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Abstract

In-context learning (ICL) empowers large
language models (LLMs) to perform diverse
tasks in underrepresented languages using
only short in-context information, offering a
crucial avenue for narrowing the gap between
high-resource and low-resource languages.
Nonetheless, there is only a handful of works
explored ICL for low-resource languages
with most of them focusing on relatively
high-resource languages, such as French
and Spanish. In this work, we extensively
study ICL and its cross-lingual variation
(X-ICL) on 25 low-resource and 7 relatively
higher-resource languages. Our study not
only assesses the effectiveness of ICL with
LLMs in low-resource languages but also
identifies the shortcomings of in-context label
alignment, and introduces a more effective
alternative: query alignment. Moreover, we
provide valuable insights into various facets
of ICL for low-resource languages. Our
study concludes the significance of few-shot
in-context information on enhancing the
low-resource understanding quality of LLMs
through semantically relevant information by
closing the language gap in the target language
and aligning the semantics between the
targeted low-resource and the high-resource
language that the model is proficient in. Our
work highlights the importance of advancing
ICL research, particularly for low-resource
languages. Our code is publicly released at
https://github.com/SamuelCahyawijaya/
in-context-alignment.

1 Introduction

Large language models (LLMs) have displayed
remarkable generalization capability in various
tasks (Brown et al., 2020b; Kojima et al., 2022;
Wei et al., 2022; Smith et al., 2022; Rae et al.,
2022; Chowdhery et al., 2022; Scao et al., 2022;
Liang et al., 2023; Srivastava et al., 2023; Love-
nia et al., 2023; Bang et al., 2023). Nonethe-

less, these models face difficulties in generaliz-
ing across different languages, leading to perfor-
mance disparity, particularly for low-resource lan-
guages (Aji et al., 2022a; Ebrahimi et al., 2022a;
Adelani et al., 2022b; Cahyawijaya et al., 2023a,b;
Asai et al., 2023). A myriad of research works ad-
dress this problem through language-specific fine-
tuning (Wilie et al., 2020; Kakwani et al., 2020;
Cahyawijaya et al., 2021; Adelani et al., 2021; Ku-
mar et al., 2022) which often leads to catastrophic
forgetting (French, 1993; Chaudhry et al., 2019;
Rolnick et al., 2019). Another line of work utilizes
continual learning and adapter-based methods to
inject new languages to existing LLMs (Yong et al.,
2022; Cahyawijaya et al., 2023c; Jin et al., 2023).
Nevertheless, these methods rely on performing
multiple steps of parameter updates which require
huge computational budgets, particularly for very
large LLMs with hundreds of billion parameters.

To cope with this problem, prior works (Winata
et al., 2021b; Lin et al., 2022a; Shi et al., 2023;
Zhang et al., 2023) explore cross-lingual in-context
learning (X-ICL) methods, an extension from in-
context learning (ICL), that allow LLMs to gen-
erate better response quality in low-resource lan-
guages without the need for parameter tuning. In X-
ICL, source language exemplars are incorporated
into the input context allowing the model to transfer
the task understanding capability from the source,
commonly high-resource, language into the target
language query (Winata et al., 2021b; Shi et al.,
2023). However, X-ICL still fails to compete with
a simple translate-test baseline, prominently for
low-resource languages. A recent work (Tanwar
et al., 2023) further enhances X-ICL through se-
mantically similar cross-lingual exemplars and in-
context label alignment1, yielding a large gain over
the baselines on relatively high-resource languages

1In Tanwar et al. (2023), label alignment is referred to as
task alignment. In this work, we distinguish two types of task
alignments, i.e., query alignment and label alignment (§3.1).
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such as French, Spanish, Chinese, and Japanese.
In this work, we expand upon the concept of

cross-lingual semantic similarity and in-context
alignment, specifically focusing on low-resource
languages. Our hypothesis posits that their effec-
tiveness may be compromised in low-resource lan-
guages due to the weak representation of the la-
bels and sentences for the target languages. To
test our hypothesis, we explore cross-lingual in-
context learning (X-ICL) covering 25 low-resource
languages from various language families and com-
pare them with the performance of 7 relatively
higher resource languages, including French (fra),
Spanish (spa), German (deu), Italian (ita), Por-
tuguese (por), Arabic (arb), and Hindi (hin). Our
result suggests that the X-ICL performance decays
correlate to the size of pre-training data of the target
languages, which aligns with our hypothesis. More-
over, to our surprise, contrary to the results reported
in (Tanwar et al., 2023), we found that in-context
label alignment does not work for all the languages
under study and introduced an alternative align-
ment method namely in-context query alignment,
which significantly improves the alignment quality
compared to the in-context label alignment.

To this end, we explore alternatives for X-ICL
approaches covering variations of in-context align-
ment information, prompt, label encoding, and
strategy for selecting in-context learning exemplars.
We extensively analyze all these factors and their
effect on the downstream task performance of all
the languages under study. Our results and analysis
highlight the following key takeaways:

• Contrary to prior work (Tanwar et al., 2023),
we found that label alignment undermines the
performance in most languages. Keeping uni-
form labels from the high-resource language
often yields the best results.

• We introduce a new approach for cross-lingual
alignment, i.e., query alignment, which is
more effective than label alignment and can
substitute or complement X-ICL.

• We analyze the effect of improving prompt for-
mat consistency on low-resource languages.
However, despite improving performance
for higher-resource languages, format consis-
tency does not yield any benefit to the low-
resource languages under study.

• We present a comprehensive in-context learn-
ing framework for better low-resource lan-
guage understanding under various con-

strained conditions, concluding the signifi-
cance of few-shot in-context information on
enhancing the low-resource understanding
quality of LLMs through semantically rele-
vant information, where monolingual ICL
does so by closing the language and domain
gap on the targeted downstream task, while
X-ICL closes the domain gap to the target
downstream task, and in-context alignment
closes the semantic gap between the targeted
low-resource and the high-resource language
that the model is proficient in.

2 Related Work

2.1 In-Context Learning

The in-context learning paradigm, originally intro-
duced by Brown et al. (2020a), has significantly
advanced our understanding of LLMs’ capabilities.
It demonstrated that LLMs can effectively perform
complex tasks through in-context learning with just
task-specific formatting and a few task-specific ex-
amples (few-shot) or none at all (zero-shot). This
ability is facilitated by the LLMs’ increasing ca-
pacity for generalization across diverse tasks, e.g.,
machine translation, question answering, and do-
main adaptation, without gradient updates.

Another line of work expands the scope of
the study to multilingual generative LLMs, i.e.,
BLOOM (Scao et al., 2022), trained on the ROOTS
corpus covering 46 natural and 13 programming
languages, and XGLM (Lin et al., 2022b), trained
on 500B tokens comprising 30 languages, which
exhibit robust zero-shot and few-shot performances
on multilingual NLP tasks. Furthermore, Lin et al.
(2022b) address the imbalance in language repre-
sentation by up-sampling the less-resourced lan-
guages. Bandarkar et al. (2023) then expand the
language coverage of the in-context learning eval-
uation to 122 languages through Belebele, a wide-
scale multilingual multiple-choice machine reading
comprehension benchmark comprising short pas-
sages from FLORES-200 (Goyal et al., 2022).

Cross-Lingual In-Context Learning (X-ICL)
Winata et al. (2021b) were among the first to
explore the potential of few-shot X-ICL. Using
4 high-resource languages, this work shows that
pre-trained LMs significantly outperform random
prediction in cross-lingual tasks and produce bet-
ter results compared to smaller fine-tuned base-
lines. Winata et al. (2022a) expand this study to un-



Figure 1: Framework of cross-lingual in-context learning (X-ICL) methods analyzed in our work. We explore various
cross-lingual retrieval methods with different kinds of cross-lingual prompting strategies. ∗Novel approaches.

seen languages and find that taking the X-ICL con-
texts from a mixture of random source languages is
surprisingly more effective compared to linguisti-
cally similar and geographically similar languages.
Expanding the investigation to different aspects of
cross-lingual transfers in X-ICL, Lin et al. (2022b)
explores the use of various languages for instruc-
tions and exemplars. They find that incorporating
English instructions notably improves zero-shot
performance across multiple languages.

In a related vein, Tanwar et al. (2023) analyze
the effect of cross-lingual prompt design for X-ICL
across 3 text classification tasks using 44 different
cross-lingual pairs. Their findings emphasize the
limitations of random exemplar selection and pro-
pose the use of semantic-based exemplar retrieval
and label alignment1 for superior X-ICL perfor-
mance. Notably, their findings diverge from our
results (§5.1), which contend that label alignment
does not provide benefits for X-ICL.

2.2 LLMs on Low-Resource Languages
Rigorous evaluations have been proposed to in-
vestigate how LLMs perform on low-resource lan-
guages. According to (Cahyawijaya et al., 2023a),
while multilingual LLMs typically exhibit pos-
itive transfer learning among related languages,
these models perform notably better for mid- and
high-resource (e.g., Indonesian and English) com-
pared to low-resource languages (e.g., other 18
Indonesian indigenous languages). This implies a
challenge in the generalization capability of exist-
ing multilingual LLMs to low-resource languages.
This is further evidenced by (Cahyawijaya et al.,
2023b), which extends the exploration to 12 low-
resource and extremely low-resource languages,
where both existing zero-shot prompting LLMs
and fine-tuned pre-trained LMs struggle to outper-
form classical machine learning baselines, which
is indicative of LLMs’ limited ability to general-
ize to extremely low-resource languages that are

significantly distinct from those encountered dur-
ing their training. Similar observations have been
reported by Asai et al. (2023); Bang et al. (2023);
Adilazuarda et al. (2024) for lower-resource lan-
guages. Furthermore, another line of work empha-
sizes the challenges faced by multilingual LLMs
in understanding (Zhang et al., 2023; Adilazuarda
et al., 2023) and generating (Yong et al., 2023)
code-switching, a real use case and nuance of mul-
tilingualism exhibited by human speakers.

3 Methods

Figure 1 presents the general framework of X-ICL,
comprising: 1) cross-lingual in-context alignment
(§3.1), 2) cross-lingual alignment formatting and 3)
label configuration as parts of cross-lingual prompt-
ing (§3.2), as well as 4) cross-lingual retrieval
(§3.3). We assess variations of these X-ICL as-
pects to understand their effectiveness on different
language resource levels.

3.1 Cross-Lingual Alignment

Prior works showcase the benefit of cross-lingual
in-context learning with random exemplars which
can improve the zero-shot performance of LLMs
on downstream tasks (Winata et al., 2021c; Shi
et al., 2023; Asai et al., 2023). More recently, Tan-
war et al. (2023) introduce cross-lingual in-context
alignment that injects a label aligner to the prompt
in between the in-context exemplars and the input
query. The label aligner provides the translation of
the source label set Csrc = {csrc1 , csrc2 , . . . , csrck }
to the target label set Ctgt = {ctgt1 , ctgt2 , . . . , ctgtk }.
For instance, given a target language Ltgt, the label
aligner prompt is formatted as follow: “In Ltgt,
csrc1 means ctgt1 , csrc2 means ctgt2 ,. . . , and csrck

means ctgtk ”. This allows the model to align labels
between source and target languages. We call this
method in-context label alignment.

As opposed to in-context label alignment, we



Figure 2: We explore 3 different alignment formats for X-ICL prompting, i.e., alignment-after, alignment-before,
and tabular-prompting. From left to right, the prompt format has a higher degree of format consistency.

explore another approach, dubbed in-context
query alignment, which provides alignment of
input distribution by providing the translation
of sentences similar to the query while keep-
ing the label set as is. To do so, we uti-
lize the parallel exemplar dataset Dpara =
{(ssrc1 , stgt1 ), (ssrc2 , stgt2 ), . . . , (ssrcm , stgtm )}, where
(ssrci , stgti ) respectively denotes to a pair of parallel
source and target sentences, and select the top-k
most similar parallel pair by maximizing the mono-
lingual similarity between the qtgt with stgti . Given
a target language Ltgt, the parallel pairs are then
formatted into an input alignment prompt, i.e., “In
Ltgt, ssrc1 means stgt1 , ssrc2 means stgt2 , . . . ,
and ssrck means stgtk ”. We show the example query
for in-context label alignment and in-context query
alignment in Appendix B.

3.2 Cross-Lingual Prompting
Although cross-lingual in-context alignment has
shown improvements as reported in (Tanwar et al.,
2023), it introduces distortions to certain aspects
of the Bayesian inference framework (Xie et al.,
2022; Min et al., 2022) underlying in-context learn-
ing. Notably, this method compromises the for-
matting consistency and output distribution of the
prompt. While the label aligner is expected to align
the output distribution between the source and tar-
get labels, it is merely an idealistic assumption,
which might not be the case in real cases. To better
align with the Bayesian inference framework, we
explore two cross-lingual prompt adjustments, i.e.,
alignment formatting and label configuration.

Alignment Formatting Existing X-ICL with
alignment approach (Tanwar et al., 2023) places
the alignment between ICL exemplars and the in-

put query (dubbed as alignment-after). We ar-
gue that such abrupt changes in the prompt for-
mat might cause performance degradation. To im-
prove the format consistency, we also explore two
prompt formats for X-ICL: 1) alignment-before
and 2) tabular-prompting. Alignment-before sim-
ply swaps the alignment text with the cross-lingual
exemplars. This avoids the abrupt format change
between the exemplars and the query such that the
neighboring text span is more format-consistent.
Tabular-prompting formats the prompt in the form
of a table with multiple columns, which allows a
consistent prompt format, but at the same time re-
quires either a labeled parallel corpus or disrupting
the input-output mapping through incorrect label-
ing (Min et al., 2022). The depiction of the prompt
formats and the X-ICL alignment is in Figure 2.

Label Configuration To improve the output dis-
tribution consistency, we explore alternatives of
using either source-only labels and target-only
labels as opposed to in-context label alignment
which shifts the language of the labels from the
source language in the exemplars to the target lan-
guage in qtgt. These alternatives serve as a com-
parison to measure the effectiveness of in-context
label alignment. In this study, we focus on English
as the source language. Appendix F analyzes the
use of other closely related source languages.

3.3 Cross-Lingual Retrieval
Another way to improve X-ICL performance
is by improving the exemplar retrieval qual-
ity. Given an input query qtgt and a
source language exemplar dataset Dsrc =
{(esrc1 , ysrc1 ), (esrc2 , ysrc2 ), . . . , (esrcn , ysrcn )}, where
esrc1 and ysrc1 respectively denote the input and la-



Dataset # Lang # Unseen
BLOOM

# Unseen
XGLM

# Lang
Family Region(s)

NusaTranslation 6 6 6 1 Southeast Asia

MasakhaNews 9 4 8 3 Africa

AmericasNLI 10 10 9 8 South America

Tweet Sentiment
Multilingual

7 2 0 2
Northern Africa,

Europe, Central Asia

Table 1: The datasets and languages under study. Our
study covers 25 low-resource languages and 7 relatively
higher-resource languages from various regions.

bel of the exemplar, the goal of cross-lingual re-
trieval is to retrieve one or more labeled exemplars
(esrci , ysrci ) semantically relevant to qtgt. Most
prior works in X-ICL (Winata et al., 2021a; Asai
et al., 2023; Zhang et al., 2023; Lin et al., 2022a) in-
corporate random retrieval, while recently, Tanwar
et al. (2023) utilize cross-lingual semantic simi-
larity which significantly improves performance
over the random retrieval.

Nevertheless, we argue that this approach might
not be optimal in the case of low-resource lan-
guages as the semantic representation for these
languages might not be well aligned with the high-
resource languages (see Appendix C). Thus, we
explore translation semantic similarity as an al-
ternative. It performs monolingual semantic sim-
ilarity on qtgt to obtain a sentence in Ltgt from
a parallel dataset Dpara, then uses monolingual
semantic similarity on its pair in Lsrc to find the
high-resource exemplars from Dsrc. Although the
monolingual semantic similarity between two sen-
tences from a low-resource language is also sub-
optimal, this problem can be alleviated by incor-
porating other similarity metrics such as TF-IDF
and bag-of-words. We denote ICL method using
the translation semantic similarity as T-ICL. We
show this analysis in Appendix C along with the
depiction of the cross-lingual retrieval methods.

4 Experimental Settings

4.1 Retrieval and In-Context Learning Setup

To calculate the cross-lingual and monolingual
semantic similarity, we utilize multilingual sen-
tence transformers (Reimers and Gurevych, 2019,
2020).2 For all ICL experiments, we conduct ICL
with 3-shot ICL exemplars. We run our experi-
ments using two LLMs: XGLM-7.5B (Lin et al.,
2022b) and BLOOM-7B (Scao et al., 2022). To
select the prediction label, we take the label that

2As our semantic similarity model, we utilize
sentence-transformers/stsb-xlm-r-multilingual

Eval Dataset Dsrc Dpara

NusaTranslation
NusaX-Senti

(Winata et al., 2022b)
NusaX-MT

(Winata et al., 2022b)

MasakhaNews
MasakhaNews
(Eng Train set)

MAFAND
(Adelani et al., 2022a)

AmericasNLI
XNLI (Eng)

(Conneau et al., 2018)
XNLI (Eng)

⊕
AmericasNLI (Dev set)⋆

Tweet Sentiment
Multilingual

Tweet Sentiment
Multilingual (Eng Train set)

Tweet Sentiment
Multilingual (Eng MT)†

Table 2: The Dsrc and Dpara for all the evalua-
tion datasets under study.† Translated to English using
NLLB (Team et al., 2022).⋆ We align the two datasets.

maximizes the marginal probability of the prompt:

cpred = argmax
c

P (Xicl, Xalign, qtgt, c) (1)

= f(Xicl ⊕Xalign ⊕ qtgt ⊕ c) (2)

where f(.) denotes a language model, ⊕ denotes
the concatenation operator, Xicl denotes the ICL
exemplars, Xalign denotes the alignment text, and
c denotes the class label taken from the label set.

4.2 Languages and Datasets

As shown in Table 1, our study includes 25 low-
resource languages from three different regions,
i.e., Africa, Americas, and South-East Asia, cover-
ing 13 language families. Note that, many of the
low-resource languages are unseen to both XGLM
and BLOOM, nonetheless, both models might have
seen other languages under the same language fam-
ily group with those low-resource languages, e.g.,
both models are pre-trained on Indonesian, which
falls under the same language family group (i.e.,
Malayo-Polynesian) to the low-resource languages
in Indonesia. We also include 7 relatively higher-
resource languages, i.e., Arabic (arb), French (fra),
German (deu), Hindi (hin), Italian (ita), Portuguese
(por), and Spanish (spa) for comparing the behavior
of X-ICL between these relatively higher-resource
languages and low-resource languages. Detailed
information on all the languages under study is
shown in Appendix A.

All the languages are spread across four differ-
ent datasets, i.e., MasakhaNews (topic classifica-
tion) (Adelani et al., 2023), AmericasNLI (natural
language inference) (Ebrahimi et al., 2022b),
NusaTranslation (sentiment analysis) (Cahyaw-
ijaya et al., 2023b), and TweetSentimentMultilin-
gual (sentiment analysis) (Barbieri et al., 2022).
For each dataset, we defined the ICL dataset Dsrc

and parallel alignment dataset Dpara from differ-
ent dataset subsets or completely different datasets.
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Figure 4: Performance of XGLM-7.5B with and without
query alignment on (top) zero-shot and (bottom) X-ICL
settings.

The details are shown in Table 2. Note that, we only
take languages that are supported in NLLB (Team
et al., 2022), such that we can compare the perfor-
mance with machine-translation-based approaches.
For the monolingual semantic similarity baselines,
we utilize the train and dev sets of the evaluation
dataset.

5 Result and Discussion

The per-dataset results of our experiments are
shown in Appendix H. For brevity, we report the
analysis mainly for XGLM-7.5B, since we observe
that the BLOOM-7B results are similar. We show
the results for BLOOM in Appendix G.

5.1 Inferiority of In-Context Label Alignment

Figure 3 shows the comparison of in-context label
alignment with uniform source-only and target-
only labels. In most languages, in-context label
alignment yields lower performance than target-
only label, and source-only label yields the best
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Figure 5: ∆Weighted F1 of (left) in-context label align-
ment and (right) in-context query alignment against
non-alignment baseline. A score < 0 indicates the in-
context alignment degrades the performance.

performance. For low-resource African languages,
the target-only label performs much worse. We
conjecture that this is due to the weak representa-
tion of these languages, which is less apparent in
low-resource Indonesian and American languages
because the target labels (see Appendix D) are sim-
ilar to higher-resource languages in training. Con-
trary to Tanwar et al. (2023), our results highlight
the ineffectiveness of in-context label alignment
to improve X-ICL on both higher-resource and low-
resource languages.

5.2 In-Context Query Alignment

We introduce in-context query alignment as an al-
ternative to in-context label alignment in §3.1. As
shown in Figure 4, in-context query alignment
yields similar performance with the baseline (i.e.,
without query alignment) on higher-resource lan-
guages while improving zero-shot performance on
low-resource languages. Nonetheless, the improve-
ment is rather marginal in the X-ICL setting on
low-resource languages. In this case, we conclude
that in-context query alignment can be used as an
alternative to X-ICL, which is favorable when there
is no available X-ICL corpus for the particular task.
With the recent development of large multilingual
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Figure 6: Performance of XGLM-7.5B with different alignment formats ordered by the degree of formatting
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parallel corpora, such as Bloom Library (Leong
et al., 2022), WikiMatrix (Schwenk et al., 2021),
CC-Aligned (Chaudhary et al., 2019; El-Kishky
et al., 2020), FLORES-200 (Team et al., 2022), and
GATITOS (Jones et al., 2023), in-context query
alignment can also be a perfect complement to
X-ICL for improving LLMs understanding on thou-
sands of languages.

Label Alignment vs Query Alignment To in-
vestigate how well in-context alignments can affect
the understanding of all the languages under study,
we analyze their effectiveness by comparing them
with the corresponding non-alignment baseline.
As shown in Figure 5, in-context label alignment
only improves the performance at ∼11.54% of the
time with an improvement of ∼5% weighted F1,
while the rest 88.46% experiments are decreased
by ∼20% weighted F1. In-context query align-
ment, on the other hand, increases the performance
56.25% of the time with an improvement of ∼10%
weighted F1, while the rest 43.75% of the time ex-
periences a reduction of ∼5% weighted F1. Our
results suggest that in-context query alignment
is superior to in-context label alignment, and it
improves LLMs’ understanding of low-resource
languages in the absence of X-ICL task-specific
data, which leads to performance gain.

5.3 Why Query Alignment Performs Better

In regards to the in-context alignment, we can first
simplify the effect of alignment into the following
two possibilities: 1) when the alignment is suc-
cessful (upper bound) and when no alignment is
done (lower bound). When The LLM successfully
aligns the query in the source language to the target
language, query alignment will enable the LLM
to understand the query in the target as well as in
the source languages, the LLM will reach a perfor-
mance similar to monolingual ICL, which is the up-
per bound performance. While in label alignment,

when the LLM successfully aligns the label in the
source to the target languages, the LLM under-
stands the label semantics, but there is no guidance
on how to interpret the query in the target language.
In this case, the upper bound is equivalent to per-
forming X-ICL which generally performs slightly
worse than monolingual high-resource language
ICL which is reflected in our result in §5.6.

When the LLM completely fails to align the la-
bel in the source to the target languages, in the
query alignment, the LLM performs a regular X-
ICL, which is similar to the best case of the label
alignment. While in the label alignment, the LLM
performs X-ICL with a shifted label space. The
harmful effect of ICL with a shifted label space
has been extensively studied in (Min et al., 2022),
which results in severe performance degradation.
With regards to the two possibilities, the upper-
bound and lower-bound of in-context query align-
ment are better than label alignment, thus query
alignment outperforms label alignment on average.
In a more realistic scenario, there is also another
factor where the alignment text becomes the noise
that will shift the output prediction of the LLMs.
As the noise factor happens for both query and la-
bel alignment, we can assume the same effect of
noise for both methods and omit this factor into
account, resulting in the same conclusion.

5.4 Effect of Format Consistency

We explore three types of prompting with various
degrees of formatting consistency (§3.2). As shown
in Figure 6, for higher-resource languages, format-
ting consistency correlates to a slight improvement
in the downstream performance for both XGLM
and BLOOM (see Appendix G) models. Mean-
while, for low-resource languages, the trend for
both models is unclear. We conjecture that in-
creasing the format consistency can improve the
downstream task performance on well-represented
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languages. For low-resource languages, increas-
ing the format consistency will not improve the
model understanding. Increasing the representa-
tion through X-ICL and query alignment would
be a better alternative to improve the low-resource
language understanding ability of LLMs.

5.5 Importance of Cross-Lingual Retrieval

Cross-Lingual Semantic Similarity We com-
pare the effectiveness of cross-lingual semantic
similarity to monolingual and translation seman-
tic similarity for retrieving ICL and X-ICL exem-
plars. Based on Figure 7, X-ICL and ICL with
cross-lingual and monolingual semantic-similarity-
based retrieval, respectively, perform better than
zero-shot prompting, suggesting the effectiveness
of these approaches for improving the task under-
standing of LLMs. In addition, we show that trans-
lation semantic similarity performs almost on par
with the zero-shot baseline. We hypothesize that
this problem is attributed to the error propagation of
the pipelined nature of the translation semantic sim-
ilarity system and the limited coverage of parallel
exemplars in Dpara, showing the benefit of using
direct cross-lingual semantic similarity retrieval
over translation-based retrieval. Furthermore, the
performance of cross-lingual semantic similarity is
similar to or slightly lower than the monolingual
semantic similarity approach. Hence, cross-lingual
semantic similarity retrieval is important in the case
where the corpus for performing monolingual ICL
on a particular task is not available.

Variations of Semantic Similarity Models We
further compare the effectiveness of varying the
cross-lingual semantic similarity models for cross-
lingual retrieval. As shown in Figure 8, all
cross-lingual semantic similarity models outper-
form the zero-shot baseline. Interestingly, despite

the reported inferiority of STS-tuned models over
paraphrasing-tuned models and LaBSE in prior
works (Reimers and Gurevych, 2019, 2020; Feng
et al., 2022), our results showcase otherwise. On av-
erage, XLMR STS performs on par with other mod-
els, gaining a better performance on high-resource
languages while getting a worse performance on
low-resource languages. We find that, depending
on the language under study, the choice of cross-
lingual semantic similarity models can play a huge
role in the downstream performance of X-ICL.

5.6 Is X-ICL Effective for low-resource
Languages?

To analyze the effectiveness of X-ICL in low-
resource languages, we compare X-ICL with other
inference approaches. Specifically, we compare
X-ICL with 3 other baselines: 1) monolingual
ICL that performs inference using ICL from the
same language as the query, 2) translate-test that
translates the query and performs zero-shot infer-
ence in a high-resource language, i.e., English,
and 3) translate-test ICL that simply combines
translate-test and monolingual ICL. We mea-
sure the ∆Weighted F1 against a simple zero-shot
prompting over all languages under study. For all
experiments that include translation, we utilize MT
models from NLLB (Team et al., 2022).3

Based on our experiment results shown in Fig-
ure 9, the translate-test slightly improves the per-
formance from the zero-shot baseline in BLOOM
and XGLM, while in-context query alignment
only improves zero-shot performance on XGLM.
This indicates that alignment information only of-
fers a limited benefit to improving LLMs’ under-
standing. Additionally, all ICL approaches improve
the performance over zero-shot prompting in most

3https://huggingface.co/facebook/
nllb-200-distilled-1.3B

https://huggingface.co/facebook/nllb-200-distilled-1.3B
https://huggingface.co/facebook/nllb-200-distilled-1.3B


XGLM-7.5B BLOOM-7B1

40

60
W

ei
gh

te
d 

F1

Tweet Sentiment Multilingual

Zero-Shot
XLMR STS
XLMR Paraphrase

MiniLM Paraphrase
mpnet Paraphrase
LaBSE

XGLM-7.5B BLOOM-7B1

0

50

100

W
ei

gh
te

d 
F1

MasakhaNews

Zero-Shot
XLMR STS
XLMR Paraphrase

MiniLM Paraphrase
mpnet Paraphrase
LaBSE

Figure 8: Performance of LLMs with different semantic similarity models on (left) higher-resource languages and
(right) low-resource African languages.

10 0 10 20 30 40
Weighted F1

Translate-Test

Query
Alignment

ICL
Random

X-ICL
Random

X-ICL
Semantic

ICL
Semantic

Translate-Test
ICL

XGLM-7.5B

10 0 10 20 30 40
Weighted F1

Query
Alignment

Translate-Test

ICL
Random

X-ICL
Random

X-ICL
Semantic

ICL
Semantic

Translate-Test
ICL

BLOOM-7B1

Figure 9: Gain/Loss of various test-time adaptation methods for low-resource languages using (top) XGLM-7.5B
and (bottom) BLOOM-7B1 backbones.

cases. All approaches with similarity-based re-
trieval, i.e., ICL Semantic and X-ICL Semantic
achieve higher scores than random retrievals, i.e.,
ICL Random and X-ICL Random, showing the
importance of semantic similarity for exemplar re-
trievals. Interestingly, X-ICL Semantic yields a
similar performance to ICL Semantic, which uti-
lizes the target language exemplars. This indicates
X-ICL can be a good alternative for low-resource
languages as the available data in the specified
low-resource language are commonly very limited.
Above all, translate-test ICL yields the highest im-
provement amongst all methods, but this only hap-
pens when the machine translation quality is above
a certain quality standard. We ablate the effect of
machine translation quality to the translate-test
ICL performance on Appendix E.

To conclude, we offer the following suggestions
to improve the low-resource language performance
during inference: 1) When tackling low-resource
languages, it is best to have a high-quality trans-
lation system accompanied by a source language
task-specific data for translate-test ICL; 2) When
there is no machine translation (MT) system for
the specified language, it is best to use either ICL
or X-ICL depending on the corpus availability; 3)

When there is an MT system, but no task-specific
data, translate-test is still the best option; and 4)
When there is no high-quality MT system nor task-
specific data, the best way is to use a parallel data
to utilize in-context query-alignment.

6 Conclusion

We systematically investigate the application of
X-ICL with LLMs, focusing on low-resource lan-
guages. Our comprehensive analysis sheds light on
multiple facets of X-ICL with LLMs. Our examina-
tion of in-context alignment reveals the limitation
of label alignment, thus we suggest a more effective
alternative: query alignment. Efforts to enhance
X-ICL via formatting consistency only exhibit a
marginal impact on low-resource languages. Our
exploration of exemplar retrieval approaches under-
scores the significance of employing cross-lingual
semantic similarity in X-ICL. Lastly, we analyze
the effectiveness of X-ICL in the context of low-
resource languages. Despite being outperformed
by translate-test ICL, X-ICL remains relevant, es-
pecially when there is no MT model available for
the target language—a circumstance prevalent in
low-resource language scenarios.
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viable solution. By investigating the limitations of
in-context label alignment and proposing a more
effective in-context query alignment approach, we
aim to enhance the applicability of ICL and X-
ICL on low-resource languages. This research is
motivated by the need to provide computational
solutions for languages lacking adequate linguistic
resources for LM training. Our findings emphasize
that ICL and X-ICL are useful in scenarios where
alternative resources are absent, promoting linguis-
tic diversity and inclusivity in the development of
language technologies. All the datasets used in our
experiments follow the license and term of use of
the datasets.

Limitation

Limited Coverage of low-resource Languages
We put our best effort into collecting datasets from
various low-resource languages and, in the end, we
ended up with the three low-resource datasets, i.e,
MasakhaNews (Adelani et al., 2023), NusaTrans-
lation (Cahyawijaya et al., 2023b), and Americas-
NLI (Ebrahimi et al., 2022a), which suits our cases
as these languages have parallel datasets which cor-
respond to one or more high-resource languages
and have large enough high-quality labeled datasets
for both ICL and evaluation purposes. Further-
more, our study covers broad enough linguistics
aspects of multilingual and cross-lingual within
these three datasets, including various linguistics
distances with the source languages — from Nige-
rian Pidgin (pcm) to obscure regional languages
such as Batak (btw), Hausa (hau), and Guarani
(grn) —, broad linguistic and geographic diversity
—the low-resource languages under study covers
>10 language families from three different conti-
nents —, and the incorporation of different scripts

between source and target languages — in the case
of Amharic as a low-resource language and Arabic
as a higher-resource language —. We leave the
study of other and broader scales of low-resource
languages for future work.

Choice of Multilingual High-Resource Lan-
guage Datasets Prior work on X-ICL with
alignment (Tanwar et al., 2023) conduct their
study on Multilingual Amazon Review Corpus
(MARC) (Keung et al., 2020), Cross-language Sen-
timent (CLS) (Prettenhofer and Stein, 2010), and
HatEval (Basile et al., 2019). We considered us-
ing these datasets as our high-resource languages
dataset. Nonetheless, we found that both MARC
and CLS datasets are no longer available 4, leav-
ing us with only HatEval dataset. Since HatEval
only covers English and Spanish, we do not in-
corporate it in our study. Instead, we incorporate
the TweetSentimentMultilingual dataset (Barbieri
et al., 2022) which covers 7 relatively high-resource
languages in our study. We leave the exploration
of other high-resource languages to future work.

Task Coverage Given the nature of low-resource
languages, there are only a handful of datasets avail-
able as downstream tasks. We suggest future works
to explore the generalization of our approach to a
broader task coverage, especially on datasets that
cover more culturally relevant nuances of the corre-
sponding low-resource language (Aji et al., 2022b;
Kabra et al., 2023; Lovenia et al., 2024).

Exploration on Other LLMs We conduct our
experiments with a single RTX3090 (24GB) GPU.
Due to the large cost of inference and limited com-
putation budget, we do not experiment on larger
multilingual LLMs such as Falcon (Almazrouei
et al., 2023) and MPT (Team, 2023). Nonetheless,
exploration on incorporating ICL and X-ICL with
random exemplar retrieval with larger LLMs and
the scaling effect on low-resource settings, such as
low-resource languages and code-switching, have
been discussed in prior works (Zhang et al., 2023;
Asai et al., 2023; Cahyawijaya et al., 2024). We
hypothesize that the scaling behavior of our work
will follow the same trend.

4We checked the MARC dataset from the Hugging Face
hub URL (https://huggingface.co/datasets/amazon_
reviews_multi) and the original Amazon Web Service
S3 Bucket (https://s3.console.aws.amazon.com/s3/
buckets/amazon-reviews-ml). While for the CLS dataset,
we checked the original dataset link in the paper (http:
//www.webis.de/research/corpora/webis-cls-10/).

https://huggingface.co/datasets/amazon_reviews_multi
https://huggingface.co/datasets/amazon_reviews_multi
https://s3.console.aws.amazon.com/s3/buckets/amazon-reviews-ml
https://s3.console.aws.amazon.com/s3/buckets/amazon-reviews-ml
http://www.webis.de/research/corpora/webis-cls-10/
http://www.webis.de/research/corpora/webis-cls-10/
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A Languages Under Study

We conduct experiments on 32 languages, with 25 low-resource languages and 7 relatively high-resource
languages. We provide the detailed list of all the languages under study in Table 3.

Language Language Dataset Test Geographic Language %BLOOM %XGLM
Code Name Name Size Region Family Pretraining Pretraining

btk Batak NusaTranslation 1200 South-East Asia Austronesian - -
sun Sundanese NusaTranslation 1200 South-East Asia Austronesian - -
jav Javanese NusaTranslation 1200 South-East Asia Austronesian - -

mad Madurese NusaTranslation 1200 South-East Asia Austronesian - -
mak Makassarese NusaTranslation 1200 South-East Asia Austronesian - -
min Minangkabau NusaTranslation 1200 South-East Asia Austronesian - -

amh Amharic MasakhaNews 376 Africa Afro-Asiatic - -
hau Hausa MasakhaNews 637 Africa Afro-Asiatic - -
ibo Igbo MasakhaNews 390 Africa Niger-Congo 0.00% -
lug Luganda MasakhaNews 223 Africa Niger-Congo 0.00% -
pcm Nigerian Pidgin MasakhaNews 305 Africa English Creole - -
sna chiShona MasakhaNews 369 Africa Niger-Congo - -
swa Kiswahili MasakhaNews 476 Africa Niger-Congo 0.01% 0.25%
xho isiXhosa MasakhaNews 297 Africa Niger-Congo 0.00% -
yor Yorùbá MasakhaNews 411 Africa Niger-Congo 0.01% -

aym Aymara AmericasNLI 750 South America Aymaran - -
bzd Bribri AmericasNLI 750 South America Chibchan - -
cni Asháninka AmericasNLI 750 South America Arawak - -
grn Guaraní AmericasNLI 750 South America Tupian - -
hch Wixarika AmericasNLI 750 South America Uto-Aztecan - -
nah Nahuatl AmericasNLI 738 South America Uto-Aztecan - -
oto Otomí AmericasNLI 748 South America Oto-Manguean - -
quy Quechua AmericasNLI 750 South America Quechuan - 0.01%
shp Shipibo-Konibo AmericasNLI 750 South America Pano-Tacanan - -
tar Rarámuri AmericasNLI 750 South America Uto-Aztecan - -

arb Arabic TweetSentimentMultilingual 870 Northern Africa Afro-Asiatic 4.64% 0.75%
fra French TweetSentimentMultilingual 870 Europe Indo-European 12.90% 3.00%
deu German TweetSentimentMultilingual 870 Europe Indo-European - 3.50%
hin Hindi TweetSentimentMultilingual 870 Central Asia Indo-European 1.53% 1.00%
ita Italian TweetSentimentMultilingual 870 Europe Indo-European - 1.50%
por Portuguese TweetSentimentMultilingual 870 Europe Indo-European 4.91% 2.25%
spa Spanish TweetSentimentMultilingual 870 Europe Indo-European 10.85% 3.25%

Table 3: List of languages under study. "-" denotes the language is not on the pre-training dataset, while 0.00%
denotes a very small percentage (<0.01%) of the pre-training data is in that language.



B Alignment Prompt

We showcase the example prompt for cross-lingual in-context learning, in-context label alignment, and
in-context query alignment in Figure 10.

Figure 10: Example prompt for in-context label alignment and in-context query alignment.

C Analysis on Cross-lingual Semantic Similarity
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Figure 11: (top) Correlation of cross-lingual similarity with the correct label for the XLMR STS model. (bottom)
Correlation of monolingual similarity with the correct label for the XLMR STS model.

We showcase that the semantic representation for these languages might not be well aligned with the
high-resource languages. We construct sentence similarity dataset covering 26 languages by utilizing
the translation samples from two machine translation datasets, i.e., MAFAND (Adelani et al., 2022a)
and NusaX-MT (Winata et al., 2022b). We create a balanced dataset with 50% positive pairs and 50%
negative pairs over all 26 languages. We measure the cross-lingual semantic similarity performance of
using Sentence Transformers (Reimers and Gurevych, 2019). We also conduct monolingual semantic
similarity analysis for various languages using the data from SemEval 2024 Task 12: Textual Semantic
Relatedness dataset 5. For the monolingual semantic similarity we add additional word frequency features
including bag-of-words and TF-IDF to improve the retrieval quality of the semantic similarity model.

As shown in Figure 11, both monolingual and cross-lingual semantic similarity on more low-resource
languages are generally yield a much lower correlation which signifies the limitation of the sentence

5https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024

https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024


embedding model to represent the sentences on these languages. Nevertheless, for monolingual semantic
similarity, it is possible to improve the similarity on these low-resource languages with minimal trade
off on the other language by employing character/word frequency features to support the semantic
similarity model. With that in mind, we explore an alternative approach for cross-lingual retrieval by
using monolingual semantic similarity and an external parallel corpus. We called this semantic similarity
method as translation semantic similarity. The comparison of cross-lingual retrieval using cross-lingual
semantic similarity and translation semantic similarity is shown in Figure 12.

Figure 12: We explore two semantic similarity methods for cross-lingual exemplar retrieval in X-ICL, i.e., cross-
lingual semantic similarity and translation semantic similarity (T-ICL).

Language Label Set

eng business entertainment health politics religion sports technology
hau kasuwanci nishadi lafiya siyasa addini wasanni fasaha
ibo azumahia nturundu ahuike ndoro ndoro ochichi okpukpere chi egwuregwu teknuzu
lug bizinensi okwesanyusa obulamu ebyobufuzi eddiini ebyemizannyo tekinolojiya
pcm business entertainment health politics religion sports technology
sna business varaidzo utano zvematongerwo enyika chitendero mitambo teknolojia
swa biashara burudani afya siasa dini michezo teknolojia
xho ishishini ukuzonwabisa impilo kwezopolitiko unqulo ezemidlalo iteknoloji
yor is.owo Idanilaraya ilera oselu esin idaraya ona ero

Table 4: Label set for each language of the MasakhaNews dataset.



D Language Label

We provide the label set in the source and target
languages used in all the languages under study
in MasakhaNews, NusaTranslation, AmericasNLI,
and TweetSentimentMultilingual on Table 4, Ta-
ble 6, Table 7, and Table 5, respectively.

Language Label Set

eng negative neutral positive

fra négatif neutre positif
deu negativ neutral positiv
ita negativo neutro positivo
por negativo neutro positivo
spa negativo neutral positivo

Table 5: Label set for each language in the TweetSenti-
mentMultilingual dataset.

Language Label Set

eng negative neutral positive
ind negatif netral positif
btk negatif netral positif
sun negatif netral positif
jav negatif netral positif

mad negatif netral positif
mak negatif netral positif
min negatif netral positif

Table 6: Label set for each language of the NusaTrans-
lation dataset.

Language Label Set

eng entailment neutral contradiction
spa vinculación neutral contradicción
aym vinculación niwtrala contradicción
bzd - - -
cni - - -
grn vinculación ñemombyte contradicción
hch - - -
nah - - -
oto vinculación neutral contradicción
quy hukllanakuy chawpi contradicción
shp - - -
tar - - -

Table 7: Label set for each language of the AmericasNLI
dataset.



E Effect of Machine Translation Quality to X-ICL

Dataset Language Language chrF++ XGLM BLOOMZ

Code Name (xxx2eng) Zero-Shot (MT) ICL (MT) Zero-Shot (MT) ICL (MT)

NusaTranslation min Minangkabau 60.30 68.32 67.28 67.26 76.83
NusaTranslation sun Sundanese 60.7 71.58 70.78 76.31 80.53
NusaTranslation jav Javanese 61.4 71.26 68.35 73.89 78.95

AmericasNLI aym Aymara 31.7 16.94 34.52 16.66 35.8
AmericasNLI quy Quechua 32.7 16.66 37.24 16.66 39.19
AmericasNLI grn Guaraní 47.6 16.66 34.42 16.66 37.79

TweetSentiMulti spa Spanish 58.3 42.14 45.38 45.47 55.8
TweetSentiMulti ita Italian 60.6 39.61 43.39 45.04 54.51
TweetSentiMulti arb Arabic 64.6 33.97 50.66 35.73 55.28
TweetSentiMulti hin Hindi 65. 32.11 40.43 35.09 45.40
TweetSentiMulti deu German 66.70 36.37 45.07 42.98 51.10
TweetSentiMulti fra French 67.20 36.91 41.87 40.22 55.73
TweetSentiMulti por Portuguese 70.60 39.04 45.02 42.21 53.42

MasakhaNews yor Yorùbá 43.80 45.69 74.62 75.42 81.64
MasakhaNews lug Luganda 44.90 34.71 59.98 70.54 62.82
MasakhaNews sna chiShona 49.20 60.53 72.80 68.71 73.85
MasakhaNews ibo Igbo 52.50 44.32 73.79 71.69 77.21
MasakhaNews hau Hausa 55.30 43.99 59.74 67.30 67.19
MasakhaNews amh Amharic 58.10 62.88 81.40 82.73 84.92
MasakhaNews xho isiXhosa 58.50 33.41 65.66 58.36 63.30
MasakhaNews swa Kiswahili 63.50 52.03 67.10 75.49 71.42

Pearson Correlation w/ chrF++ 0.416 0.102 0.247 0.238

Table 8: Performance of NLLB 1.3B model on FLORES-200 with the machine-translated zero-shot and few-shot
ICL performance of XGLM and BLOOMZ using the corresponding NLLB translation.

We showcase that the MT model performance plays a huge role in determining the language understand-
ing quality through machine translation (MT). We showcase the MT model performance on the devtest
subset of FLORES-200 (Goyal et al., 2022) along with the zero-shot with MT and few-shot ICL with
MT performance in Table 8. The zero-shot (MT) performance has a low-to-moderate correlation with the
machine translation quality (chrF++) of the model (0.416 for XGLM and 0.247 for BLOOMZ), while
the few-shot ICL (MT) has a lower correlation (0.102 for XGLM and 0.238 for BLOOMZ) potentially
due to the effect of other factors such as the semantic similarity exemplar selection and the quality of
the ICL data itself. Our result indicates that, despite being effective for language understanding, the
MT-based zero-shot and few-shot inference approach depends on the quality of the machine translation
models. Moreover, an MT-based solution might not work as well for cultural-specific tasks which have
been addressed in various works (Kabra et al., 2023; Koto et al., 2023; Wibowo et al., 2023).



F Effects of Source Languages

We explore alternative source languages for NusaTranslation (Cahyawijaya et al., 2023b). For NusaTrans-
lation we utilize Indonesian as the source language because Indonesian is the closely related to the
languages under study on the corresponding dataset and is widely spoken languages in the respective
region. We modify both the prompt language and the source ICL dataset Dsrc.

The result is shown in Figure 13. We can clearly see that in most cases, using English as the source
language tends to produce better score than these closely related languages. Similar observation is also
reported in prior works (Cahyawijaya et al., 2023a; Asai et al., 2023) which evaluates the prompt using
different prompt language. Our experiment further extend the generalization to the X-ICL setting, where
X-ICL using English exemplars outperforms X-ICL with a more closely related languages exemplars.
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Figure 13: Performance of BLOOM-7B1 on NusaTranslation using (top) English prompt with English ICL
exemplars and (bottom) Indonesian prompt with Indonesian ICL exemplars.



G Visualization of BLOOM Result
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Figure 14: Performance of BLOOM-7B1 with in-context label alignment, target-only label, and source-only label
on (left) higher-resource, (center) low-resource African, and (right) low-resource American languages.
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Figure 15: Performance of BLOOM-7B1 with and without query alignment on (left) higher-resource, (center)
low-resource African, and (right) low-resource American languages.
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Figure 16: ∆Weighted F1 of (left) in-context label alignment and (right) in-context query alignment against
non-alignment baseline. A score < 0 indicates the in-context alignment degrades the performance.

H Detailed Per Dataset Results

The detailed the main results for each different inference type for XGLM-7.5B in Table 9, Table 10,
Table 11, and Table 12 for TweetSentimentMultilingual MasakhaNews, NusaTranslation, AmericasNLI,
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Figure 17: Performance of BLOOM-7B1 with different alignment formats ordered by the degree of formatting
consistency on (1) higher-resource languages, (2) low-resource Indonesian languages, (3) low-resource American
languages, and (4) low-resource African languages.
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Figure 18: Performance of BLOOM-7B1 with different in-context learning retrievals covering monolingual, cross-
lingual, translation semantic similarity on (1) higher-resource languages, (2) low-resource Indonesian languages, (3)
low-resource American languages, and (4) low-resource African languages.

respectively. The detailed results for each different inference type for BLOOM-7B1 in Table 13, Table 14,
Table 15, and Table 16 for TweetSentimentMultilingual MasakhaNews, NusaTranslation, AmericasNLI,
respectively.

Inference Type arb deu fra hin ita por spa

Zero-Shot
Source-Only Label 38.19 39.82 32.82 32.09 38.39 44.83 51.04

+ Query Alignment 38.28 43.28 40.27 34.18 38.58 43.39 42.15
Target-Only Label 34.44 48.99 39.86 19.12 42.25 36.85 47.88
Label Alignment 21.15 35.41 27.97 28.50 31.85 28.82 30.18

Zero-Shot (MT) 33.97 36.37 36.91 32.11 39.61 39.04 42.14
ICL Random 40.39 38.94 36.50 36.16 37.10 36.85 44.66
ICL SBERT 46.60 45.56 54.04 34.02 48.43 51.01 45.90
ICL SBERT (MT) 50.66 45.07 41.87 40.43 43.39 45.02 45.38
X-ICL Random 35.53 40.16 37.38 32.49 40.98 39.46 39.83
X-ICL SBERT

Source-Only Label 49.21 47.35 42.80 38.15 47.24 48.01 47.67
+ Query Alignment 45.28 48.85 46.35 39.62 44.83 50.65 44.20

Target-Only Label 47.88 45.05 43.37 37.23 42.99 46.40 42.58
Label Alignment 29.51 27.15 37.97 30.10 44.50 40.91 31.96

Table 9: Experiment results for XGLM-7.5B on TweetSentimentMultilingual dataset. "-" denotes the experiment is
not conducted due to no machine translation system is available.



Inference Type amh hau ibo lug pcm sna swa xho yor

Zero-Shot
Source-Only Label 17.62 32.64 51.11 22.80 57.07 42.66 49.93 28.60 54.96

+ Query Alignment 25.79 36.81 59.07 39.51 72.65 42.68 58.12 21.97 48.28
Target-Only Label 11.92 7.36 3.72 13.94 58.59 15.25 53.29 2.11 12.88
Label Alignment 10.19 7.08 4.19 14.40 60.63 19.18 47.46 22.12 17.80

Zero-Shot (MT) 62.88 43.99 44.32 34.71 56.73 60.53 52.03 33.41 45.69
ICL Random 20.36 37.92 63.33 38.93 83.01 43.03 65.62 49.26 65.65
ICL SBERT 60.75 61.39 69.86 48.23 93.02 59.56 73.07 43.79 70.84
ICL SBERT (MT) 81.40 59.74 73.79 59.98 87.20 72.80 67.10 65.66 74.62
X-ICL Random 24.11 38.01 62.32 46.23 85.38 51.70 58.98 47.79 66.77
X-ICL SBERT

Source-Only Label 55.18 37.08 64.28 46.95 88.27 41.87 63.05 49.10 65.74
+ Query Alignment 51.43 40.53 62.05 44.70 86.61 44.58 65.59 40.27 57.24

Target-Only Label 53.06 19.19 27.87 27.99 88.59 25.49 37.02 25.71 31.64
Label Alignment 10.19 13.79 6.40 12.35 90.88 12.71 62.73 21.41 16.00

Table 10: Experiment results for XGLM-7.5B on MasakhaNews dataset. "-" denotes the experiment is not conducted
due to no machine translation system is available. SBERT denotes exemplar selection using a semantic similarity
model.

Inference Type btk jav mad mak min sun

Zero-Shot
Source-Only Label 58.60 62.92 60.75 55.90 64.29 63.67

+ Query Alignment 52.60 62.77 56.74 49.50 63.51 57.08
Target-Only Label 41.63 47.52 45.85 47.53 42.20 43.12
Label Alignment 30.58 28.17 31.81 37.79 28.59 29.83

Zero-Shot (MT) - 71.26 - 60.68 68.32 71.58
ICL Random 59.68 60.85 59.28 60.83 62.91 59.52
ICL SBERT 59.59 60.84 60.81 62.39 66.11 61.68
ICL SBERT (MT) - 68.35 - 59.61 67.28 70.78
X-ICL Random 60.54 61.74 63.02 58.21 63.87 61.66
X-ICL SBERT

Source-Only Label 60.69 62.83 59.78 60.30 63.95 62.44
+ Query Alignment 52.41 60.38 53.06 52.77 61.36 56.62

Target-Only Label 56.02 59.57 56.83 48.61 64.80 59.35
Label Alignment 55.60 61.13 57.45 55.10 62.52 58.42

Table 11: Experiment results for XGLM-7.5B on NusaTranslation dataset. "-" denotes the experiment is not
conducted due to no machine translation system is available. SBERT denotes exemplar selection using a semantic
similarity model.



Inference Type aym bzd cni grn hch nah oto quy shp tar

Zero-Shot
Source-Only Label 16.68 16.66 16.66 16.61 17.68 18.88 19.31 16.66 17.62 16.66

+ Query Alignment 29.56 30.79 28.04 29.15 32.07 33.05 32.23 33.77 32.33 30.82
Target-Only Label 19.88 - - 17.79 - - 17.69 22.63 - -
Label Alignment 22.31 - - 17.90 - - 25.52 29.17 - -

Zero-Shot (MT) 16.94 - - 16.66 - - - 16.66 - -
ICL Random 32.43 28.66 30.42 29.91 29.15 32.70 29.63 32.98 30.28 31.74
ICL SBERT 34.65 28.26 30.62 34.34 31.10 33.89 28.02 32.64 28.90 30.97
ICL SBERT (MT) 34.52 - - 34.42 - - - 37.24 - -
X-ICL Random 28.96 32.55 30.72 28.95 33.01 33.55 28.88 34.78 32.16 31.43
X-ICL SBERT

Source-Only Label 33.20 33.99 31.99 33.88 31.00 30.80 30.97 34.24 26.95 32.74
+ Query Alignment 35.30 32.83 35.60 32.71 33.04 28.05 31.02 34.29 30.57 32.97

Target-Only Label 30.58 - - 34.76 - - 31.19 28.32 - -
Label Alignment 25.30 - - 17.37 - - 25.79 25.61 - -

Table 12: Experiment results for XGLM-7.5B on AmericasNLI dataset. "-" denotes the experiment is not conducted
due to no machine translation system is available.

Inference Type arb deu fra hin ita por spa

Zero-Shot
Source-Only Label 43.77 39.40 45.62 35.75 46.98 44.28 44.84

+ Query Alignment 43.51 40.38 42.96 37.45 40.98 49.85 47.64
Target-Only Label 33.59 28.30 29.85 26.28 36.68 35.23 48.37
Label Alignment 37.86 36.60 24.80 28.86 27.10 31.47 41.44

Zero-Shot (MT) 35.73 42.98 40.22 35.09 45.04 42.21 45.47
ICL Random 41.71 50.44 37.72 37.24 49.86 48.58 51.10
ICL SBERT 51.17 55.83 57.67 38.27 51.81 57.68 60.28
ICL SBERT (MT) 55.28 51.10 55.73 45.40 54.51 53.42 55.83
X-ICL Random 44.50 45.54 45.56 37.79 50.52 49.26 54.71
X-ICL SBERT

Source-Only Label 55.52 52.14 53.22 43.53 53.69 58.20 56.73
+ Query Alignment 45.38 46.03 47.01 43.65 41.19 52.38 53.46

Target-Only Label 44.61 47.99 45.45 38.57 54.85 54.84 49.41
Label Alignment 29.99 22.32 32.98 33.18 29.80 52.45 22.36

Table 13: Experiment results for BLOOM-7B1 model on TweetSentimentMultilingual dataset. "-" denotes the
experiment is not conducted due to no machine translation system is available.



Inference Type amh hau ibo lug pcm sna swa xho yor

Zero-Shot
Source-Only Label 15.47 47.45 62.58 52.46 86.14 49.12 73.12 27.49 68.75

+ Query Alignment 43.33 45.99 71.56 51.43 89.22 38.83 71.87 24.61 73.66
Target-Only Label 10.72 9.34 17.11 14.36 86.53 16.18 14.73 3.44 15.97
Label Alignment 12.10 11.48 18.04 8.81 77.86 32.95 11.49 15.18 17.01

Zero-Shot (MT) 82.73 67.30 71.69 70.54 84.50 68.71 75.49 58.36 75.42
ICL Random 26.74 42.29 73.91 45.04 85.46 49.53 73.59 36.86 72.71
ICL SBERT 61.84 60.77 79.24 49.86 92.19 66.67 74.57 43.63 79.28
ICL SBERT (MT) 84.92 67.19 77.21 62.82 90.23 73.85 71.42 63.30 81.64
X-ICL Random 18.57 45.50 72.59 48.92 91.98 52.54 64.99 38.98 73.45
X-ICL SBERT

Source-Only Label 47.35 39.04 69.56 48.41 89.54 44.62 65.10 44.04 68.20
+ Query Alignment 36.09 42.43 63.76 45.88 84.34 46.71 69.99 21.78 65.26

Target-Only Label 53.33 18.98 36.25 25.50 89.54 28.02 39.94 20.47 34.63
Label Alignment 23.87 11.82 16.45 7.20 88.23 14.23 32.60 14.29 35.42

Table 14: Experiment results for BLOOM-7B1 model on MasakhaNews dataset. "-" denotes the experiment is not
conducted due to no machine translation system is available.

Inference Type btk jav mad mak min sun

Zero-Shot
Source-Only Label 65.58 69.00 67.78 69.24 72.17 71.80

+ Query Alignment 65.50 71.13 67.20 61.87 72.14 73.98
Target-Only Label 66.76 68.22 67.22 64.21 67.79 68.12
Label Alignment 61.62 60.77 59.31 58.57 62.25 60.89

Zero-Shot (MT) - 73.89 - 57.87 67.26 76.31
ICL Random 65.68 68.40 65.33 62.84 70.45 65.32
ICL SBERT 62.84 72.70 64.38 61.77 76.27 75.04
ICL SBERT (MT) - 78.95 - 67.56 76.83 80.53
X-ICL Random 68.32 73.05 69.17 65.15 74.60 72.33
X-ICL SBERT

Source-Only Label 67.04 70.86 68.79 67.49 75.45 70.97
+ Query Alignment 67.18 68.30 66.24 64.39 70.10 69.47

Target-Only Label 59.99 69.00 62.48 61.28 72.53 71.40
Label Alignment 48.97 43.81 47.30 34.98 64.47 55.31

Table 15: Experiment results for BLOOM-7B1 model on NusaTranslation dataset. "-" denotes the experiment is not
conducted due to no machine translation system is available.



Inference Type aym bzd cni grn hch nah oto quy shp tar

Zero-Shot
Source-Only Label 16.66 16.66 16.66 16.66 16.66 16.66 16.62 16.66 16.66 16.66

+ Query Alignment 19.87 18.07 19.57 18.13 22.57 19.58 18.51 19.52 20.15 20.14
Target-Only Label 26.88 - - 19.52 - - 17.86 20.62 - -
Label Alignment 16.66 - - 19.03 - - 26.55 16.86 - -

Zero-Shot (MT) 16.66 - - 16.66 - - - 16.66 - -
ICL Random 32.99 30.68 30.79 33.40 28.02 32.67 33.29 30.64 32.24 31.63
ICL SBERT 33.55 32.84 30.51 37.08 31.85 31.17 29.74 34.62 29.82 33.05
ICL SBERT (MT) 35.80 - - 37.79 - - - 39.19 - -
X-ICL Random 32.33 28.98 31.12 30.42 33.67 30.39 30.77 30.22 33.50 26.32
X-ICL SBERT

Source-Only Label 36.99 34.12 34.28 32.93 34.90 32.38 30.57 34.34 32.80 35.49
+ Query Alignment 34.07 34.69 34.29 38.55 31.72 32.85 34.15 31.02 32.94 32.67

Target-Only Label 36.12 - - 28.67 - - 32.74 31.57 - -
Label Alignment 18.41 - - 17.48 - - 18.35 20.55 - -

Table 16: Experiment results for BLOOM-7B1 model on AmericasNLI dataset. "-" denotes the experiment is not
conducted due to no machine translation system is available.


