mBART50
cases are shown in Table 3. As shown in the table,
instead of attempting to translate the input string,
the fine-tuned systems produce literal verses totally
unrelated to the expected output.

Another issue we could see in this qualitative
analysis was that there were many exact copies of
output sentences. Translation from different lan-
guages of sentences with the same meaning and
structure is expected to generate very diverse out-
puts. We saw the occurrence of repetitions as ev-
idence of rogue memorization. The extent of the
problem is evidenced by the results of the anal-
ysis presented in Table 4, which shows for each
model the number of distinct outputs. For instance,
in the case of the experiments with the 39 BILs
(AL39 and BL39), which comprised 25,808 dif-
ferent inputs from the samples, we would expect
about the same number of distinct outputs, as dis-
cussed above. However, in the mBART50-AL39
model, only 3,951 distinct outputs were produced,

about 15% of what would be reasonable to expect,
configuring a ratio of about 7 inputs mapping to ex-
actly the same output (7 : 1). The WMT19-AL39
model yielded a similar ratio (6 : 1). Notice that
the issue is not present in the bilingual models but
slightly visible in the mBART50-TF10 model.

To more precisely quantify the extent of the
memorization by the models, we implemented a
metric to quantify memorization, based on comput-
ing the smallest distance of a generated output to a
sample from the training. The assumption is that,
when memorization occurs, the decoder reproduces
a training sample, which in this case is one verse of
The Bible, even when the translation-quality met-
ric presents a low value. For that, we compute the
Euclidean distance between the output and the ref-
erences of all training samples, and return the small-
est distance as the measured value. The distance is
computed on a semantic representation of the texts,
using the Sentence Transformers Python library8,
using the all-MiniLM-L6-v2 model9. With that
we are computing even soft memorization effects
since we are not relying on a exact match as usually
employed in previous works (Tirumala et al., 2022;
Carlini et al., 2023).

In Figure 2 we present the distribution of our
memorization metric considering a training exam-
ples as inputs. In those plots, the further the dis-
tribution is shifted to the left, the stronger is the
production of memorized literal verses. The re-
sults with *-AL39 (mBART50-AL39 and WMT19-
AL39) and *-AL10 evaluations, compared with
*-BL39 and *-BL10, clearly show that the multi-
lingual model strongly memorized the training set.

8https://huggingface.co/sentence-transformers
9https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2
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(a) mBART-BL39 (b) mBART-AL39 (c) mBART-BL10 (d) mBART-TF10 (e) mBART-AL10

(f) WMT19-BL39 (g) WMT19-AL39 (h) WMT19-BL10 (i) WMT19-TF10 (j) WMT19-AL10

Figure 2: Histograms with the frequency of the minimum distance of a generated translations of training samples to
examples in the training set.

(a) mBART-BL39 (b) mBART-AL39 (c) mBART-BL10 (d) mBART-TF10 (e) mBART-AL10

(f) WMT19-BL39 (g) WMT19-AL39 (h) WMT19-BL10 (i) WMT19-TF10 (j) WMT19-AL10

Figure 3: Histograms with the frequency of the minimum distance of a generated translations of test samples to
examples in the training set.

With the bilingual models, the mean minimum dis-
tance ranges from 0.62 with mBART50-BL10 to
0.66 with WMT19-BL39, while with the all lan-
guage models, the mean distance falls to a range
between 0.14 with mBART50-AL10 to 0.16 with
WMT19-AL10. With TF10 models, the memo-
rization effect gradually increases with the number
of languages in the training set, since this model
presents mean values of 0.58 and 0.36 for WMT19-
TF10 and mBART-TF10, respectively. Interest-
ingly, with the latter we also observe a slightly
bimodal distribution, indicating that the peak of the
distribution is in the middle of a shifting process be-
tween the mBART50-BL10 and mBART50-AL10.

We conducted a similar evaluation considering
the outputs generated from inputs of the test set.
The results are displayed in Figure 3. Surprisingly,
we observe quite similar results to what we ob-
served with the training set. That is, the results
with the all languages models present strong evi-
dence of producing memorized verses, with mean

minimum distances to an output from the train-
ing set ranging from 0.14 with mBART50-AL39
to 0.17 with WMT19-AL39, while the bilingual
models presents a much higher range of mean val-
ues, from 0.62 with mBART50-BL39 to 0.64 with
WMT19-BL39. Once again, both mBART50-TF10
and WMT19-TF10 present some in-between to-
memorization transition, with mean values of 0.59
and 0.47, respectively. What is impressive, from
these results on the test set, is that it seems that
the memorization occurs in the decoder side of the
Transformer architecture. And when the models
are doing heavy memorization, there is some dis-
connection to the encoders. That is, no matter the
input sentence, the model simply generates one of
the sentences it had memorized.

6 Using Rephrasings to Overcome
Memorization Issues

In this section we investigate whether the use of
rephrasings instead of the repeated outputs can al-
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leviate the memorization issue. As we saw, the
inclusion of repeated outputs results in models that
memorize those outputs as the number of repeti-
tions increase, i.e. as the number of languages in
the multilingual training set increase. Thus, by us-
ing outputs that are similar in semantics but which
are not exact duplicates, we evaluate the impact on
MT quality metrics and on memorization.

For this investigation we rely on rephrasings of
The Bible in English written by different authors.
Although we could have used an LLM such as
ChatGPT and the like to generate as much rephras-
ings as possible, we relied on different versions of
the Bible translated only by humans to avoid errors
which could be introduced by LLMs. Given that
translations of The Bible are not so abundant, we
were able to collect 10 rephrasings which were then
used to evaluate the impact on the mBART50-TF10
model, which is based on 10 different languages.

The results were very positive. The scores (and
respective standard deviations) achieved by this
model are of 0.408 (±0.085), 0.887 (±0.029), and
10.432 (±10.123), for BLEURT, BERTScore, and
BLEU, respectively. That represent gains of 6%
and 1% with BLEURT and BERTScore (compared
with 0.385 and 0.879, respectively, without rephras-
ing), and a loss of 15% with BLEU (12.325 without
rephrasing). Notice that, despite the loss in BLEU,
we see a decrease of 38% in the standard devia-
tion with that metric (from 16.218 to 10.432), and
of 27% and 20% with BLEURT and BERTScore
(from 0.116 and 0.036, respectively, to 0.085 and
0.029). We strongly believe that those decreases
in standard deviations are directly related to the
decrease of memorization, as we show next.

To show the reduction in memorization, we
present in Figure 4 the plots of the memorization-
effect metric comparing the outputs generated
by the mBART50-TF10r model and the previous
mBART50-TF10, considering both training and
test samples as input sentences. Considering the
test samples, as shown in Figure 4d, this evaluation
resulted in a mean distance of 0.61 from a gener-
ated output to a training sample. The same evalua-
tion considering the non-rephrased related model,
i.e. mBART50-TF10, presented in Figure 4c, re-
sulted in a mean distance of 0.47. With the out-
puts generated from training inputs, the difference
is even more drastic. The mean distance for the
non-rephrased model is of 0.36 (fig. 4a), while the
model trained on rephrased sentences presents a
mean distance of 0.90 (fig. 4b). We can see in the

(a) TRAINING samples,
NO REPHRASING

(b) TRAINING samples,
WITH REPHRASING

(c) TEST samples,
NO REPHRASING

(d) TEST samples,
WITH REPHRASING

Figure 4: Comparison of the histograms of frequency
of the minimum distance of a translation generated with
mBART TF10 of test samples to examples in the train-
ing set without (left) and with (right) rephrasing.

latter a very clear peak towards the right side of the
plot, evidence that memorization is not happening.

Another evidence of decrease in memorization
was obtained by computing the number of distinct
outputs using the same methodology used to pro-
duce table 4. The mBART50-TF10 model pro-
duced 6,405 distinct outputs, about 85% of the ideal
number of 7,498, while the model using rephras-
ings mBART50-TF10r generated 7464 distinct out-
puts, about 99.5% of maximum possible, and better
than any other model we tested.

7 Final Discussion

The first main contribution of this work is to present
a clear case of fine-tuning LLMs to many-to-one
translators where high scores in metrics such as
BLEU can be misleading, since high values come,
in fact, from a rogue strategy of retrieving verses
stored from the training set. We also show that
common symptoms of this problem are high stan-
dard deviations of the metrics (which, therefore,
should be always reported), bimodal distributions
of results, and low numbers of distinct outputs. We
also present a method to compute how close the
output is to translations identical to the output texts
of the training sets which can also be used to iden-
tify the undesirable fine-tuning of translators into
rogue retrievers of stored training data.

The second contribution is to present a case
where an LLM, solely due to fine-tuning, was able
to memorize complex parts of the outputs of the
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training set and reconstruct them with high accu-
racy. Although memorization has been seen in the
training of LLMs, we show here a case where there
is reasonable evidence that it happened during the
fine-tuning process with very low amounts of data.

The third contribution is a method to reduce the
memorization effect relying on rephasings of train-
ing samples. Using 10 different versions of The
Bible in English, instead of identical output verses,
we show that the model presents very low memo-
rization levels together with improved translation
quality and more diversity of outputs. Although
we did this study with real rephrasings, we notice
that LLM-generated rephrasings is a viable alterna-
tive when rephrasings are not available. Evaluating
how successful the use of commercial-grade, read-
ily available LLMs is to avoid memorization issues
in many-to-one scenarios is an important part of
our future work.

We also wonder if similar memorization issues
may be present in some of previous research on
multilingual translators for low-resource languages
and, if so, whether they have compromised their
findings. The belief that multilingual models are
usually better than bilingual ones seems to be based
on a reliance on averages of sample-level transla-
tion quality metrics which, as shown here, may
hide the use of incorrect strategies. It seems essen-
tial not only that research in this area reports the
standard deviation of all results but also that efforts
are made to detect potential disguise of memoriza-
tion strategies when fine-tuning LLMs, possibly by
using some of the methods suggested in this paper.

Lastly, we believe the issues described in this
paper are not exclusive to Bibles and multilingual
translations. In tasks such as fine-tuning conver-
sation LLMs using question answering data from
traditional chatbots, when several questions are
mapped to the same answer, we might face similar
issues. Investigating that issue is outside the scope
of this work but it is an interesting future direction.

8 Limitations

The main limitation of this work is the use of The
Bible as the main source of data. Not only it is
limiting in terms of domain, it is also likely that this
type of data was used in the pre-training of LLMs.
Also, The Bible itself contains intrinsic repetitions
of texts which can contribute to memorization.

Another limitation is the lack of a more in-depth
analysis of the loss curves in the fine-tuning of

the LLMs and not using the memorization-effect
metric as a way to mitigate the memorization ef-
fects. That is, our proposed metric could be used as
an alternative to model selection or early stopping.
With that, we believe we could reduce the negative
effects of memorization but the resulting impact on
translation accuracy is unknown.

9 Ethical Considerations

It is essential to consider the ethical aspects of the
goals and methods of any work with Indigenous
languages. First, we abide to the belief that the deci-
sion of whether to create or not a MT for an Indige-
nous language has to be done by the people who
speak the language, fully informed and, whenever
possible, as a participant of the process (Mihesuah,
1993; Sahota, 2007; Straits et al., 2012).

Moreover, we understand the complex political
and ideological choices involved in the process
of language vitalization (McCarty, 2008; McCarty
et al., 2009; McCarty, 2011; Shulist and Granadil-
llo, 2022) and the use technologies to support
it (Harding et al., 2012; Liu et al., 2022). This
was made clear by the Indigenous communities in
the Los Pinos Declaration10, which enshrines that
language-related efforts have be done by and with
Indigenous peoples: “Nothing for us without us.”

However, the main goal of the research described
in this paper is to determine technically feasible
paths to construct MTs given the restrictions im-
posed by extremely-low-resource languages to cur-
rent technologies. Therefore, even if the results
of our work were extremely positive, we would
refrain to make the MTs available without express
consent of the corresponding community.

We are also aware that one of the unfortunate
aspects of past and present colonial history of In-
digenous peoples is related to different forms of
Christianism. As a consequence, the Bible is one
of the most commonly found document translated
to several of those languages, by Jesuits in the early
days of colonization and in the last 100 years often
by Evangelical churches (Franchetto, 2008). As
such, the translations of The Bible are often as-
sociated to different forms of cultural abuse and
violence and to the establishment of orthographies
of domination (Franchetto, 2008).

However, the reality is that such texts are one of
the few available sources of parallel multilingual

10https://en.unesco.org/sites/default/files/los_pinos _decla-
ration_170720_en.pdf.
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datasets for many Indigenous languages. We thus
take the use of The Bible in this work as an “ex-
ceptional” first step, as a sort of “toxic” data which
should not be used, in principle, for any actually
deployed system unless with explicit agreement of
the Indigenous community. Nevertheless we be-
lieve such kind of data can be used carefully for in-
laboratory technical experiments in well-contained
contexts such as the study described in this paper.
To mitigate some of those risks, we implemented in
this study some of the protocols suggested in (Pin-
hanez et al., 2023), including the adoption of con-
tainment procedures.
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