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Abstract
Ensuring the privacy of Large Language Mod-
els (LLMs) is becoming increasingly important.
The most widely adopted technique to accom-
plish this is DP-SGD, which trains a model to
guarantee Differential Privacy (DP). However,
DP-SGD overestimates an adversary’s capabil-
ities in having white box access to the model
and, as a result, causes longer training times
and larger memory usage than SGD. On the
other hand, commercial LLM deployments are
predominantly cloud-based; hence, adversarial
access to LLMs is black-box. Motivated by
these observations, we present Private Mixing
of Ensemble Distributions (PMixED): a private
prediction protocol for next-token prediction
that utilizes the inherent stochasticity of next-
token sampling and a public model to achieve
Differential Privacy. We formalize this by intro-
ducing RD-mollifers which project each of the
model’s output distribution from an ensemble
of fine-tuned LLMs onto a set around a public
LLM’s output distribution, then average the pro-
jected distributions and sample from it. Unlike
DP-SGD which needs to consider the model
architecture during training, PMixED is model
agnostic, which makes PMixED a very appeal-
ing solution for current deployments. Our re-
sults show that PMixED achieves a stronger
privacy guarantee than sample-level privacy
and outperforms DP-SGD for privacy ϵ = 8
on large-scale datasets. Thus, PMixED offers
a practical alternative to DP training methods
for achieving strong generative utility without
compromising privacy.

1 Introduction

Large language models (LLMs) are being deployed
to improve societal productivity, from troubleshoot-
ing complex systems to autocompletion tools and
interactive chatbots. Their commercial success is
largely attributed to their ability to generate human-
like text. However, when given query access to an
LLM, it has been shown that LLMs are susceptible
to training data extraction attacks (Carlini et al.,

2021) due to memorization of training samples
(Carlini et al., 2019). These security vulnerabilities
have recently catalyzed government intervention,
most notably the EU’s AI Act (EU, 2024) and the
US executive order on Safe, Secure, and Trustwor-
thy AI (US, 2023). Thus, it is becoming a require-
ment that entities deploying LLMs must do so in a
privacy-preserving way.

The gold standard for achieving strong privacy
is Differential Privacy (DP), a mathematical frame-
work that reduces how much an LLM memorizes
individual data samples (Dwork, 2006). The most
widely known technique injects strategic noise
into the training algorithm, called DP-SGD (Abadi
et al., 2016). It has recently been shown that ap-
plying DP-SGD during fine-tuning on pre-trained
LLMs provides acceptable results (Li et al., 2021;
Yu et al., 2021). Unfortunately, scaling these results
to larger datasets and models becomes challenging
since (1) The magnitude of the noise added by DP-
SGD scales with the total number of parameters of
the model, i.e.,

√
d (Kamath, 2020), in the worst

case; and (2) ML accelerated hardware is designed
to exploit batch operations but is underutilized by
DP-SGD since it requires per-sample gradient cal-
culations, which cause large runtime and memory
consumption (Yousefpour et al., 2021).

A key observation that motivates this work is that
many commercial deployments of LLMs are only
accessible via an API, e.g. Chat-GPT. Hence, an
adversary has only black-box access to the model,
yet DP-SGD assumes the adversary has white-box
access to the model since it applies differential pri-
vacy to the model parameters. Such a pessimistic
assumption on adversarial capabilities can lead to
overestimating the privacy loss bounds (Nasr et al.,
2021). We believe that improving the privacy of
LLMs under the black box assumption is the key
to enabling wider adoption of privacy-preserving
LLMs. However, prior work has demonstrated that
private prediction algorithms generally perform
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Figure 1: A brief overview of PMixED, which can be broken down into two phases. In Phase-I, the private dataset D
is partitioned into N pairwise disjoint subsets D1, ..., DN , each of which Di is fine-tuned with a pre-trained LLM
to produce pi. Afterward, PMixED performs private predictions in Phase-II which can be further broken down into
two steps. In Step 1, which we call mixing, a query xt from a user is received at time 1 ≤ t ≤ T . First, PMixED
subsamples a subset of the ensemble, then generates the output distribution of each selected model pi(xt) and the
output distribution of a public model p0(xt). Each pi(xt) is projected along a Renyi Divergence ball centered at the
output distribution p0(xt) with radius βα to produce pi(xt), which is a mixture of private pi(xt) and public p0(xt)
information. In Step 2, all projected distributions are averaged into p(xt) then sampled yt ∼ p(xt).

worse than private training algorithms (van der
Maaten and Hannun, 2020).

To address the aforementioned limitations, we
propose PMixED, depicted in Figure 1. Rather
than providing DP during training, PMixED instead
provides DP for a private corpus during inference
by utilizing two crucial features: (1) Randomness
comes for free when predicting the next-token by
sampling from the output probability distribution
of a language model; (2) We can bound the privacy
leakage of a prediction using a public model1 to
mix the predictions of privacy-sensitive LLMs. We
formalize these two observations by introducing
(α, β)-RD Mollifiers which generalize ϵ-Mollifers
introduced in Husain et al. (2020) and could be of
interest independent of this work.

PMixED can be broken down into two phases:
training and private prediction. During Phase-
I: training, PMixED follows the sample-and-
aggregate paradigm (Nissim et al., 2007) by parti-
tioning a private corpus into N pairwise disjoint
subsets, then fine-tuning a pre-trained LLM on each
subset to produce an ensemble. Using an ensem-
ble is crucial for guaranteeing privacy, but also
has been shown to boost perplexity (Jozefowicz
et al., 2016). During Phase-II: private prediction,
PMixED selects a subset of the ensemble using

1While it is assumed that a public LLM does not compro-
mise the privacy of a private corpus, in practice, such models
can inadvertently leak information. This assumption is im-
plicitly relied upon in works that employ differentially private
fine-tuning of public models.

Poisson subsampling. Each selected model pro-
duces its output probability distribution, then fol-
lows the RD-mollification process by projecting its
output distribution onto a Renyi Divergence ball
centered at a public model’s output distribution.
Lastly, PMixED averages these optimal projections
and then samples from it.

Because PMixED does not employ differentially
private training algorithms, it does not incur sub-
stantial training overhead like DP-SGD. Further-
more, we reduce computational and storage costs
by employing parameter-efficient fine-tuning meth-
ods. In summary, our key contributions are the fol-
lowing: (1) We introduce and formalize (α, β)-RD
Mollifiers, a generalization of ϵ-Mollifers, to avoid
additive DP noise. (2) We propose a private pre-
diction protocol utilizing RD Mollifiers and prove
that it satisfies the DP prediction definition with
group-level privacy. (3) We experimentally demon-
strate that PMixED outperforms DP-SGD on two
large-scale datasets. (4) We open-source our soft-
ware implementation of PMixED to further spark
research in this area2.

2 Related Works

Most of the previous differential privacy work in
LLMs has focused on private training. McMahan
et al. (2017) first explored private training of lan-
guage models using a small recurrent neural net-
work to achieve user-level differential privacy in the

2https://github.com/james-flemings/pmixed
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federated learning setting. Recent breakthroughs in
differentially private LLMs involve self-supervised
pre-training on public data, followed by privately
fine-tuning on a private corpus (Li et al., 2021; Yu
et al., 2021).

An orthogonal approach, but conceptually simi-
lar to ours, is PATE (Papernot et al., 2016, 2018).
PATE also uses an ensemble of models trained on
pairwise disjoint subsets of a private dataset to gen-
erate DP labels. However, PATE and PMixED
rely on substantially different private aggregation
schemes. PATE uses the Gaussian/Laplacian mech-
anism to perturb its output vote count histogram
while our method utilizes the inherent stochastic na-
ture of sampling from a probability distribution and
a public model in LLMs. Furthermore, PATE does
not satisfy the DP prediction definition (Dwork and
Feldman, 2018) since its data-dependent privacy
accounting causes its privacy loss to be a function
of the private data. Hence, testing that the data-
dependent loss does not exceed the privacy budget
will leak additional privacy (Redberg et al., 2023).

There is a much smaller body of work that has
focused on private prediction for generative lan-
guage models, mainly due to prior work empirically
showing that private prediction methods perform
worse than private training (van der Maaten and
Hannun, 2020). Private prediction can be broadly
categorized into two methods: prediction sensitiv-
ity, which adds noise to the output distribution of an
LLM; and sample-and-aggregate, which involves
the same process as PATE for generating noisy la-
bels. For prediction sensitivity, Majmudar et al.
(2022) used the uniform distribution as their per-
turbation mechanism and showed that it satisfies
ϵ-DP. However, the privacy loss needs to be large,
ϵ ≈ 60, in order to be practical.

One work closely related to PMixED, which
motivated our work, also falls under the sample-
and-aggregate method as ours (Ginart et al., 2022).
However, their ensemble could exceed the privacy
budget before completing all T queries due to their
data-dependent privacy accounting. Hence, they
had to define a new privacy notion to account for
this. Our work does not have this limitation.

3 Preliminaries

3.1 Next-Token Prediction Task

Given some context vector xt = x1, x2, ..., xt,
which is a string of tokens from some vocabulary V ,
i.e. xi ∈ V for all i = 1, ..., t, the task is to predict

the next token xt+1 using a generative language
model p. More precisely, the output of a language
model p for a given context xt is a likelihood func-
tion of all possible tokens p(xt+1 = w|xt), and
choosing the next token involves sampling from
this probability mass function to obtain a token
x̂t+1 ∼ p(xt+1|xt).

3.2 Differential Privacy
If a machine learning model has memorized any
sensitive information that is contained in its train-
ing data, then it can potentially reveal this informa-
tion during prediction. Differential Privacy (DP) is
a mathematical framework that gives privacy guar-
antees for this type of privacy leakage by reducing
the effect any individual has on a model.
Definition 3.1 (Approximate DP (Dwork et al.,
2014)). More formally, let ϵ > 0, δ ∈ [0, 1]. A
randomized algorithm A : D → R satisfies (ϵ, δ)-
DP if for any pair of adjacent datasets D,D

′ ∈ D
and any set of subset of outputs S ⊆ R it holds
that:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D
′
) ∈ S] + δ.

The privacy parameters ϵ, δ can be interpreted
as follows: ϵ upper bounds the privacy loss, and
δ is the probability that this guarantee does not
hold. One subtle, but crucial, technicality is that
adjacency can be achieved at any granularity. E.g.,
D′ adds or removes k entries from D, which is
known as the "add\remove" scheme, or D and D′

differ by k entries where 0 < k ≤ n, which is
known as the replacement scheme. Technically,
both schemes are equivalent but for this work, we
focus on the "add\remove" scheme.

Renyi DP (RDP), another notion of DP, contains
composition properties that are easier to work with
than (ϵ, δ)-DP (Mironov, 2017). To define RDP,
we first define Renyi Divergence.
Definition 3.2 (Renyi Divergence (Mironov,
2017)). For two probability distributions P and
Q defined over R, the Renyi divergence of order
α > 1 is

Dα(P ||Q) =
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
, (1)

and D↔
α (P ||Q) = max{Dα(P ||Q), Dα(Q||P )}.

Definition 3.3 ((α, ϵ)-RDP(Mironov, 2017)). A
randomized algorithm A : D → R is (α, ϵ)-RDP
if for any adjacent datasets D,D

′ ∈ D it holds that

Dα(A(D)||A(D
′
)) ≤ ϵ. (2)
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RDP possesses useful properties which we will
make use of in our privacy analysis and discuss in
Appendix C.

3.3 Private Training vs. Private Prediction
We say that A is a private training algorithm if it
produces weights that are differentially private with
respect to a private corpus D. For DP-SGD, A(D)
returns the per-sample gradients of the parameters
perturbed with Gaussian noise for each iteration of
training. Private training algorithms provide strong
privacy since they limit privacy leakage even when
an adversary has complete, white-box access to the
model parameters.

We observe that commercial deployments of
LLMs are typically cloud-based and the model is
only accessible through API, so an adversary does
not have access to model parameters. In this black
box setting an alternative approach, called private
prediction (Dwork and Feldman, 2018), provides
DP at prediction, which exploits this important re-
laxation. We formalize this below:

Definition 3.4 (Privacy-Preserving Prediction). Let
A be a non-private training algorithm such that
p = A(D), Q be an interactive query generating
algorithm that generates queries xt, and P be a
protocol that responds with yt ∈ V . Define the out-
put (Q ⇀↽T P(θ)) = {(xt, yt)}Tt=1 as a sequence
query-response pairs where T > 0 is some positive
integer. Then P is a private prediction protocol
if (Q ⇀↽T P(θ)) is (α, ϵ)-RDP, i.e., for adjacent
datasets D,D

′
with p = A(D) and p′ = A(D

′
):

Dα((Q ⇀↽T P(p)||(Q ⇀↽T P(p′))) ≤ ϵ.

Note that due to the Post-Processing Theorem
C.1, any predictions made by a privately-trained
model are differentially private. Alternatively, the
goal of our work, given a private budget ϵG, is to
develop a protocol P that uses a non-private model
p to make (α, ϵG)-RDP predictions on a sequence
of queries {xt}Tt=1.

4 PMixED: A Protocol For Private Next
Token Prediction

We now introduce and describe PMixED, a private
prediction protocol for next token prediction. First,
we will introduce a concept called Renyi Diver-
gence (RD) Mollifiers, which formalize the projec-
tion of a private distribution onto a set around a
public distribution, and help us prove the privacy
guarantees of PMixED. Next, we will discuss the

Figure 2: Left: Projecting a distribution P (blue curve)
onto an (α, β)-RD mollifier (black curve). The dotted
line represents the maximum divergence βα of the mol-
lifier. Note how the projected distribution maintains the
same modes as P . Right: Q′ is the maximized projec-
tion of Q onto a relative RD-mollifier around Q0, which
diverges by at most βα from Q0.

fine-tuning process of the ensemble, which follows
the sample-and-aggregate paradigm. Lastly, we
will describe the prediction protocol and show its
privacy guarantees.

4.1 Renyi Divergence Mollifiers

Results from Ginart et al. (2022); Majmudar et al.
(2022) showed that perturbing the output probabil-
ity distribution of an LLM with noise significantly
degrades the performance. We take a different ap-
proach by leveraging the inherent probabilistic na-
ture of next-token prediction, which involves sam-
pling the output distribution of an LLM. Hence,
the output distribution of each fine-tuned LLM is
mixed with the output distribution of a public LLM,
thereby reducing the memorization obtained by
fine-tuning. More formally, a privacy-sensitive dis-
tribution P is projected onto a given RD mollifier,
which is a set of distributions such that the Renyi
Divergence of any pair of distributions in this molli-
fier does not diverge by too much while preserving
the modes of P . This is pictorially shown in figure
2, and we formally define this below:

Definition 4.1 ((α, β)-RD Mollifier). Let M ⊂
D(X ) be a set of distributions and α > 1, β >
0. Then M is an (α, β)-RD mollifier iff for all
Q,Q

′ ∈M, x ∈ X

Dα(Q(x)||Q′
(x)) ≤ βα. (3)

For example, the singleton M = {Q} is an
(α, 0)-RD mollifier. Note that an ϵ-Mollifier from
(Husain et al., 2020) is also an (α, 12ϵ

2)-RD mol-
lifer for all α by the conversion from pure to zero
concentrated DP (Bun and Steinke, 2016). RD-
mollifiers consist of distributions that are close to
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each other with respect to the Renyi Divergence.
Husain et al. (2020) states that deriving mollifiers
is not always clear, but one way is to start from a
reference distribution Q0 and consider the set of all
distributions that are close to Q0, which we define
below:

Definition 4.2 ((α, β)-RD Mollifier relative to Q0).
LetM(α,β),Q0

⊂ D(X ) be a set of distributions.
Then for all Q ∈M(α,β),Q0

D↔
α (Q(x)||Q0(x)) ≤ βα.

Lemma 4.1. IfM(α,β),Q0
is an (α, β)-RD Molli-

fier relative to Q0, then M(α,β),Q0
is an (α, 4β)-

RD Mollifer.

Proof. A straightforward application of the
Triangle-like inequality property of Renyi Diver-
gence, Theorem C.5.

The goal then becomes taking a distribution P
and finding a distribution P̂ inside a given mollifier
M that minimizes the RD divergence:

P̂ ∈ argmin
Q∈M

Dα(P ||Q). (4)

This process is called RD-mollification. In the
following subsection, we will describe a mollifi-
cation mechanism that takes a privacy-sensitive
distribution P as input and outputs a mollified dis-
tribution P̂ that maximizes utility by finding the
closest distribution to P in a given mollifier.

4.2 Fine-tuning a Pre-trained Model

Suppose we have access to a non-private train-
ing procedure A, which takes as input a private
dataset D and a set of pre-trained weights p0. Then
A(D, p0) returns a set of weights that have been
fine-tuned on p0 using D. Our instantiation of the
fine-tuning process utilizes LoRA for parameter ef-
ficiency (Hu et al., 2021), however, any fine-tuning
method can be used. First we partition a private
dataset D into N subsets D1, D2, ...DN such that
they are pairwise disjoint, i.e., Di ∩ Dj = ∅ for
i ̸= j, and |Di|= |D|/N . Then for each subset Di,
we fine-tune p0 using our training procedure A to
produce pi = A(Di, p0).

We want to highlight why LoRA is the natu-
ral parameter-efficient fine-tuning method to apply
in this setting, and how it makes an ensemble of
LLMs practical. Although PMixED conceptually
produces N models by the end of the fine-tuning
process, using LoRA in our implementation only

Algorithm 1 PMixED: A protocol for Private Next
Token Prediction
Input. Number of LLMs N , Fine-Tuned LLM’s
{pi}Ni=1, public model p0, total number of queries
T , privacy budget ϵG > 0, Renyi Divergence or-
der α > 1, subsample probability 0 < q ≤ 1, a
series of queries {xt}Tt=1, Subsampled privacy loss
function ϵ′q(α)

1: for t = 1, ..., T do
2: Select a subset St ⊆ [N ] by choosing each

model with probability q.
3: β ← argmaxβ′

{
ϵ′q(α) ≤ ϵG/T

}

4: for i ∈ St do
5: λi ← using eq. 5
6: pi(xt) = λipi(xt) + (1− λi)p0(xt)
7: end for
8: p(xt) = p0(xt)
9: if St ̸= ∅ then

10: p(xt) =
1

|St|
∑
i∈St

pi(xt)

11: end if
12: yt ∼ p(xt)
13: end for
14: return {y1, ..., yT }

needs one model for inference, which is the pre-
trained model p0 combined with a set of LoRA
adapter weights pi. So when the i-th model per-
forms inference, we just replace the LoRA weights
with pi while still using the pre-trained model p0.

4.3 Differentially Private Prediction Protocol

Given a sequence of queries {xt}Tt=1, PMixED re-
sponds to each query xt in a differentially private
manner. This is succinctly summarized in Algo-
rithm 1 and is broken down into three steps:

Poisson Subsampling of Ensemble. We per-
form Poisson subsampling on the entire ensem-
ble {pi}Ni=1 to obtain a subset of the ensemble
St ⊆ [N ] such that each model pi is selected with
probability q. The benefit of subsampling a subset
of the ensemble is that it can further amplify the
privacy of our protocol, since running on some ran-
dom subset of the ensemble introduces additional
uncertainty. In particular, if a protocol is (ϵ, δ)-DP
then with subsampling probability q it is roughly
(O(qϵ), qδ)-DP (Steinke, 2022). In the case that no
models are sampled, PMixED resorts to the public
model p0 for prediction entirely.

Inference and RD-Mollification. Each sampled
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model i ∈ St performs inference to produce an
output distribution pi(xt). Then we RD-mollify
each distribution pi(xt) by mixing it with the pub-
lic distribution p0(xt) using a mixing parameter λi

to produce pi(xt) = λipi(xt)+(1−λi)p0(xt). λi

is automatically chosen by solving the following
optimization scheme:

λi ← argmax
λ∈[0,1]

{D↔
α (pi(xt)||p0(xt)) ≤ βα}. (5)

The value of β will be specified once we state
the privacy guarantees of our protocol. We
opt to numerically solve Equation 5 by us-
ing the bisection method from the SciPy li-
brary. Note that as we increase λi, the function
D↔

α (pi(xt)||p0(xt)) will increase because pi(xt)
diverges more from p0(xt) and approaches pi(xt).
Hence D↔

α (pi(xt)||p0(xt)) is monotonically in-
creasing with respect to λi, which allows us to
use bisection for this function. Moreover, each
of the projected distributions is an element in
the RD-Mollifer relative to p0(xt), i.e., pi(xt) ∈
M(α,β),p0(xt) for all i ∈ [N ], which satisfies Equa-
tion 4, giving us the optimal projection.

Aggregation and Sampling. The last step is to
average the projected distributions, then sample
from this averaged distribution:
yt ∼ 1

|St|
∑
i∈St

λipi(xt) + (1− λi)p0(xt).

5 Privacy Analysis

We begin our privacy analysis of PMixED by first
considering the case of no Poisson subsampling.
Then we invoke the privacy amplification theorem
C.4 to derive our final privacy guarantees. Lastly,
we will discuss the implications of our privacy guar-
antees. Let P denote our private prediction proto-
col, PMixED. Note that D and D

′
are neighboring

datasets if D
′

adds or removes a subset Di from
D, which is equivalent to adding or removing the
model pi from the ensemble.

5.1 DP Guarantees for PMixED

At a high level, we will prove that P is (α, ϵG/T )-
RDP for query xt. Then, using the Composi-
tion Theorem C.2, we can say that P is (α, ϵG)-
RDP for query-responses {(xt, yt)}Tt=1, thus sat-
isfying the Private Prediction Definition 3.4. Ap-
pendix B analyzes the case when α = ∞, which
is pure DP. Essentially, Dα(p(xt)||p−i(xt)) gives
an upper bound while Dα(p−i(xt)||p(xt)) gives

a lower bound for β . Thus, it suffices to show
Dα(p(xt)||p−i(xt)) ≤ ϵG/T .

Theorem 5.1. Let

β ≤





log(Ne(α−1)ϵG/T+1−N)
4(α−1)α , if N > 1

ϵG
Tα otherwise

. (6)

Then the output of PMixED P on query xt is
(α, ϵG/T )-RDP with respect to D.

Proof. Let i ∈ [N ] and xt be a query. Define

p(xt) =
1

N

N∑

i=1

λipi(xt) + (1− λi)p0(xt),

p−i(xt) =
1

N − 1

∑

j ̸=i

λjpj(xt) + (1− λj)p0(xt)

where λi is selected from Equation 5. Now, ob-
serve that each λi is dependent only on Di, so
p−i(xt) does not contain Di. Using the fact
that D↔

α (pj(xt)||p0(xt)) ≤ βα for all j ∈ [N ],
then for any two neighboring ensembles {pi}Ni=1,
{pj}j ̸=i with N > 1

e(α−1)Dα(yt∼P({pi}Ni=1,xt)||yt∼P({pj}j ̸=i,xt))

= e(α−1)Dα(p(xt)||p−i(xt))

= E
p−i(xt)

[(
p(xt)

p−i(xt)

)α]

= E
p−i(xt)

[(
N−1
N p−i(xt) +

1
N pi(xt)

p−i(xt)

)α]

≤ E
p−i(xt)

[
N−1
N (p−i(xt))

α + 1
N (pi(xt))

α

(p−i(xt))α

]
(7)

= E
p−i(xt)

[
N − 1

N
+

1

N

(
pi(xt)

p−i(xt)

)α]

=
N − 1

N
+

1

N
E

p−i(xt)

[(
pi(xt)

p−i(xt)

)α]

=
N − 1

N
+

1

N
e(α−1)Dα(pi(xt)||p−i(xt))

≤ N − 1

N
+

1

N
e(α−1)4βα (8)

where Equation 7 uses Jensen’s inequality for the
convex function f(x) = xα since α ≥ 1 and x ≥
0 because we are dealing with probabilities, and
Equation 8 is due to Dα(pi(xt)||p0(xt)) ≤ βα and

Dα(p0(xt)||p−i(xt)) ≤ max
j ̸=i

Dα(p0(xt)||pj(xt))

≤ βα
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by the Quasi Convexity property of Renyi Diver-
gence C.6. Then using the Triangle-like Inquality
C.5 gives us Dα(pi(xt)||p−i(xt)) ≤ 4βα. Hence
plugging in Equation 6 for β into Equation 8 im-
plies Dα(p(xt)||p−i(xt)) ≤ ϵG/T . When N = 1,
then p−i(xt) = p0(xt) since our protocol will re-
sort to using p0. Hence Dα(p(xt)||p−i(xt)) ≤
βα ≤ ϵG/T . Thus proves the claim that the output
of P on query xt is (α, ϵG/T )-RDP.

Theorem 5.2. PMixED P is an (α, ϵG)-RDP pre-
diction protocol with respect to D.

Proof. Let Q be an interactive query generating
algorithm that generates queries xt. We first ob-
tain fine-tuned weights using our training algo-
rithm pi = A(p0, Di). Then P uses xt as input
and returns a response, which is a sample yt ∼
P({pi}Ni=1,xt). By Theorem 5.1, yt is (α, ϵG/T )-
RDP. Then after T queries and responses, the se-
quence {(xt, yt)}Tt=1 is (α, ϵG)-RDP by the Com-
position Theorem C.1. Therefore P is an (α, ϵG)-
RDP prediction protocol.

A few observations to highlight: (1) β depends
on the number of models in the ensemble N . As N
increases, then β also becomes larger. Intuitively,
each model has less effect on the overall output,
which allows them to diverge more from the public
model. Also note that the choice of N is fixed by
the analyst, independent of the dataset. Hence β
does not leak information about the dataset.

(2) Our analysis also relies on the fact that
PMixED employs ancestral sampling as its decod-
ing strategy, which samples directly from the en-
semble’s per query distribution, p(xt). Truncated
decoding such as top-k (Fan et al., 2018) or top-p
(Holtzman et al., 2019) sampling which samples
only plausible tokens in the distribution, and greedy
decoding which only samples the most likely next
token, could be employed to improve the text gener-
ation quality. However, additional privacy leakage
can occur, so we leave it as a future work to extend
PMixED to these decoding strategies.

5.2 DP Guarantees for Subsampled PMixED

Now that we have shown that P is an (α, ϵG)-RDP
prediction protocol with the "add\remove" scheme,
PMixED is compatible with the Privacy Amplifi-
cation by Poisson Subsampling Theorem C.4. Let
St be the subsampled set at time t where pSt is
(pSt)i = pi if i ∈ St and (pSt)i = ⊥ if i /∈ St. Let
PSt be the subsampled PMixED protocol where
PSt(p,xt) = P(pSt ,xt). Then by Theorem C.4,

the output of PSt on query xt is (α, ϵ′q(α))-RDP
where ϵ′q(α) is defined in Equation 12.

Since ϵ
′
q(α)≪ ϵG/T , we can increase ϵ

′
q(α) to

be as close to ϵG/T as possible by increasing ϵ(α),
the privacy loss of P , using β. In other words, the
privacy loss of PMixED is

ϵ(α) ≤





log
( |St|−1+exp((α−1)4βα)

|St|

)

α−1 if |St|> 1

βα otherwise
.

Hence, PMixED uses ϵ(α) to solve the follow-
ing equation: β∗ = argmaxβ

{
ϵ′q(α) ≤ ϵG/T

}
,

which selects the optimal RD radius β∗.

5.3 Privacy Level Granularity
Seemingly, PMixED is stronger than sample
level privacy since D↔

α (P(D)||P(D \ {d})) ≤
D↔

α (P(D)||P(D \Di)) for some sample d ∈ Di

and i ∈ [N ], due to the group privacy property
(Mironov, 2017). In actuality, our method is closely
related to group-level privacy (Ponomareva et al.,
2023), where each subset Di defines a group of
samples, and each sample is contained in exactly
one group. This flexibility allows PMixED to of-
fer different granularities of privacy, depending on
the partitioning of the private corpus. For exam-
ple, PMixED is compatible with virtual client-level
privacy (Xu et al., 2023), a stronger version of user-
level privacy, where a subset Di is considered a
virtual client comprised of groups of user data, and
each user’s data is stored in at most one subset.
For practical language modeling datasets where
users can contain multiple data samples, guaran-
teeing sample-level privacy is insufficient to en-
sure the privacy of an individual user (McMahan
et al., 2017). Hence, for these types of datasets,
PMixED can provide a strong enough privacy guar-
antee for users. We delegate dataset partitioning,
consequently determining the privacy level, to the
practitioner.

6 Experiments

6.1 Experimental Setup
We experimentally evaluated the privacy-utility
tradeoff of PMixED by using LoRA (Hu et al.,
2021) to fine-tune pre-trained GPT-2 models (Rad-
ford et al., 2019) from HuggingFace (Wolf et al.,
2019) on the WikiText-103 (Merity et al., 2016)
and One Billion Word (Chelba et al., 2013) datasets.
We view these two large word-level English lan-
guage modeling benchmarks as complementary to
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Parameter Value

Privacy Budget: ϵG 8
Runs: 32

Probability of Failure: δ 1e-5
Renyi Divergence Order: α 3

Inference Budget: T 1024
Number of Ensembles: N 80
Subsample Probability: p 0.03

Table 1: Privacy Hyperparameters for PMixED and DP-
SGD.

each other, in that they give a good comprehensive
evaluation of differentially private next token pre-
diction. WikiText-103 tests the ability of long-term
dependency modeling, while One Billion Word
mainly tests the ability to model only short-term
dependency (Dai et al., 2019).

The public model in our experiments is a pre-
trained GPT-2 small model. We compare PMixED
to three baselines: the public model, a non-private
fine-tuned model, and a private fine-tuned model
produced by DP-SGD. Although DP-SGD has a
weaker privacy level, we compared PMixED to
per-sample DP-SGD as our baseline because it il-
lustrates how well PMixED performs against the
most widely-used DP solution. The non-private
and private fine-tuned baselines also used LoRA.
LoRA based fine-tuning can outperform full pri-
vate fine-tuning since the LoRA updates a much
smaller set of parameters during fine-tuning(Yu
et al., 2021). The LoRA parameters used for each
model pi contain 0.11% of the total number of pa-
rameters of the pre-trained model, allowing us to
fit the entire ensemble into one GPU during pre-
diction. Appendix A contains more details about
fine-tuning.

For private prediction, unless stated otherwise,
the parameters used are set to the default values
shown in Table 1. The privacy hyperparameters
are reported in terms of (ϵG, δ)-DP, however we
perform our privacy loss calculations in terms of
RDP, then convert back using Theorem C.3. To
measure the utility, we use test-set perplexity with
a sequence length of 512. In total, T predictions
are made for each run, and a total of 32 runs are
performed and averaged for each baseline.

WikiText-103 One Billion Word
0
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PP
L 38.63

67.93

25.11

40.93

32.96

53.95

31.95
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Fine-Tuned
Sample-Level
DP-SGD
PMixED

Figure 3: Comparison of PMixED against 3 baselines
on WikiText-103 and One Billion Word using GPT-2.

6.2 Comparison Over Baselines
The pre-trained and fine-tuned models represent
two extremes in the privacy-utility spectrum: the
pre-trained model is perfectly private but has no
utility gain, while the fine-tuned model has the best
utility but guarantees no privacy. Since PMixED
is a mixture of both, its utility and privacy guar-
antees should be between both. Figure 3, which
contains results of each baseline and PMixED on
the test-set perplexity, shows that this is indeed
the case. For the WikiText-103 dataset, the pre-
trained model achieved a perplexity score of 38.63,
and the fine-tuned model achieved 25.11. PMixED
scored 31.95 which is a 7 point perplexity improve-
ment over the pre-trained model, while guarantee-
ing (ϵG, δ)-DP as opposed to the completely non-
private fine-tuned model ϵG = ∞. Furthermore,
PMixED gains a 17 point perplexity improvement
over the pre-trained model for the One Billion
Word dataset.

PMixED was also able to improve the perplex-
ity score over DP-SGD by 1 and 3 points on the
WikiText-103 and One Billion Word datasets, re-
spectively. This result validates that private predic-
tion methods can outperform private training for
large query budgets (van der Maaten and Hannun,
2020). Moreover, the results of PMixED demon-
strate that we can obtain the stronger group-level
privacy without compromising utility.

6.3 Ablation Study
We explore the privacy hyperparameters used by
PMixED for prediction on WikiText-103. 8 runs
are performed and averaged for each hyperparame-
ter value, shown in Figure 4.

Figure 4a shows that for small privacy budgets
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Figure 4: Ablation study on DP hyperparameters using
WikiText-103. The x-axis is the hyperparameter space,
and the y-axis is the perplexity score.

ϵG ∈ [2, 4], the utility of PMixED approaches the
pre-trained model. This is due to the RD mollifica-
tion producing projected distributions close to the
public model because ϵG is too small, so α must be
large causing Dα to decrease monotonically. For
moderately sized privacy budgets ϵG ∈ [4, 8], we
see a sharp improvement in perplexity since α is
smaller. Appendix D shows the relationship be-
tween α and perplexity. Figure 4b shows that even
if the inference budget T is as large as T = 8192,
we observe only marginal performance degradation
of PMixED, losing only 1.6 PPL from T = 1024.
Thus PMixED is capable of handling large amounts
of inference while still being performant.

For the results in Figure 4c, ensemble sizes
N = 16, 32, 64 were trained with E = 10 epochs,
while N = 80 was trained with E = 15 and
N = 100 with E = 20. The trend seems to be that
larger ensembles with increased training epochs
lead to better performance. We surmise that larger
ensembles increase the expected number of sub-
sampled models. And more explicit memorization
occurs with increasing epochs, which when mixed
with the public model allows for better generaliza-
tion, similar to (Khandelwal et al., 2019). Even-
tually, too many models can lead to little training
data to learn from, which we leave as future work
to explore.

We conclude by remarking that in comparison
to DP-SGD, the additional hyperparameters intro-
duced by PMixED are the query budget T , the

ensemble size N , and the subsample probability q.
However, DP-SGD contains the clipping threshold
and the expected subsample batch size as hyper-
parameters that PMixED does not need to work
with. Therefore, since T is determined based on
the problem setup, PMixED does not add more hy-
perparameters than DP-SGD. Moreover, tuning the
hyperparameters of PMixED is considerably faster
compared to DP-SGD because N and q are tuned
during prediction, as opposed to retraining an LLM
for the tuning process of DP-SGD.

7 Conclusion and Future Directions

PMixED is inspired by the observation that most
LLM deployments are cloud-based where an adver-
sary only has black-box access to the model, rather
than access to the entire model parameters. Under
this setting, PMixED presents a novel private pre-
diction protocol that provides DP during prediction,
rather than during training. Thus PMixED is model
agnostic, which has significant practical implica-
tions since it avoids the complexity of privately
training models with millions or even billions of
parameters. Our approach relies on an ensemble
of fine-tuned LLMs and the novel idea of (α, β)-
RD Mollifiers, which generalizes ϵ-Mollifers, to
project each of the model’s output distribution onto
a set around a public LLM’s output distribution.

PMixED is compatible with various privacy
granularities, such as group-level DP, and is at
least stronger than sample-level DP. Furthermore,
PMixED does not require per-sample gradients and
can operate on batch-level data, significantly reduc-
ing the training overhead compared to DP-SGD.
We experimentally showed that PMixED outper-
forms DP-SGD in terms of utility on large-scale
datasets using LLMs. Thus, PMixED substantially
progresses private prediction methods in LLMs and
offers a practical alternative to DP training meth-
ods.

Although our experiments only used a pre-
trained GPT-2 small as the public model, in general,
we can plug and play any public model for infer-
ence, highlighting the versatility of our approach.
For example, we could use a GPT-2 model that is
already fine-tuned on a public corpus from a dif-
ferent domain, or we could use a larger pre-trained
model like GPT-2 XL. As a result, we can further
boost the performance of our approach without ad-
ditional training costs. We leave this exploration as
a future work.
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8 Limitations

PMixED performs better with larger ensemble
sizes combined with longer training epochs, as
quantified in the ablation studies. As ensemble
sizes grow each model in the ensemble needs suf-
ficient data to train, which in turn increases the
cumulative training data size. We also note that
PMixED requires more training epochs than regu-
lar SGD. However, these limitations are generally
a bottleneck for all DP-based approaches, such as
DP-SGD, and hence are not unique limitations of
PMixED.

In this work, we employed LoRA to significantly
reduce model size demands. However, storing an
ensemble of models in memory can place a burden
on the computing resources during training and
inference procedures. The inference latency can
be negatively impacted as an ensemble of models
must provide predictions first followed by calcu-
lating the lambdas, due to the use of the bisection
method. Potential systems optimizations can be to
parallelize the inference and lambda calculations.
We leave it as a future work to reduce the inference
latency. But on the positive side, PMixED operates
well with batch-based training and hence can take
advantage of parallel GPU resources, while DP-
SGD needs per-sample gradients which can curtail
GPU efficiency.

Perhaps the biggest limitation of PMixED is the
query budget, which limits the number of predic-
tions that can be made. However, this limitation is
a natural consequence of differentially private pre-
diction from a nonprivately trained model. As a fu-
ture work, one can explore a more relaxed problem
setup, a PATE-like setting (Papernot et al., 2016,
2018), where we produce DP predictions while
minimizing the privacy loss.

Finally, we note how work in DP-SGD, as well
as this work, uses a pre-trained model to boost
performance. Unfortunately, using publicly avail-
able data is not necessarily risk-free in terms of
privacy, as prior works were able to extract person-
ally identifiable information from a GPT-2 model
pre-trained on data scraped from the public inter-
net (Carlini et al., 2021). Thus model deployments
must still be cautious of using pre-trained models
in terms of understanding their information leakage
potential.

9 Ethical Considerations

In this work, we utilized pre-trained large lan-
guage models and well-known language model-
ing datasets that were accessed from the Hugging
Face API, which are publicly available and free to
use. The GPT-2 model and the One Billion Word
Dataset are licensed under the Apache License, Ver-
sion 2.0, and the WikiText-103 dataset is licensed
under CC BY-SA 3.0. Our intended use of these
artifacts is aligned with the intended use of the cre-
ators, which, for us, is purely for benchmarking our
private next token prediction protocol, and does not
trademark these artifacts. Since the datasets were
originally obtained from public internet domains,
and seemingly do not contain personally identifi-
able information, we did not anonymize the dataset.
Our use of public models and datasets minimizes
any unintended privacy leakage that could result
from experimenting.

Additionally, we publicly released our code un-
der the Apache License, Version 2.0. We believe
that allowing open access to these experiments will
help spark academic research of this work, as well
as protect the privacy of user data in commercial
deployment of large language models.
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Parameter Fine-Tune PMixED DP-SGD

Epochs 3 151, 52 201, 92

Learning Rate 2e-4 2e-4 4e-4
Weight Decay 0.01 0.01 0.01
Adaptation r 4 4 4

LoRA α 32 32 32
DP Batch Size - - 256
Clipping Norm - - 1.0

Table 2: Training Hyperparameters used for fine-tuning
on 1WikiText-103 and 2One Billion Word.

A Additional Experimental Details

The WikiText-103 dataset is a collection of over
100 million tokens from the set of verified Good
and Bad articles on Wikipedia (Merity et al., 2016).
The One Billion Word dataset is text data obtained
from the Sixth Workshop on Machine Translation,
and it contains nearly one billion words in the train-
ing set (Chelba et al., 2013). We split the datasets
into sequences of length 512 tokens. A total of
920,344 examples are in the training set and 1928
in the validation set for WikiText-103. Table 2
displays the hyperparameter values used for fine-
tuning. Certain hyperparameter values for non-
private fine-tuning were selected from (Hu et al.,
2021), and certain hyperparameter values for pri-
vate fine-tuning from (Yu et al., 2021). We em-
ployed the AdamW optimizer with weight decay
0.01 and a linear learning rate scheduler. Train-
ing ran on 8 Quadro RTX 5000, totaling around 8
hours for non-private fine-tuning, and 12 hours for
private fine-tuning for WikiText-103. Prediction
used only 1 Quadro RTX 5000.

There are technical challenges to get DP-SGD
to contain the same privacy notion as ours. Either
we would have to directly scale from sample-level
privacy by the size of the partition |D|/N using the
group privacy property (Dwork et al., 2014), which
incurs a prohibitive privacy cost. Or directly clip
and add noise to the per-subset gradients, which
is not possible to implement with standard DP li-
braries, like Opacus.

B Preliminary Setup for Theorem 5.1

Using our RD-mollifers concept, we introduce an
additional concept called (α, β)-RD private sam-
plers, which is just (α, β)-RDP but the neighboring
condition is at the distributional level, then state
how RD-mollifiers relates to RD-private samplers

Definition B.1 ((α, β)-RD private sampler). Let
α > 1, ϵ > 0. An (α, β)-RDP sampler is a random-
ized mapping M : D(X ) → X such that for any
x ∈ X and any two distributions P, P

′ ∈ D(X )
we have

Dα(M(P )||M(P ′)) ≤ βα. (9)

Lemma B.1. Let A : D(X )→ X be a randomized
mechanism such that for any P , A(P ) releases a
sample from some Q ∈M. IfM is an (α, β)-RD
Mollifer, then A is an (α, β)-RDP sampler.

The proof of lemma B.1 is similar to the proof
of the ϵ-private sampler variant in (Husain et al.,
2020).

Since an (α, β)-RD Mollifier implies an (α, β)-
RDP sampler, sampling from some distribution in
a mollifier provides privacy. Hence, a naive pri-
vacy analysis can make use of the RD mollifier
framework to derive the privacy loss, as is done in
(Husain et al., 2020). For each pi(xt), p

′
i(xt) ∈

M(α,β),p0 , Dα(pi(xt)||p′i(xt) ≤ 4βα due to
lemma 4.1. Meaning, every projected distribution
pi(xt) in the ensemble are (α, 4β)-RD samplers.
Then sampling from the average of the projected
distribution is still an (α, 4β)-RD sampler by the
Post-Processing Theorem C.1. However, this pri-
vacy analysis is overly strict in that it’s a privacy
guarantee where the neighboring ensembles can
differ by all models except for one, which is too
strong of a privacy notion. We are interested in
the opposite neighborhood condition, where two
ensembles are equal for all models except for one.
This allows us to take advantage of the fact that the
privacy cost of sampling from a mollifier is scaled
by the inverse of the size of the ensemble.

Define p−i(xt) = 1
N−1

∑
j∈[N ]\{i} λjpj(xt) +

(1− λj)p0(xt). To show that sampling yt ∼ p(xt)
is (α, ϵG/T )-RDP, i.e., D↔

α (p(xt)||p−i(xt)) ≤
ϵG
T , first let’s look at a special case when α = ∞
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Now

eD∞(p(xt)||p−i(xt))

=
p(yt|xt)

p−i(yt|xt)

=
N−1
N p−i(yt|xt) +

1
N pi(yt|xt)

p−i(yt|xt)

=
N − 1

N
+

1

N

pi(yt|xt)

p−i(yt|xt)

=
N − 1

N
+

1

N

pi(yt|xt)

p0(ytxt)

p0(yt|xt)

p−i(yt|xt)

≤ N − 1

N
+

1

N
e2βα

for all yt ∈ V . So if we want
D∞(p(xt)||p−i(xt)) ≤ ϵG

T then we need set
β such that

N − 1

N
+

1

N
e2βα ≤ e

ϵG
T

e2βα ≤ NeϵG/T + 1−N

β ≤ log
(
NeϵG/T + 1−N

)

2α
.

(10)

For the other direction:

p−i(yt|xt)

p(yt|xt)
=

N
N−1p(yt|xt)− 1

N−1pi(yt|xt)

p(yt|xt)

=
N

N − 1
− 1

N − 1

pi(yt|xt)

p(yt|xt)

=
N

N − 1
− 1

N − 1

pi(yt|xt)

p0(yt|xt)

p0(yt|xt)

p(yt|xt)

=
N

N − 1
− 1

N − 1
e2βα ≤ eϵG/T

e2βα ≥ N − (N − 1)eϵG/T

β ≥ log(N − (N − 1)eϵG/T )

2α
(11)

for all yt ∈ V . Equation 11 is satisfied by set-
ting β equal to eq. 10. Thus, it suffices to find
β with order 1 < α < ∞ by working through
Dα(p(xt)||p−i(xt)) ≤ βα, then set β to its largest
possible value so that Dα(p−i(xt)||p(xt)) ≤
ϵG/T .

C Properties of Renyi Divergence and
RDP

Theorem C.1 (Post-Processing (Mironov, 2017)).
Let A : D → R be (α, ϵ)-RDP, and let F : R →
Z be an arbitrary randomized mapping. Then F ◦
M is (α, ϵ)-RDP.

Theorem C.2 (Composition (Mironov, 2017)). Let
A1, ..., Ak be a sequence of (ϵ, α)-RDP algorithms.
Then the composition Ak◦Ak−1◦...◦A1 is (α, kϵ)-
RDP.

Theorem C.3 (Conversion from RDP to Approxi-
mate DP (Balle et al., 2020)). If an algorithm A is
(α, ϵ)-RDP, then it is (ϵ+log((α−1)/α)−(log δ+
logα)/(α− 1), δ)-DP for any 0 < δ < 1.

Theorem C.4 (Tight Privacy Amplification by Pois-
son Subsampling for Renyi DP (Steinke, 2022)).
Let U ⊆ [n] be a random set that contains each
element independently with probability q. For
x ∈ X n let xU ∈ X n be given by (xU )i = xi
if i ∈ U and (xU )i = ⊥ if i /∈ U , where ⊥ ∈ X is
some fixed value.

Let ϵ : N≥2 → R ∪ {∞} be a function. Let M :
X n → Y satisfy (α, ϵ(α))-RDP for all α ∈ N≥2

with resepect to addition or removal– i.e., x, x
′ ∈

X n are neighboring if, for some i ∈ [n], we have
xi = ⊥ or x

′
i = ⊥, and ∀j ̸= i xj = x

′
j .

Define MU : X n → Y by MU (x) = M(xU ).
Then MU satisfies (α, ϵ

′
q(α))-RDP for all α ∈

N≥2 where

ϵ
′
q(α) =

1

α− 1
log

(
(1− q)α−1(1 + (α− 1)q)

+

α∑

k=2

(
α

k

)
(1− q)α−kqke(k−1)ϵ(k)

)
.

(12)

Theorem C.5 (Triangle-like inequality, lemma 33.7
from (Steinke, 2022)). Let P,Q,R be distributions
on R. If Dα(P ||Q) ≤ ϵ1α and Dα(Q||R) ≤ ϵ2α
for 1 < α <∞, then

Dα(P ||R) ≤ (
√
ϵ1 +

√
ϵ2)

2α. (13)

Theorem C.6 (Quasi-Convexity (Steinke, 2022)).
Let P,Q, P ′, Q

′
be probability distributions over

R such that P
′

absolutely continuous with respect
to Q

′
. For s ∈ [0, 1], let (1 − s)P + sP

′
denote

the convex combination of the distributions P and
P

′
with weighting s. For all α ∈ (1,∞) and all

s ∈ [0, 1],

Dα((1− s)P + sP
′ ||(1− s)Q

′
+ sQ

′
)

≤ max{Dα(P ||Q), Dα(P
′ ||Q′

)}.
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Figure 5: Alpha

Figure 5 shows the utility trade-off of α. Hence, it
is crucial to the performance of PMixED that α is
small due to the monotonicity property of Renyi
Divergence.

E Extended Related Works

Another promising privacy-related notion, machine
unlearning, has emerged to reduce memorization
by verifiably removing learned information from
a data sample without retraining a model from
scratch (Guo et al., 2019; Bourtoule et al., 2021).
Generally speaking, there are two machine unlearn-
ing notions: (1) exact unlearning, where the result-
ing model has completely unlearned a data sample
(Bourtoule et al., 2021), and (2) approximate un-
learning, where a data point has been unlearned to
some degree with high probability. It is well-known
that differential privacy implies approximate ma-
chine unlearning. One recent, orthogonal work
explored the use of task vectors to perform memo-
rization unlearning of the private dataset (Gao et al.,
2024).
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