
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 434–449

June 16-21, 2024 ©2024 Association for Computational Linguistics

Simple and effective data augmentation for compositional generalization

Yuekun Yao and Alexander Koller
Department of Language Science and Technology

Saarland Informatics Campus
Saarland University, Saarbrücken, Germany

{ykyao, koller}@coli.uni-saarland.de

Abstract
Compositional generalization, the ability to pre-
dict complex meanings from training on sim-
pler sentences, poses challenges for powerful
pretrained seq2seq models. In this paper, we
show that data augmentation methods that sam-
ple MRs and backtranslate them can be effec-
tive for compositional generalization, but only
if we sample from the right distribution. Re-
markably, sampling from a uniform distribu-
tion performs almost as well as sampling from
the test distribution, and greatly outperforms
earlier methods that sampled from the training
distribution. We further conduct experiments
to investigate the reason why this happens and
where the benefit of such data augmentation
methods come from.

1 Introduction

Compositional generalization is the ability of a sys-
tem to correctly predict the meaning of complex
sentences when trained only on simpler sentences
(Lake and Baroni, 2018; Keysers et al., 2020). It
has been studied in particular detail in the context
of semantic parsing, the task of mapping sentences
to symbolic meaning representations. Recent find-
ings suggest that even powerful pretrained seq2seq
models such as BART (Lewis et al., 2020) and T5
(Raffel et al., 2020), which excel at broad-coverage
semantic parsing (Bevilacqua et al., 2021), perform
very poorly on compositional generalization (Yao
and Koller, 2022).

One promising method for compositional gen-
eralization is data augmentation (Andreas, 2020;
Yang et al., 2022; Qiu et al., 2022). The idea is to
generate additional training data by sampling from
an augmentation distribution, in the hope that a
model trained on the augmented data will general-
ize better to the out-of-distribution test data. Data
augmentation for semantic parsing is complicated
by the fact that it needs to recombine matching
pieces of the sentence and of the meaning represen-
tation, but this matching is not made explicit in the
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Figure 1: A diagram to show data augmentation from
different distributions with PCFG.

training data. Many approaches therefore use some-
what complex methods to e.g. induce synchronous
grammars (Qiu et al., 2022). As a simpler alterna-
tive, Wang et al. (2021) proposed to learn only a
grammar for generating meaning representations,
and then to use backtranslation to map the sampled
meaning representations into sentence-MR pairs.

The effectiveness of a data augmentation regime
depends on the distribution from which the aug-
mented data is sampled. Wang et al. (2021) sam-
ple from the training distribution and find that
this improves semantic parsing accuracy on out-of-
distribution text-to-SQL tasks. However, it is not
clear that augmenting from the training distribution
is universally helpful, especially on compositional
generalization tasks where the test instances are de-
liberately designed to be unlikely under the training
distribution.

In this paper, we investigate the impact that the
choice of augmentation distribution has on the abil-
ity of a semantic parser to generalize composition-
ally. We compare Wang et al.’s approach (fit a
grammar for meaning representations to the train-
ing data) to an approach where we fit the MR gram-
mar to the test data (as an upper bound). Finally, we
look at an MR grammar with uniform rule weights.
Figure 1 shows the difference between these three
methods. In an evaluation across four composi-
tional generalization datasets (COGS, CFQ, Geo-
Query, SCAN), we find that augmentation based
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on the test data strongly outperforms augmentation
based on the training data; but surprisingly, aug-
mentation with the uniform grammar is almost as
effective as augmentation from the test data. This
can be partially explained by the ability of the uni-
form grammar to contribute unseen local structures
(Bogin et al., 2022) and assign low perplexity to
the test MRs. Our findings point to a remarkably
simple method for effective data augmentation for
compositional generalization: obtain a grammar for
the meaning representations (a formal language),
set uniform rule weights, sample, and backtrans-
late.

We will release our code online 1.

2 Related work

Compositional generalization Compositional
generalization has been shown challenging for neu-
ral sequence-to-sequence models. For example,
Lake and Baroni (2018) shows that LSTM (Hochre-
iter and Schmidhuber, 1997) fails to generalize to
new combinations or longer sequences of symbolic
commands; Kim and Linzen (2020) shows that both
LSTM and Transformers (Vaswani et al., 2017) can-
not generalize to complex linguistic structures; Yao
and Koller (2022) find that structural generaliza-
tion, a difficult compositional generalization type,
is consistently hard for BART and T5; Bogin et al.
(2022) find that unobserved local structures can ex-
plain the difficulty of compositional generalization
across multiple tasks.

Data augmentation The idea of augmenting the
training data with synthetic instances originates in
low-resource NLP tasks. For semantic parsing, Jia
and Liang (2016) induced a synchronous CFG from
the training set using domain-specific heuristics.
Yu et al. (2018) and Zhong et al. (2020) generate
new sentence-SQL pairs by identifying complex
SQL patterns in the training set and filling their
slots with different table or column names.

Data augmentation also successfully improves
compositional generalization. Andreas (2020) pro-
pose a heuristic for sampling new parallel data by
replacing tokens in training samples with similar to-
kens sharing the same context; Yang et al. (2022);
Li et al. (2023) extend this idea by exchanging
subtrees and spans to leverage linguistically rich
phrases. Compared to their methods, we sample ar-

1https://github.com/coli-saar/
data-augmentation-compgen

p(src, tgt)

src: The cake on the table burned

tgt:  burn ( theme = *cake ( nmod.on=*table ) )

sample

p(tgt)

tgt:  burn ( theme = *cake ( nmod.on=*table ) )

sample

src:  The cake burned on the table

back translation

Synchronous gramar MR grammar

Figure 2: Comparison of different data augmentation
methods based on COGS meaning representation.

bitrary meaning representations that can be derived
from our hand-written grammar.

Qiu et al. (2022) propose a data augmentation
procedure based on inducing probabilistic quasi-
synchronous grammars from the training data. Al-
though their system achieves promising results, it
requires a complicated algorithm to induce clean
grammar rules. Oren et al. (2021) also propose to
sample structurally diverse synthetic data from a
manually designed synchronous context-free gram-
mar. Compared to these works, our method only
considers a grammar of the meaning representation,
which is easy to access.

Similar to our method, Guo et al. (2021) adopt it-
erative back-translation for compositional semantic
parsing, but they directly use a subset of meaning
representations from development or test set as aug-
mented meaning representations. Our work instead
shows that meaning representations generated from
a probabilistic grammar still work.

Closest in spirit to this paper is the work of Wang
et al. (2021), who also sample only meaning rep-
resentations and generate input sentences through
backtranslation. Figure 2 illustrates their method.
The key difference to our work is that we explore
the impact of augmentation distributions.

3 Methodology

Our method consists of two steps: sample meaning
representations and then backtranslate them into
natural language sentences. It exploits the fact that
in many realistic use cases of a semantic parser,
one can generate arbitrary amounts of symbolic
meaning representations from a grammar: These
are from a formal language, and the developer of a
semantic parser either has access to a grammar for
this formal language or can easily write one.

3.1 Data augmentation

Context-free grammar For a semantic parsing
task, we assume as given a context-free grammar
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that describes all possible meaning representations.
Figure 3 shows an example. Figure 3a shows part
of our grammar for the GeoQuery dataset, which
consists of multiple production rules. Based on
these rules, we can parse a meaning representation
answer ( loc_1 ( cityid ( houston, _ )) ) as shown in
Figure 3b. In a probabilistic context-free grammar
(PCFG), each production rule has a rule probability.
The probability of a parse tree can be calculated as
the product of the probability of each production
rule that constitutes the parse tree.

Parameter estimation To estimate the probabil-
ity of each production rule, we can use maximum
likelihood estimation, which is based on count-
ing the rule occurrences in parse trees. Given a
sequence of meaning representations y1, . . . , yn,
the probability of a grammar rule N → ζ can be
calculated by the equation below, where Count()
denotes counting the occurrences of a rule in
y1, . . . , yn.

P =
Count(N → ζ)∑
γ Count(N → γ)

Data augmentation After estimating the rule
probabilities, we can sample novel meaning rep-
resentations from the resulted grammar. We then
backtranslate (Sennrich et al., 2016) each sampled
meaning representation to obtain the synthetic nat-
ural language text. Specifically, we train another
sequence-to-sequence model on the in-distribution
train set, which takes as input a meaning represen-
tation and outputs a sentence.

To utilize the generated parallel data, we can
either concatenate it with the original training data,
or we can first pretrain the baseline parser on the
generated data and then fine-tune the parser on
the original training set. Since Wang et al. (2021)
show that concatenation can hurt the performance
of the parser, we experiment with both methods and
report results of the best method for each dataset.

3.2 Augmentation distribution for
compositional generalization

Our data generation method differs from Wang et al.
(2021) in that we consider different distributions for
sampling the augmentation data. We hypothesize
that this will be advantageous for compositional
generalization, for two reasons.

First, test sets for such tasks are generally de-
signed to contain structures that are not observed
in the train set; these are difficult to sample from

Grammar rules

a) S -> answer State
b) State -> loc_1 City 
c) City -> cityid CityName
d) CityName -> houston

…
e) River -> most River

…

(a) Grammar rules for GeoQuery.

answer loc_1 cityid houston

CityName

City

State

S

(b) Parse tree of a GeoQuery meaning representation.

Figure 3: An example to show part of our grammar from
GeoQuery. Blue color refers to non-terminal and green
color refers to terminal symbols. Special symbols (e.g.
brackets) are ignored for space.

the training distribution. For example, in Figure
3, the rule (e) will be estimated to have zero prob-
ability, so the generated meaning representations
will never contain the pattern most River. Second,
the test set may involve generalization to meaning
representations with deep recursion depth or longer
symbol sequence. These are unlikely under the
training distribution when the train set only con-
tains shallow recursions or short sequences, and
will thus be rare in the sampled data.

We compare the effect of different augmentation
distributions. Specifically, we look at augmentation
PCFGs whose parameters are estimated from the
training data (Ptrain); those estimated from the
test data (Ptest); and PCFGs with uniform rule
distributions (Puniform); i.e. each of the k rules
for a nonterminal N has probability 1/k. Ptest

represents an ideal case where the test distribution
is accessible, which generally does not hold for
realistic scenarios. In this paper we only use Ptest

as an upper bound, to show the importance of the
choice of augmentation distribution.

4 Experiments

In this section, we introduce our datasets, experi-
ment setup and results.
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4.1 Datasets

COGS COGS (Kim and Linzen, 2020) is a se-
mantic parsing dataset where the input is an En-
glish sentence and the output is a logical form. We
use the variable-free meaning representation (e.g.
A girl in a house sneezed → sneeze ( agent = girl
( nmod . in = house ) )) of COGS following Qiu
et al. (2022). COGS is generated with a PCFG,
where the train set consists of data with simple
linguistic structures and the generalization set con-
sists of 21 generalization types to test different
generalization abilities. This includes 18 lexical
generalization types (i.e. a novel combination of a
familiar structure with a familiar word) and 3 struc-
tural generalization types (i.e. a novel combination
of two familiar structures). Here "familiar" means
the structure or word is observed in the train set.

We focus on the three challenging structural gen-
eralization types obj_pp_to_subj_pp, pp_recursion
and cp_recursion, which were highlighted as
particularly difficult by Yao and Koller (2022).
The original train set comprises instances with
prepositional phrase (PP) and clauses (CP) recur-
sion depths limited to 2, while pp_recursion and
cp_recursion instances range from depths 3 to 12.
In obj_pp_to_subj_pp instances, PP structure mod-
ifies subject nouns, which only modifies object
nouns in the train set (e.g. Emma ate the ring be-
side a bed → A girl in a house sneezed).

CFQ CFQ (Keysers et al., 2020) is a seman-
tic parsing dataset where the input is an English
sentence and the output is a SPARQL query (e.g.
Did M1 acquire a company → select count (*)
where{(x0 a employer) . (M1 company_acquired
x0)}). Previous works (Herzig et al., 2021) shows
that preprocessing leads to a large difference for
CFQ results. Thus we use the RIR meaning rep-
resentations in Herzig et al. (2021) and addition-
ally normalize reversible relation tokens following
Zheng and Lapata (2022). We use three MCD
splits generated by maximizing the similarity of
atom distribution and the divergence of compound
distribution between train and test sets together.

Geoquery For GeoQuery, we focus on the
FunQL formalism (Kate et al., 2005), where the
input is an English sentence and the output is a
FunQL query (e.g. what is the tallest mountain in
america → answer highest mountain loc_2 coun-
tryid usa). We use the dataset created by Herzig
and Berant (2021) and follow Lindemann et al.

(2023) to remove special symbols in the meaning
representation. We use template (Finegan-Dollak
et al., 2018) and length splits created based on the
program template and length respectively.

SCAN SCAN (Lake and Baroni, 2018) is a se-
mantic parsing dataset where the input is a com-
mand and the output is a sequence of actions
(e.g. jump twice → JUMP JUMP). SCAN pro-
vides many primitive-based splits and length split.
We use turnleft and length split, which have been
shown challenging in Qiu et al. (2022).

4.2 Set up
Models. We address all our semantic parsing
tasks with a sequence-to-sequence model. Given
its strong performance on semantic parsing and
sentence generation tasks, we fine-tune T5 (Raffel
et al., 2020) as our baseline semantic parser as well
as for backtranslation. Training details are reported
in Appendix B. All our results are averaged over
5 random runs and we report standard deviation in
Appendix C. Exact match accuracy is used as the
evaluation metric for all datasets. For GeoQuery,
the same input sentence can be mapped into multi-
ple correct programs, so we also report execution
accuracy following Herzig and Berant (2021).

Grammars. To apply our data augmentation
method to a dataset, we need a context-free gram-
mar that can generate its meaning representations.
For COGS, we adopt the official grammar provided
by authors. For CFQ, GeoQuery and SCAN, we
manually write a context-free grammar to apply our
method. We use T5+Ptrain to refer to the model
trained with the union of original train set and the
data sampled from Ptrain and so for the other dis-
tributions. For all three augmentation distributions,
we sample the same number of unique meaning
representations. Details of grammar design and
sampling are described in Appendix D. For COGS
and SCAN, we directly concatenate the synthe-
sized data with the original data set. For CFQ and
GeoQuery, we find that concatenation hurts the
performance and thus pretrain the model on the
synthesized data first and then fine-tune it on the
original train set. We report detailed results for
both settings in Appendix C.

4.3 Results
COGS Table 1 shows exact match accuracies on
COGS. We observe that the distribution of the aug-
mented meaning representations makes a large dif-
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Models Obj PP CP All

T5 (Qiu et al., 2022) - - - 89.8
LeAR ♠ (Liu et al., 2021) 92.5 100 98.5 98.9
SpanSub ‡(Li et al., 2023) - - - 92.3
T5+CSL ‡ (Qiu et al., 2022) - - - 99.5

T5 88.2 24.1 32.3 91.0
+Ptrain ‡ 89.4 51.2 43.5 92.9
+Ptest ‡ 94.6 96.7 95.1 99.3
+Puniform ‡ 92.9 87.8 50.7 95.9

Table 1: Results on COGS. Obj, PP, CP refers
to structural generalization types obj_pp_to_subj_pp,
pp_recursion and cp_recursion respectivly. ‡refers to
parsers using data augmentation method. ♠refers to
structured parsers.

Models MCD1MCD2MCD3Avg

T5 (Herzig et al., 2021) 85.8 64.0 53.6 67.8
T5-large (Herzig et al., 2021) 88.6 79.2 72.7 80.2
T5-3B (Herzig et al., 2021) 88.4 85.3 77.9 83.8
LeAR ♠ (Liu et al., 2021) 91.7 89.2 91.7 90.9
Least-to-Most (Drozdov et al., 2022) 94.3 95.3 95.5 95.0

T5 89.9 75.3 72.2 79.1
+Ptrain ‡ 89.9 77.9 75.8 81.2
+Ptest ‡ 90.4 79.1 75.5 81.7
+Puniform ‡ 91.2 78.8 74.3 81.4

+dev MRs ‡ 87.1 89.5 89.3 88.6

Table 2: Results on CFQ. +dev MRs refers to using
meaning representations from development set for our
data augmentation method.

ference on the performance: the grammar estimated
on the test set (e.g. Ptest) substantially improves
performance (+8.3) and achieves near-perfect ac-
curacy overall, while the grammar estimated on
the train set (e.g. Ptrain) only slightly improves
the performance (+1.9). We consider this is be-
cause the grammar estimated on train set tends to
produce simple structures, which does not help
improve complex structure predictions. Notice-
ably, the uniform grammar Puniform yields a much
higher improvement than Ptrain. This suggests that
the importance of the distribution of meaning rep-
resentations for compositional generalization.

CFQ Table 2 shows exact match accuracies on
CFQ. All three augmentation strategies are roughly
on par with each other. We attribute this limitation
to the fact that the CFQ dataset is generated by
mapping intermediate logical forms into SPARQL,
which incorporates variables and conjuncts. Such
complex relationships are difficult to capture ac-
curately using context-free grammars, resulting in
many sampled meaning representations containing

Template Length

Models EM Exe EM Exe

BART (Herzig and Berant, 2021) - 67.0 - 19.3
Span+lexicon ♠ (Herzig and Berant, 2021) - 82.2 - 63.6
LeAR ♠ (Liu et al., 2021) - 84.1 - -
SUBS (gold tree) ‡(Yang et al., 2022) 88.3 - - -
SpanSub (gold tree) ‡(Li et al., 2023) 89.5 - - -

T5 73.9 79.9 35.8 50.5
+Ptrain ‡ 74.1 84.3 56.1 72.1
+Ptest ‡ 80.1 88.2 60.1 74.1
+Puniform ‡ 79.3 87.6 60.4 73.7

Table 3: Results on GeoQuery. EM denotes exact match
accuracy and Exe denotes execution accuracy.

Models Turnleft Length

T5 (Qiu et al., 2022) 62.0 14.4
T5+GECA ‡ (Qiu et al., 2022) 57.6 10.5
T5+CSL ‡ (Qiu et al., 2022) 100 100

T5 61.2 4.4
+Ptrain ‡ 92.9 8.1
+Ptest ‡ 92.9 60.5
+Puniform ‡ 92.9 60.5

Table 4: Results on SCAN.

nonsensical elements (e.g., redundant conjuncts).
To verify our hypothesis, we further experiment

with a setting where instead of sampling MRs from
estimated PCFG, we directly backtranslate MRs
from development set as augmented data. Since
the development set of CFQ shares the same distri-
bution as the test set, this setting represents what
a perfect method for augmenting from the test dis-
tribution would achieve, illustrating that the issue
really comes from our flawed grammar.

We also observe that our T5 baseline outper-
forms the T5 model from Herzig et al. (2021). We
attribute this to the additional preprocessing steps
we adopted from Zheng and Lapata (2022).

GeoQuery Table 3 shows exact match accuracies
and execution accuracy on GeoQuery. On the tem-
plate split, Ptest gives the best performance (+6.2
EM and +8.3 Exe). On the length split, all three
strategies substantially improve the performance.
Puniform achieves on-par performance with Ptest

and outperforms Ptrain on both splits, which is
consistent with the results on COGS.

SCAN Table 4 shows exact match accuracies
on SCAN. We observe Ptest and Puniform sub-
stantially improve the performance on both splits,
whereas the Ptrain only performs well on turnleft
split. All three strategies achieves the same perfor-
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English Meaning representations

Datasets Avg length Bigrams(%) Instance(%) Avg length Bigrams(%) Instance(%)

COGS

T5 7.5 30.5 0 13.8 88.7 0
+Ptrain 7.5 37.8 0 13.8 93.2 0
+Ptest 8.4 53.4 11.7 17.5 99.5 11.8
+Puniform 8.5 40.5 0 17.0 99.3 0.2

CFQ
MCD1

T5 13.5 91.2 0 44.3 98.9 6.5
+Ptrain 13.7 99.6 0.4 46.9 99.6 7.0
+Ptest 14.0 99.7 0.6 45.9 100 7.5
+Puniform 7.1 99.4 0.2 36.4 100 7.0

GeoQuery
Template

T5 8.3 66.5 0 6.1 74.8 0
+Ptrain 9.6 76.5 27.2 8.3 85.9 45.5
+Ptest 10.3 78.2 29.8 8.8 100 60.3
+Puniform 9.4 76.7 25.0 8.4 100 26.5

SCAN
Length

T5 7.0 100 0 10.8 100 0
+Ptrain 7.1 100 8.6 11.1 100 20.7
+Ptest 7.1 100 9.6 12.2 100 100
+Puniform 7.1 100 9.6 12.2 100 100

Table 5: Dataset statistics for different augmentation strategies. T5 denotes the statistics of the original train set.
+Ptrain, +Ptest, +Puniform denote augmented datasets based on different PCFGs. We report the statsitics for both
input sentence side and output meaning representation side. Thus, Avg length under English tab refers to the average
length of input sentences. We report three statistics: average length (Avg length), the coverage (expressed as a
percentage) of bigrams in the test set by the training set (Bigrams) and the coverage of entire instance in the test set
by the training set (Instance).

mance on turnleft split. This is because the mean-
ing representation space of SCAN is too small and
thus all possible meaning representations can be
sampled by three strategies, which results in the
same train set. The same case happens for Ptest

and Puniform on the length split. Noticeably, our
method outperforms GECA, which generates par-
allel data for data augmentation using templates.
This suggests that sampling meaningful and useful
meaning representations proves more effective than
sampling limited parallel data in certain scenarios.

5 Discussion

The surprising finding so far is that across all four
compositional generalization datasets, augmenting
from Puniform performs on par with Ptest. This
seems counterintuitive: the uniform augmentation
strategy has no knowledge of the test data’s distri-
bution, and one would expect that augmentation
data sampled from a grammar-based approximation
to the test distribution should perform much better.
We therefore investigate this finding in detail.

Augmentation data statistics We present statis-
tics of the generated augmentation data in Table
5. For each corpus and augmentation method, we
show the average sequence length, bigram cover-
age, and instance (i.e. exact sequence match) cov-

erage for both input sentences and output MRs.
The bigram coverage is determined by dividing the
number of observed bigrams in the test set that also
exist in the training set by the total count of pos-
sible bigrams in the test set. Instance coverage is
calculated analogously.

As expected, Ptest always yields the highest cov-
erage values on the meaning representations, sug-
gesting that the MR grammar approximates the test
distribution effectively. On the other hand, instance-
level coverage on the English side does not grow
very high for any dataset. This indicates that the
backtranslation model, which is trained on the orig-
inal in-distribution data, still struggles to produce
novel recombinations of the English sentences.
Puniform is on par with Ptest on many measures

and datasets, and considerably outperforms Ptrain.
This suggests that novel structural combinations are
judged unlikely based on the training distribution,
or are simply assigned a probability of zero because
structures were entirely unobserved.

It is remarkable that Ptest and Puniform pro-
duce meaning representations of similar length on
COGS and could therefore be capable of generating
augmentation data of similar structural complex-
ity. At the same time, Ptest achieves a significantly
higher parsing accuracy on the PP and CP recur-
sion generalization types. A plot of the distribu-
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Figure 4: Count of test instances with regard to different loss values.
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Figure 5: Depth distribution of train set for COGS.

tion of the augmentation instances according to
recursion depth (Fig. 5) reveals that while Ptest

generates augmentation instances evenly across all
recursion depths, Puniform emphasizes moderately
(PP) or extremely (CP) shallow instances.2 This
explains the difference in parsing accuracy, and fur-
ther emphasizes that compositional generalization
is not just challenging because transformers strug-
gle when generalizing to longer inputs (Hupkes
et al., 2020), but also to structurally more complex
inputs of similar length.

Perplexity analysis We further investigate
whether Puniform produces useful augmentation
data simply because it produces arbitrary instances
of higher complexity than Ptrain, or if Puniform

actually models the test distribution in some way.
To this end, we measure the perplexity of the mean-
ing representations of the test set across four corpus
variants under each model (Table 6; see Appendix
E.1 for details).

We find that across three of the four datasets,
Ptest and Puniform are close together, considerably
outperforming Ptrain and the T5 baseline. An ex-
ception is CFQ, where the grammar introduces so

2We hypothesize that the difference between PP and CP
in the Puniform case is due to the fact that each level of CP
recursion requires the use of two production rules, rather than
just one for PP, making the generation of deeper structures
comparatively less likely.

COGS CFQ GeoQuerySCAN

Models MCD1 Template Length

T5 1.131 1.007 1.254 1.427
+Ptrain ‡ 1.133 1.005 1.252 1.124
+Ptest ‡ 1.001 1.005 1.166 1.006
+Puniform ‡ 1.007 1.005 1.184 1.006

Table 6: Perplexity of models with different augmenta-
tion strategies on test set.

much noise into the sampling process that all mod-
els are mostly on par. We consider this is because
although Puniform has no particular knowledge of
the test distribution built in, sampling from it cov-
ers enough MR n-grams that the test data becomes
predictable.

The increased perplexity of Ptrain in compari-
son to the other models is not evenly distributed
across the test instances. In Fig. 4, we plot a count
of test instances for each loss value. Compared to
Ptest and Puniform, the loss of Ptrain on some in-
stances becomes exceptionally high, which results
in higher perplexity and lower accuracy on such
instances. Looking into the dataset, we find that
such issue generally occurs on meaning represen-
tations with complex structures (e.g. deeper recur-
sions for COGS and unseen program templates for
GeoQuery). These structures are more predictable
for models trained on Ptest and Puniform augmen-
tation data, which contains such structures more
frequently.

Structure coverage According to Bogin et al.
(2022), a key feature that makes compositional gen-
eralization difficult is the presence of unobserved
local structures (i.e. a connected sub-graph that oc-
curs in the meaning representation) in the test set.
Is the better performance and perplexity of Ptest

and Puniform actually because they cover more
structures in the test set?

To answer this question, we further plot the ac-
curacy of our models against the structure coverage
on COGS and GeoQuery in Figure 6. Here “struc-
ture coverage” refers to dividing the number of
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Figure 6: Performance against the local structure cover-
age for different augmentation distributions.

observed structure in the test set that also exist in
the training set by the total count of possible struc-
tures in the test set. For GeoQuery, we consider
the template split and follow Bogin et al. (2022) in
defining the local structure of a meaning represen-
tation as all pairs of parent nodes and their children
in its parse tree (i.e. 2-LS). For COGS, we focus
on the PP recursion generalization type. Instead
of considering local structures, we observe that the
accuracy on such data is related to the maximal
recursion depth observed in the train set. Thus we
use PP recursion depth as a representative of global
structures to calculate the structure coverage.

Our results show that Ptest and Puniform yields
a larger coverage of structures that occur in the test
set than Ptrain. Furthermore, larger coverage is
associated with higher accuracy. This is consistent
with Bogin et al. (2022). Although Gupta et al.
(2022) and Oren et al. (2021) also show the benefit
of introducing more complex structures into the
train set, our results further suggest that synthe-
sized meaning representations with back-translated
sentences can still help.

Qualitative error analysis Finally, we con-
ducted a qualitative analysis to identify specific
cases in which our approach led to improvements.
In Table 7, the grammar rule River → most River
is not observed by baseline and Ptrain, and thus
the model struggles generating the bigram most
river corresponding to this rule, which leads to a
large loss value (i.e. 26.1) for this instance. In con-
trast, Ptest covers all local structures, which allows
the model to predict the instance correctly with a
substantially lower loss (i.e. 0.1).

Sentence generation We report the performance
of our backtranslation model in Table 8. Both exact

Input what is the length of the river that runs through
the most states ?

Gold len most river traverse_2
state all

T5 len intersection riverid most
state all

+Ptrain len intersection river
traverse_2 most state all

+Ptest len most river traverse_2
state all

Table 7: Examples from GeoQuery test set.

COGS CFQ GeoQuery SCAN

Metric Struct MCD1 Template Length

Exact Match 30.9 4.8 19.6 8.6
BLEU 78.5 42.9 61.6 51.7

Table 8: Results of our backtranslation model on the test
sets for each task. Struct under COGS means we only
calculate the metric on structural generalization types.

match accuracy and BLEU score (Papineni et al.,
2002) are used as evaluation metrics. All models
achieve good BLEU scores, indicating the effec-
tiveness of our backtranslation models. However,
none of the model yields high accuracy, which sug-
gests that our model can still learn to utilize such
noisy data to achieve better performance.

We also present error examples in the augmented
training data in Table 9. On COGS, the backtrans-
lation model tends to generate sentences with seen
linguistic structures in the training data (e.g. called
the table to as a prepositional dative structure) in-
stead of unseen structures (e.g. A teacher on the
table as a Subject PP structure). Also, given a
meaning representation with deep recursion struc-
tures, the model may ignore some structures (e.g. in
the bottle ) and not translate them. Similar patterns
can also be observed in GeoQuery and SCAN: what
state has the most cities is an observed sentence in
the training data of the backtranslation model for
GeoQuery, and thus the model tends to translate the
given MR into this sentence ignoring the structure
river traverse_2; run around right thrice is never
observed in the training set of the SCAN backtrans-
lation model, and thus the model struggles with
generating it. On CFQ, we further observe that
the model may generate additional phrases whose
meaning is not present in the MR (e.g. was written
by M5).
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COGS

MR call ( agent = teacher ( nmod . on = * table ) , theme = Emma )

Backtranslation A teacher called the table to Emma .

Annotated A teacher on the table called Emma .

MR offer ( agent = * cat , theme = * block ( nmod . in = house ( nmod . on = towel ( nmod . in = tin ( nmod . in = *
bottle ( nmod . in = car ( nmod . beside = * corpse ( nmod . on = * canvas ( nmod . beside = * bed ( nmod .
beside = table ( nmod . in = * bag ( nmod . in = * hole ) ) ) ) ) ) ) ) ) ) ) )

Backtranslation The cat offered the block in a house on a towel in a tin in a car beside the corpse on the canvas beside the bed
beside a table in the bag in the hole .

Annotated The cat offered the block in a house on a towel in a tin in the bottle in a car beside the corpse on the canvas
beside the bed beside a table in the bag in the hole.

CFQ

MR SELECT DISTINCT ?x0 WHERE { ( ?x0 ( film.film.prequel , film.film.sequel ) ( M5 ) ) }

Backtranslation What prequel and sequel of M5 was written by M5

Annotated What is the prequel and sequel of M5

GeoQuery (template split)

MR answer most river traverse_2 most state loc_1 city all

Backtranslation what state has the most cities

Annotated what river traverses the state that has the most cities

SCAN (length split)

MR RTURN RUN RTURN RUN RTURN RUN RTURN RUN RTURN RUN RTURN RUN RTURN RUN RTURN
RUN RTURN RUN RTURN RUN RTURN RUN RTURN RUN RUN RUN RUN

Backtranslation run around right twice and run thrice

Annotated run around right thrice and run thrice

Table 9: Examples of incorrect training data introduced by backtranslation. MR refers to the meaning representation
sampled from the grammar. Backtranslation refers to the corresponding English sentence generated by the
backtranslation model. Annotated refers to the human labeled English sentence for the MR.

6 Conclusion

We investigated the impact of the choice of aug-
mentation distribution on compositional general-
ization. We found that a PCFG for the meaning
representations with uniform rule weights supports
much more effective data augmentation than one
that is trained on the training data, and almost on
part with one that is trained on the test data. A
detailed analysis revealed that this is because the
uniform grammar both achieves low perplexity on
the test meaning representations and greatly im-
proves structural coverage.

Thus, sampling meaning representations from
a uniform PCFG and backtranslating them into
natural-language sentences can serve as a simple
and efficient data augmentation strategy for com-
positional generalization. It would be interesting to
investigate the space of augmentation distributions
in more detail in future work to see, for instance,
how the generation of structurally even more di-

verse augmentation instances can be encouraged.
Our findings also suggest that compositional gen-
eralization in MR-to-text generation tasks (Mehta
et al., 2022), which is still an underexplored area,
is also an interesting direction for future research.

7 Limitations

Our work assumes that the language of all possible
meaning representations can be described with a
context-free grammar, and that such a grammar is
available or can be easily reconstructed by hand.
Given that MRs are formal languages, this seems
realistic, but can involve some manual effort. When
the meaning representations are generated out of
a knowledge base through a process that is not
publicly accessible, such as in CFQ, hand-crafting
a grammar for MRs can introduce noise.

In our evaluation, we use corpora that are either
synthetic (COGS, CFQ, SCAN) or very small (Geo-
Query). Thus, one should interpret conclusions on
data augmentation for such corpora with care. We
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leave experiments on compositional generalization
datasets that use naturally occurring language (e.g.
SMCalFlow-CS (Yin et al., 2021)) to future work.
Nevertheless, the robustness of our results across
corpora still suggests the generality of our findings.
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A Dataset details

We report dataset statistics in Table 12. COGS
provides both an in-distributional test set (i.e. test)
and an out-of-distributional test set (i.e. gen). For
the splits of CFQ, GeoQuery and SCAN we used
no in-distributional test set is provided.

B Training details

B.1 Evaluation metrics

For all tasks, we report exact match accuracy of
our model, which means that the output sequence
is correct only if each output token is correctly
predicted. For GeoQuery, we additionally report

Dataset lr batch_size weight_decay steps

COGS 1e-5 2048 0 25k
CFQ 7.4e-5 2048 1e-3 50k
GeoQuery 1e-5 4096 1e-3 10k
SCAN 1e-5 1024 1e-3 25k

Table 10: Hyperparmeters of baseline models used in
our experiments. Batch size is quantified in terms of
input tokens. batch_size refers to the batch size during
training. weight_decay refers to the weight decay used
in the optimizer. lr refers to the learning rate. steps
refers to the training steps we used to train the model.

Time (hours)
Dataset w.o. aug w. aug

COGS 7 8
CFQ 10 10
GeoQuery 0.5 1
SCAN 20 4

Table 11: Training time for our model on each dataset
(1 run) in our experiments.

execution accuracy, which means we execute gen-
erated FunQL code and calculate the accuracy of
the outputs. This metric can better measure the
generalization ability of our model since one in-
put sentence can be mapped into multiple correct
FunQl queries. For example, how long is the rio
grande river can be parsed into either answer ( len
( river ( riverid ( rio grande ) ) ) ) or answer ( len
( intersection ( riverid ( rio grande ), ( river ( all
) ) ) ) ). Both queries return the correct value. We
use the code from (Herzig and Berant, 2021) to
calculate the execution accuracy.

B.2 Hyperparameters

Baseline. We use t5-base3 (220 million parame-
ters) as our baseline for all experiments. We use
the default subword vocabulary and do not extend
it with new words. We use Adam (Kingma and Ba,
2015) as our optimizer. Since (Csordás et al., 2021)
shows that early stopping based on in-distribution
validation set leads to low performance on out-of-
distribution test set, we do not apply early stopping
for COGS, GeoQuery and SCAN and only use the
checkpoint at the end of training, following (Herzig
et al., 2021). CFQ provides out-of-distribution de-
velopment set, so we use exact match accuracy on
the development set as the validation metric. No
learning rate scheduler is used for all experiments.
During evaluation, we use beam search with beam

3https://huggingface.co/t5-base
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Dataset Split # train # dev. # test # gen Vocab. size Train len. Test len. Gen len.

COGS - 24155 3000 3000 21000 809 22/48 19/40 61/144

CFQ
MCD1 95743 11968 11968 - 171 29/133 30/103 -
MCD2 95743 11968 11968 - 171 29/133 30/103 -
MCD3 95743 11968 11968 - 171 29/133 30/103 -

GeoQuery template 544 60 276 - 324 23/17 19/12 -
length 540 60 280 - 324 13/7 23/17 -

SCAN Turnleft 21890 - 1208 - 19 9/48 8/27 -
length 16990 - 3920 - 19 9/22 9/48 -

Table 12: Statistics for all our datasets. # denotes the number of instances in the dataset. Vocab.size denotes the size
of vocabulary for the dataset, which consists of input tokens and output tokens. Train.len denotes the maximum
length of the input tokens and output tokens in the train set. Test.len and Gen.len denote the maximum length in the
test and generalization set.

size 4. Task-specific hyperparameters are present
in Table 10.

We only perform hyperparameter selection for
the learning rate hyperparameter. For CFQ, we per-
form random search 10 times and select the best
learning rate based on the model accuracy on the
development set. The search space for the learning
rate is (1e-5, 1e-3). For other datasets where the
development set is not distributed the same as the
test set (i.e. COGS and GeoQuery) or the develop-
ment set is not provided (i.e. SCAN), we sample a
held-out development set from its test set follow-
ing (Zheng and Lapata, 2022) for hyperparameter
selection. The best learning rate is selected from
values in {1e-4, 1e-5} based on the model accuracy
on the sampled development set.

Data augmentation. We maximally sample 21k,
100k, 30k and 10k unique meaning representations
for COGS, CFQ, GeoQuery and SCAN respec-
tively. For SCAN, we find that the size of possible
meaning representations is small (i.e. 9228 unique
meaning representations) and thus we sample all
possible unique meaning representations from our
PCFG.

B.3 Other details
We use Allennlp (Gardner et al., 2018) for our im-
plementation. Experiments are run on Nvidia A100
GPU cards (80GB). Table 11 shows the training
time cost.

C Detailed results

We report detailed experimental results in Table 16.
Both means and standard deviations are reported
over 5 runs for each model. As discussed in Section
3, we experiment with two ways to utilize synthe-
sized data: concatenating them with the original
train set and pretrain the model on them first and

S → answer ( Var )
Var → City
Var → Place
Var → State
City → CityNonterm
City → CityTerm
CityNonterm → city ( City )
CityNonterm → loc_2 ( State )
CityTerm → city ( all )
CityTerm → capital ( all )

Table 13: Part of our FunQL grammar.

then finetune on the original train set. We report
numbers for both settings, with Concat refers to
concatenation and Pretrain refers to pretraining the
model first and then fine-tuning it.

D Grammar details

We use PCFG provided in Kim and Linzen (2020)
for COGS and hand-written grammars for CFQ,
GeoQuery and SCAN. In this section, we mainly
introduce details of our used grammar for these
three hand-written grammars.

D.1 Grammar design
GeoQuery The meaning represnetation of Geo-
Query is based on FunQL. Following the defina-
tions of FunQL 4, we can easily write a context-free
grammar for it. We adopted the FunQL grammar
used in (Guo et al., 2020) and extends it with some
rules to fit our dataset. A selection of our context-
free grammar rules are shown in Table 13.

SCAN SCAN is a synthetic dataset generated
by Lake and Baroni (2018). They generate the
dataset by generating commands (i.e. input sen-
tences) first and then translating commands into ac-
tion sequences (i.e. meaning representations) with

4https://www.cs.utexas.edu/~ml/wasp/
geo-funql.html
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S → Command
Command → Walk_command
Walk_command → Walk_actions
Walk_actions → LWalk
LWalk → Turn_left Walk
Turn_left → i_turn_left
Walk → i_walk

Table 14: Part of our SCAN grammar.

S → Prefix Main
Main → lb Conjuncts rb
Conjuncts → Conjuncts . Conjunct
Conjuncts → Conjunct
Conjunct → Unary_relation
Unary_relation → ( Var a Film_unary_arg )
Film_unary_arg → film.film
Var → M0

Table 15: Part of our SPARQL grammar.

a translation function. Instead, we write a context-
free grammar for meaning representations. A selec-
tion of our context-free grammar rules are shown
in Table 14.

CFQ CFQ is a synthetic dataset generated by
Keysers et al. (2020). They generate the natural
language sentences and corresponding intermediate
logical forms first, and then apply multiple rules
to obtain the SPARQL meaning representations.
Designing a context-free grammar for SPARQL is
hard because it contains variables and each relation
only accepts specific typed variables as arguments.
For example, the object of film.writer.film relation
should be a film. In our grammar, we consider all
variable strings are produced by the nonterminal
Var and we do post-process to filter out samples
that do not follow type constraints described above.
A selection of our context-free grammar rules are
shown in Table 15.

In our experiments, we find this setting still gen-
erates most noisy meaning representations due to
redundant conjuncts (e.g. SELECT DISTINCT ?x0
WHERE { ( FILTER ( ?x0 != M0 ) ) . ( M5 (
film.editor.film ) ( ?x1 ) ) }). A better solution
might be to construct the PCFG based on the graph
structure.

D.2 Parameter estimation

To estimate parameters of a grammar on a dataset
based on maximum likelihood estimation, we first
parse meaning representations in the dataset with
our grammar rules described above. We implement

this with NLTK package5. We binarize our gram-
mar rules to adopt parsing methods in NLTK.

Ambiguous trees For CFQ, all meaning repre-
sentations can be parsed into unambiguous trees.
For GeoQuery and SCAN, parsing results in am-
biguous trees for some cases. For a meaning repre-
sentation with N ambiguous parse trees, we simply
use a count 1/N as the count for rules in each tree
to estimate their parameters.

E Additional experiments

E.1 Perplexity curve
We plot the perplexity curve of different models
on test set for each task in Figure 7. For CFQ
and CFQ, the perplexity at the beginning is already
very small. This is because on these two datasets
we pretrain the model on synthesized data first,
since direct concatenating the synthesized data only
hurts the performance. We can observe that for
COGS, GeoQuery and SCAN, the perplexity of
Ptest always achieves the lowest perplexity and
Puniform gives lower perplexity than Ptrain. On
CFQ, all three augmentation distributions achieves
lower perplexity than baseline T5 and performs on
par. This pattern holds during the entire training
process, which serves as further evidence for the
discussion in Section 5.

E.2 Breakdown performance improvements
We also conduct a more detailed analysis to investi-
gate how the performances evolve as more complex
structures get observed. Specifically, we address
the PP and CP recursion generalization types on
COGS and GeoQuery template split. For COGS,
we incrementally augment the train set with more
complex data (i.e. deeper recursions) in increments
of 100 instances per depth. For GeoQuery, we
manually select four local structures population_1
stateid, len river, capital cityid, intersection river
that pose challenges for the baseline parser’s pre-
dictions yet are present in the Ptest set. We incre-
mentally introduce each pattern into the train set.
As shown in Figure 8, as more complex MR struc-
tures being observed by the model, its performance
gets better improved.

5https://www.nltk.org/
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COGS
Model Obj to Subj PP CP recursion PP recursion Overall

T5 88.2± 3.6 32.3± 3.7 24.1± 6.4 91.0± 0.5

Concat
+Ptrain 89.4± 2.3 43.5± 8.7 51.2± 7.5 92.9± 0.9
+Ptest 94.6± 0.1 95.7± 2.8 96.7± 5.0 99.3± 0.4
+Puniform 94.8± 0.0 50.7± 2.4 87.7± 1.0 95.9± 0.1

Pretrain
+Ptrain 85.8± 6.5 41.3± 11.3 51.6± 5.8 92.8± 0.6
+Ptest 94.8± 0.0 43.1± 5.7 85.0± 4.0 99.2± 0.2
+Puniform 94.6± 0.1 94.8± 0.2 92.7± 4.9 95.6± 0.5

CFQ
Model MCD1 MCD2 MCD3 Average

T5 89.8± 0.8 74.7± 1.8 74.0± 0.9 79.4± 2.4

Concat
+Ptrain 49.5± 1.9 47.1± 1.3 51.2± 2.9 49.2± 1.0
+Ptest 39.0± 1.3 44.7± 2.3 42.3± 0.7 42.0± 0.9
+Puniform 57.5± 4.1 59.4± 2.4 55.2± 3.3 57.4± 1.8

Pretrain
+Ptrain 89.9± 1.2 77.9± 2.9 75.8± 1.0 81.2± 2.1
+Ptest 90.4± 0.7 79.1± 1.7 75.5± 2.7 81.7± 3.6
+Puniform 91.2± 1.1 78.8± 1.7 74.3± 1.7 81.4± 1.1

GeoQuery
Model Template Length

T5 73.9± 2.6 46.1± 1.5

Concat
+Ptrain 39.0± 0.9 20.7± 0.6
+Ptest 52.3± 1.3 35.6± 1.7
+Puniform 22.4± 1.7 5.1± 0.3

Pretrain
+Ptrain 74.1± 1.6 56.1± 2.1
+Ptest 80.1± 1.7 60.4± 2.4
+Puniform 79.3± 1.3 60.1± 0.6

SCAN
Model Turnleft Length

T5 73.9± 2.6 4.4± 0.9

Concat
+Ptrain 92.9± 14.4 8.1± 1.3
+Ptest 92.9± 14.4 60.5± 2.5
+Puniform 92.9± 14.4 60.5± 2.5

Pretrain
+Ptrain 75.5± 5.4 15.5± 1.5
+Ptest 75.5± 5.4 15.9± 1.3
+Puniform 75.5± 5.4 15.9± 1.3

Table 16: Detailed results in our experiments.
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Figure 7: Perplexity of models with different augmentation strategies on test set. The x-axis refers to training steps.
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Figure 8: Performance curve with regard to train sets
with incrementally added structures.
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