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Abstract

Recently, retrieval-based in-context learning
(ICL) methods for selecting demonstrations
have been widely investigated. Existing meth-
ods train a dense retriever to retrieve the most
appropriate demonstrations for a given test
query, which improves ICL performance. How-
ever, we find that distinct LLMs exhibit dif-
ferent biases for “what is a good demonstra-
tion" since they possess differences in train-
ing data, model architectures and training
methods. As a result, a demonstration suit-
able for one LLM may not be appropriate
for others. Previous approaches ignore the
model bias and fail to retrieve the most ap-
propriate demonstrations for different infer-
ence LLMs, resulting in a degradation of ICL
performance. To address this problem, we
propose a simple yet effective metric to eval-
uate the appropriateness of demonstrations
for a specific inference LLM. Furthermore,
we introduce a Model-specific Demonstration
Retrieval (MDR) method for ICL at inference
time, which considers the biases of different
LLMs. We test MDR on seen and unseen
tasks with multi-scale inference LLMs, such
as GPT-Neo-2.7B, LLaMA-7B and Vicuna-13B.
Experiments on 23 datasets across 11 data do-
mains highlight the remarkable effectiveness
of MDR, showcasing improvements of up to
41.2% in comparison to methods that neglect
model biases. Our code will be publicly avail-
able at: https://github.com/kiming-ng/MDR.

1 Introduction

Large Language Models (LLMs) such as
GPT-3 (Brown et al., 2020), have emerged impres-
sive abilities of handling a wide range of tasks.
In-context Learning (ICL) (Brown et al., 2020), a
new learning paradigm, allows LLMs to perform
multi-tasks by observing a few demonstrations,
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Figure 1: Experimental results of a tailored retriever
trained on one LM and tested on an unseen dataset with
different inference LLMs. The slashed box represents
the improvement brought by MDR.

without requiring any updates to the model param-
eters (Brown et al., 2020; Wei et al., 2022b; Liu
et al., 2021; Lester et al., 2021). In practice, ICL
typically uses a concatenation of a short sequence
of annotated in-context examples known as demon-
strations and a test query with its task-specific in-
struction. It offers a promising alternative to su-
pervised fine-tuning since it greatly reduces the
amount of required labeled data.

The quality of the selected demonstrations plays
a crucial role in ICL (Liu et al., 2022; Min et al.,
2022). To improve ICL’s performance, given
a test query, previous works mainly construct a
demonstration pool and retrieve the most textual
or semantically similar demonstrations by using
BM25 (Robertson and Zaragoza, 2009), Sentence-
BERT (Reimers and Gurevych, 2019) or other off-
the-shelf sentence embeddings, which outperforms
random selection. But these approaches are heuris-
tic and sub-optimal as they lack guidance from
task supervision. Alternatively, another approaches
utilize the feedback signals of a Language Model
(LM), referred to as the scoring LM, to identify pos-
itive and negative demonstrations. Subsequently,
they employ a two-encoder retriever, where one
encoder encodes the test query and the other en-
codes the demonstrations. The retriever is trained
using contrastive learning to optimize the similarity
between the test query and positive demonstrations,
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simultaneously minimizing it for negative demon-
strations. During inference, the demonstrations
exhibiting the highest similarity are retrieved and
concatenated with the test query to form the model
input. This approach has shown better performance
in specific task domains, such as question answer-
ing (Das et al., 2021) and semantic parsing (Rubin
et al., 2022). Recent efforts have shifted towards
cross-task prompt retrieval (Cheng et al., 2023)
and unified multi-task retrieval (Li et al., 2023)
by incorporating signals from various tasks across
multiple data domains to train one retriever, which
has demonstrated impressive improvements.

However, distinct LLMs exhibit different bi-
ases (Mao et al., 2023; Lu et al.) for “what is a
good demonstration" since they possess differences
in training data, model architectures and training
methods. As a result, a demonstration suitable for
one LLM may not be appropriate for others. We
conclude that existing methods fail to retrieve the
most appropriate demonstrations for different in-
ference LLMs. There are two key factors: (i) Bias
Introduced in Training Phase: Previous methods
solely rely on one scoring LM to identify positive
and negative demonstrations. The inherent bias of
the scoring LM can impact this identification pro-
cess, potentially introducing noise to the retriever
training. Consequently, this may lead to the re-
trieval of bad demonstrations when inference on
different LLMs. (ii) Bias Neglected in Inference
Phase: A high-quality demonstration should not
only exhibit similarity to the test query, but also
align with the bias of the inference model. Previous
methods employ the similarity-based extraction of
demonstrations, which greatly neglect the inference
model’s bias. To test the bias issue, we train 3 tai-
lored retrievers on RTE dataset using three different
scoring LMs, including GPT-Neo-2.7B, LLaMA-7B
and Vicuna-13B. Then we test the performance
of each retriever on SST2 dataset under different
inference LLMs, respectively. As shown in Fig 1,
the one-to-one corresponding scoring LM and in-
ference LLM perform the best while performances
on different inference LLMs can be inferior, which
illustrates that using a single scoring LM for vari-
ous inference LLMs limits the performance of ICL.
Since training multiple retrievers for multiple infer-
ence LLMs is costly, retrieving demonstrations that
meet inference model’s bias at inference stage is
crucial to improve the ICL performance. However,
directly estimating and evaluating the model bias is
impractical, the evaluation of a demonstration’s ap-

propriateness for a specific inference LLM remains
a challenging and under-explored aspect in ICL.

To address this limitation, we propose a simple
yet effective eigenvalue-based evaluation metric
to assess the appropriateness of demonstrations
for a specific inference LLM. Based on this met-
ric, we further propose MDR, a Model-specific
Demonstration Retrieval (MDR) method for ICL
at inference time. Given a pre-trained demonstra-
tion retriever, MDR retrieves the most appropriate
demonstrations from a pre-constructed demonstra-
tion pool for a given test query and a specific infer-
ence LLM. Results in Fig 1 verify that MDR is ef-
fective of mitigating the bias issue by reducing the
performance gap between the corresponding and
the non-corresponding scoring-inference LLMs.

To evaluate MDR’s generalization across di-
verse models, we test MDR on a variety of seen
and unseen tasks with different LLMs at inference
time. The outcomes highlight the effectiveness of
MDR as a simple and straightforward method to
select the most appropriate demonstrations for a
specific LLM without any additional training or
human annotation.

Our contributions are summarized as follows:

• We introduce a novel evaluation metric to mea-
sure the appropriateness of demonstrations for
a specific inference LLM.

• We propose MDR, a simple and effective
framework to retrieve the most appropriate
demonstrations for different inference LLMs,
without any training cost.

• Experiments on 23 datasets across 11 data
domains under various LLMs (2.7B ∼ 13B)
show the validity and scalability of MDR.

2 Task Definition

We aim to improve the performance of ICL by
retrieving the most appropriate demonstrations for
any given task input. Specifically, given a pre-
trained demonstration retriever, a test query xtest
and an inference model LM, we retrieve the top-
K most appropriate demonstrations {pj}Kj=1 from
a pre-constructed demonstration pool P. These
demonstrations are concatenated with the test query
in ICL fashion. Our objective is to optimize the
model prediction y∗test to align with the ground
truth ytest, where y∗test can be denoted by:

y∗test = PLM(y∗test|pK ⊕ ...⊕ p1 ⊕ xtest). (1)

4190



3 Preliminaries

We give a detailed introduction to the framework
of previous retrieval-based methods in this section.
These methods rely on a retriever to retrieve demon-
strations from a demonstration pool. The retriever
is based on a bi-encoder architecture (Rahman and
Ng, 2012) containing two encoders Eq and Ep,
where Eq encodes the test query and Ep encodes
demonstrations. The training and inference phases
of the retriever are outlined as follows.

3.1 Training Phase
Existing works usually use the feedback signal

of a LM to distinguish positive and negative sam-
ples, and train the retriever with contrastive learn-
ing. The details are as follows.

To obtain the training data, a demonstration pool
P is first constructed by selecting a certain number
of data examples from multiple datasets covering
various task types including Reading Comprehen-
sion, Closed-book QA, Paraphrase Detection, etc.
Each data example, consisting of the input text and
its task label, can be denoted as e = (ex, ey).

For each data example e ∈ P, a set of demonstra-
tion candidates {pi}Li=1 is constructed by randomly
selecting L data examples from P. Then a spe-
cific model G, namely the scoring LM, is used to
identify demonstration candidates as positive or
negative. For each candidate pi ∈ {pi}Li=1, ex is
concatenated with pi to form the input of G. Ac-
cording to the task type that e belongs to, the score
of pi respecting to e is calculated as follows:

score (pi, ex) = metric
(
ey, e

∗
y

)
, (2)

where e∗y = PG

(
e∗y|pi ⊕ ex

)
is the prediction of

the scoring LM and metric() is the specific task
metric, such as F1 or Rouge for generation tasks
and accuracy for classification tasks. The demon-
stration candidate with the highest score is identi-
fied as the positive, denoted as p+, while others are
constructed into a negative examples set, denoted
as {p−j }L−1

j=1 .
Based on the training data, previous works uti-

lize InfoNCE loss (van den Oord et al., 2018) to
maximize the similarity score between data exam-
ple e and its positive demonstrations, while mini-
mize it for negative demonstrations:

L(ex, p
+, p−1 , . . . p

−
L−1) (3)

= − log
esim(ex,p+)

esim(ex,p+) +
∑L−1

j=1 esim(ex,p
−
j )

.

The similarity is calculated by:

sim(ex, p) = Eq(ex)
⊤Ep(p) (4)

where Eq encodes ex, Ep encodes the demonstra-
tion p, and p ∈ {p+} ∪ {p−j }L−1

j=1 .

3.2 Inference Phase
Given a test query xtest, the trained retriever is

used to encode xtest and all demonstrations in P,
then generate their embeddings. Previous works
use Maximum Inner-Product or FAISS (Johnson
et al., 2021) to calculate the similarity between the
embeddings of xtest and all demonstrations. As a
result, top-K similar demonstrations are retrieved
and then concatenated with the test query to form
the input of inference models.

We consider that a high-quality demonstrations
should not only exhibit similarity to the test query,
but also align with the model bias. However, pre-
vious works greatly neglect this impact and fail to
retrieve the most appropriate demonstrations for a
specific inference LLM, resulting in a generaliza-
tion degradation.

4 Methodology

Provided by a frozen pre-trained demonstration
retriever R trained on a demonstration pool P, and
various inference models with their parameters, we
aim to retrieve the most appropriate demonstra-
tions from P for a test query to improve the ICL
performance without any retriever parameters up-
dating. To achieve this, in this section, we first
introduce a novel evaluation metric to evaluate the
appropriateness of a demonstration to a specific
inference LLM. Subsequently, we propose an infer-
ence framework named MDR, to re-rank demon-
strations with our proposed evaluation metric.

4.1 Evaluation Metric
Based on ICL, LLMs are able to perform vari-

ous tasks conditioned on a few input-output demon-
strations (Brown et al., 2020). Consequently, the
quality of these demonstrations plays a crucial role
in guiding LLMs to achieve the best generalization
performance effectively (Liu et al., 2022). In this
paper, we assume that a high-quality demonstration
should not only exhibit similarity to the test query
but also align with the preferences of the specific
inference model, which is overlooked by previous
methods. Given a demonstration p = (x, y), one
general indicator capable of reflecting the model’s
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Figure 2: The inference framework of MDR. Given a test query, we first use the trained retriever to select top
K ′ demonstrations from the demonstration pool based on Maximum Inner-Product. Then we score and re-rank
these demonstrations with our proposed evaluation metric given a specific inference LLM. Finally, the top K
demonstrations are concatenated with the test query to guide the inference model in making predictions.

preference for p is the loss J (y, y∗) computed be-
tween the ground truth y and the prediction y∗

generated by the inference model when provided
with x as input. We adopt the per-token negative
log-likelihood as the loss function.

J (y, y∗) = −Ey|x[log pθ(y|x)] (5)

y∗ = PLM(y∗|x). (6)

While a smaller loss may suggest that the demon-
stration is better comprehended by the inference
model, it is not conclusive evidence that it can
serve as a better demonstration in ICL. As claimed
in Zhuo et al. (2023) and Zheng and Saparov
(2023), LLMs are vulnerable to perturbed prompts,
such as minor typos, synonyms, or other common
lexical perturbations. If a demonstration has minor
typos, it is itself not robust to the model. Then,
when it is fed to the model as part of the ICL
prompt, it may cause LLMs to shift their focus
towards the perturbed elements, thus producing
wrong responses (Zhu et al., 2023). On the other
hand, given that Language Generation Models gen-
erate words based on the previous context, an ICL
demonstration carries a blend of contextual infor-
mation across layers (Ferrando et al., 2023). If
the demonstration is not robust to the model, its
meaning space may be distorted by semantic per-
turbations. Such pollution potentially hampers the
natural language understanding capabilities of the
inference model (Zheng and Saparov, 2023), re-
sulting in inferior model performance. Therefore,

a model-preferred demonstration should not only
exhibit a small loss but also demonstrate robustness
to the perturbation. Due to the lack of labeled data
describing the robustness of a demonstration to a
specific inference model, the unsupervised evalua-
tion of robustness can be extremely challenging.

To solve this, we are inspired by Zhao et al.
(2019), who adopt the Fisher Information Matrix
(FIM) of the input sample as a metric tensor to
measure the robustness of deep learning models in
adversarial attack task. Borrowing from this idea,
we define a novel FIM-based matrix H to charac-
terize the vulnerability of a demonstration to the
perturbation in its feature space for a specific model
LM. The matrix H ∈ Rn×n is defined as:

H = ∇xJ (y, y∗)⊤∇xJ (y, y∗), (7)

where n is the hidden dimension of LM and
∇xJ (y, y∗) is the partial differential of J (y, y∗)
respecting to x.

Similar to the conclusion of Zhao et al. (2019),
which quantifies the vulnerability of deep learning
models, we deduce that the maximum eigenvalue
of H, denoted as λmax, reflects the vulnerability of
demonstrations to LM. A smaller λmax indicates a
more robust demonstration with higher resilience
to the perturbation. The expression for λmax can
be written as:

λmax=
1

m

m∑

i=1

(∇xiJ (y, y∗))2, (8)
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where m is the sequence length of x and xi is the
ith token.

We deduce four distinct scenarios based on the
interplay between the loss and λmax. A demonstra-
tion with a large loss and a large λmax indicates
a misfit with the model and should be discarded.
Conversely, a demonstration with a large loss but
a small λmax suggests a potential misalignment
between the model and the demonstration, possi-
bly within a region of flatter gradient, or when the
model is on the verge of a state where the gradi-
ent vanishes at this specific demonstration. On the
other hand, a demonstration exhibiting a small loss
but a large λmax indicates a well-fitted model for
this demonstration. But this data may be outliers
or atypical samples. The model can exhibit high
sensitivity to such demonstration, leading to sig-
nificant output variants even with a slight change
in the input space. Therefore, demonstrations with
both a small loss and a small λmax are considered
as appropriate for LM. Subsequently, we propose
a tuning coefficient C to integrate these two con-
siderations. Given a demonstration p = (x, y), we
present the final expression of the evaluation metric,
denoted as Metric(p):

Metric(p) = C · λmax + (1−C) · J (y, y∗). (9)

In general, using the aforementioned derivation,
a demonstration p = (x, y) can be easily evalu-
ated by three steps. Firstly, input x to the infer-
ence model and calculate the loss J(y, y∗) using
y and the model prediction y∗. Secondly, com-
pute the maximum eigenvalue λmax using Eq 8.
Finally, Metric(p) is derived using J(y, y∗) and
λmax according to Eq 9. demonstrations with a
small Metric(p) are considered as appropriate for
LM.

The significance of the introduced evaluation
metric is that it remains invariant as long as the loss
function keeps unchanged, ensuring stability and
necessitating calculation only once. Moreover, the
computation of Metric(p) is simple and convenient
without any human or machine annotation.

4.2 Inference Framework
Based on the evaluation metric, we further pro-

pose a novel framework, MDR, to evaluate and
retrieve the most appropriate demonstrations for
a specific inference LLM. The overall inference
framework is shown in Figure 2.

Given a test query xtest and a specific inference
model LM, a high-quality demonstration should

be appropriate to both xtest and LM. For the first
consideration, in MDR retrieval stage, we use Eq

to encode test query xtest and Ep to encode each
demonstration in the demonstration pool P, then
retrieve K ′ demonstrations using Maximum Inner-
Product similarity to construct a set of demonstra-
tion candidates {pi}K′

i=1:

{pi}K
′

i=1 = top-K ′
pi∈P sim(xtest, pi). (10)

For the second consideration, we calculate
Metric(pi) for demonstration pi = (xi, yi), i =
(1, 2, ...,K ′) using Eq 9. Then the K ′ demonstra-
tions are re-ranked according to Metric(p) in as-
cending order and the top K (K ≤ K ′) demonstra-
tions are selected:

{pj}Kj=1 = top-K
pj∈{pi}K′

i=1
Metric(pj). (11)

As a result, demonstrations with relatively lower
similarity to the test query may have higher ranks
due to their better appropriateness with LM. We
then concatenate the top K demonstrations with
the test query to form the model input pK ⊕ ...⊕
p1 ⊕ xtest.

5 Experiment Settings

5.1 Implementation Details

In our experiment, for the demonstration re-
triever, we adopt the pre-trained one from UP-
RISE (Cheng et al., 2023), which has been trained
on a diverse set of tasks. The reason we choose
UPRISE is that only UPRISE releases the check-
point of the pre-trained retriever. Furthermore,
CEIL (Ye et al., 2023), UDR (Li et al., 2023), and
UPRISE are all built upon the framework intro-
duced by EPR (Rubin et al., 2022). Given that
UPRISE has been tested in a more comprehensive
scenario, involving both seen and unseen datasets
across 5 models, we have selected it as our primary
baseline method. The training data of UPRISE
contains 30 datasets, resulting in a demonstration
pool of 224k demonstrations. At inference stage,
we evaluate the performance of MDR under three
inference LLMs with different scales, including
GPT-Neo-2.7B, LLaMA-7B, and Vicuna-13B. We
set the number K ′ of the demonstrations retrieved
by similarity to be 20 and K of the concatenated
demonstrations to be 3. For hyper-parameter C, we
set it to be 0.9.
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Classification Tasks
Task WSD NLI Multi Choice Sentiment Classification Avg.Dataset WIC WNLI ANLI WSC273 CMQA Amazon MR RT

Metric acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑

GPT-Neo
(2.7B)

0-Shot 49.68 50.39 32.35 73.62 24.65 35.19 53.60 51.40 46.36
Random 49.52 48.50 26.60 72.52 25.30 34.25 51.55 53.18 44.56
BM25 50.94 50.86 31.80 68.86 24.45 34.05 52.55 65.10 47.33
SBERT 50.00 51.02 31.90 67.76 25.05 35.44 52.84 67.72 47.72
UPRISE 50.15 50.70 33.05 75.09 24.15 36.75 53.30 69.88 49.13
MDR 53.29 51.18 33.20 76.55 25.45 36.75 54.44 71.01 50.23

LLaMA
(7B)

0-Shot 47.96 50.86 33.25 76.92 24.95 30.15 61.05 52.25 47.17
Random 50.40 49.60 33.40 76.92 25.20 30.20 59.59 56.66 47.75
BM25 51.09 50.07 31.60 67.39 24.60 29.25 60.65 71.76 48.30
SBERT 49.68 48.34 31.60 67.39 25.25 30.20 62.74 70.73 48.24
UPRISE 47.49 48.97 33.15 79.85 24.90 32.75 71.50 75.70 51.79
MDR 52.66 51.02 33.70 81.31 25.60 34.75 71.75 77.20 53.50

Vicuna
(13B)

0-Shot 49.92 49.13 32.30 79.12 27.00 32.70 65.40 60.22 49.47
Random 49.40 49.40 32.00 78.38 27.20 35.60 64.00 77.00 51.62
BM25 49.21 48.97 33.00 71.79 28.59 33.20 70.39 86.60 52.72
SBERT 48.90 43.30 33.00 70.69 25.20 33.00 72.20 84.60 51.36
UPRISE 49.21 49.92 33.20 82.78 28.59 37.35 74.30 85.45 55.10
MDR 51.00 51.20 33.20 83.15 28.79 39.40 76.40 86.80 56.24

Generation Tasks
Task Question Answering Translation Text Sum Code Sum

Dataset SQuADv2 Trivia QA WMT14 WMT16 SamSum Java Python
Metric em↑ f1(%)↑ em↑ f1(%)↑ bleu↑ bleu↑ r-1↑ r-2↑ r-l↑ bleu↑ bleu↑

GPT-Neo
(2.7B)

0-Shot 0.10 0.56 0.20 1.34 2.15 2.44 11.60 0.02 11.57 6.91 6.86
Random 6.50 9.27 0.75 3.15 19.63 23.40 11.33 0.11 11.32 6.98 6.63
BM25 17.34 22.48 0.80 4.33 17.87 26.88 11.12 0.32 11.02 7.20 6.59
SBERT 18.00 22.00 1.50 5.82 20.57 27.37 11.33 0.06 11.30 6.93 6.69
UPRISE 31.25 39.60 1.60 5.97 18.79 24.68 11.50 1.09 11.37 7.42 6.91
MDR 32.55 40.30 2.40 8.79 22.55 29.04 11.94 1.31 11.73 7.51 6.97

LLaMA
(7B)

0-Shot 0.00 4.71 0.00 2.46 12.23 11.48 11.24 2.64 10.65 5.20 5.60
Random 0.00 3.31 0.00 2.03 14.36 14.68 11.26 2.25 10.48 6.16 5.36
BM25 0.10 6.04 0.00 2.08 14.28 15.45 12.78 3.63 11.76 7.27 5.79
SBERT 0.00 5.90 0.00 2.40 16.03 15.87 11.38 2.54 10.50 5.88 5.66
UPRISE 0.05 6.36 0.00 2.54 15.75 14.53 11.32 2.53 10.42 6.57 5.76
MDR 0.00 6.40 0.00 8.02 19.36 20.69 15.64 3.95 14.42 7.36 6.08

Vicuna
(13B)

0-Shot 0.00 3.06 0.20 10.40 8.99 28.69 11.59 2.36 10.90 21.63 15.84
Random 2.60 9.70 1.00 5.00 23.50 24.03 19.71 4.51 17.89 23.87 8.42
BM25 2.60 27.07 0.00 9.00 20.76 36.10 19.02 4.95 17.20 20.79 16.08
SBERT 1.60 27.66 0.20 8.92 22.67 33.57 19.34 5.46 17.25 23.58 18.10
UPRISE 0.60 27.59 0.00 10.37 29.65 35.83 20.30 6.12 18.46 25.66 19.83
MDR 0.60 27.95 0.00 10.62 36.07 37.89 20.83 5.63 18.87 26.57 20.22

Table 1: Overall experimental results on unseen datasets. We report F1 score of Rouge-1 (r-1), Rouge-2 (r-2) and
Rouge-L (r-l) on SamSum dataset.

5.2 Datasets

We choose 8 seen datasets from the demonstra-
tion pool and 15 unseen datasets across 8 task types
to test MDR. All datasets are transformed into
natural language instructions using randomly se-
lected instruction templates from FLAN (Wei et al.,
2022a) or UDR (Li et al., 2023). For each dataset,
we report metrics on test set if available, falling
back to the validation set otherwise. For detailed
information, please refer to A.1.

5.3 Baselines

We compare MDR with previous methods. 0-
Shot: The input to the model is the concatena-
tion of the task instruction and the test query only.
Random: We random select the demonstrations.
BM25 (Robertson and Zaragoza, 2009): For each
test query, we use BM25 to retrieve the most similar
demonstrations. SBERT (Reimers and Gurevych,
2019): We use Sentence-Bert to retrieve the most
similar demonstrations. UPRISE (Cheng et al.,
2023): UPRISE is a recently proposed representa-
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tive method for demonstration retrieval. For fair
comparison, we test all baselines on each task un-
der the same experimental settings.

6 Main Results

6.1 Overall

Performance on Unseen Datasets We show the
performance comparison on unseen datasets where
the demonstrations and the test query belong to
different data domains. As shown in Table 1,
MDR outperforms baselines significantly on most
tasks across different inference LLMs. Specially,
compared with 0-Shot, the accuracy of MDR is
improved by up to 44.13% on classification task
(MR) using Vicuna-13B. F1 score is increased by
up to 39.74 points on generation task (SQuADv2)
using GPT-Neo-2.7B. Moreover, when compared
with UPRISE, the performance of MDR is im-
proved by up to 10.8% and 41.2% for classification
task (WIC) and generation task (SamSum) using
LLaMA-7B, respectively. The results verify the ef-
fectiveness of MDR. However, in text generation
tasks, especially in QA, the performance of the
proposed solution does not achieve as high a level
compared to the baselines as in other evaluation
scenarios. We speculate that the task’s inherent
nature may contribute to this difference, and we
intend to investigate this aspect further in future
research.

Performance on Seen Datasets To make a com-
prehensive comparison of MDR on seen datasets
where the demonstrations and the test query belong
to the same data domain, we select 8 representative
datasets covering multiple task types. As shown
in Table 2, MDR exhibits a considerable advan-
tage on most datasets. Specifically, MDR has an
absolute improvement of up to 34.98% when com-
pared with random selection on SQuADv1 dataset
using GPT-Neo-2.7B, and a relative improvement
of up to 6.3% when compared with UPRISE on
COPA dataset using LLaMA-7B. The results prove
the effectiveness of MDR.

6.2 Ablation Study

We perform an ablation study to assess the influ-
ence of various hyper-parameters, including: the
number of top demonstrations retrieved by similar-
ity, denoted by K ′; the number of concatenated
demonstrations, denoted by K; and the hyper-
parameter C.
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Figure 3: Ablation study on concatenated demonstra-
tions number K. The experiments are conducted on
WIC and SamSum with LLaMA-7B.

6.2.1 The impact of K.
To assess the impact of the concatenated demon-

strations number, denoted by K, we conduct a
comparative analysis involving random selection,
BM25, SBERT, and UPRISE. This evaluation is
performed on one classification task, i.e., WIC, and
one generation task, i.e., SamSum, using LLaMA-7B
while keeping other parameters unchanged. Specif-
ically, K ′ is set to be 20. The results are shown in
Figure 3. As K increases, the accuracy rises con-
sistently, indicating that more examples can help
the model do better ICL. Moreover, MDR demon-
strates substantial advantages over the baseline
methods, irrespective of the value of K.

6.2.2 The impact of K ′.
The quantity of top demonstrations, initially se-

lected based on similarity and subsequently evalu-
ated through MDR, significantly influences model
performance. To test the impact of K ′, we conduct
experiments on four distinct datasets: WSC273 and
RT for classification task, Trivia QA and SQuADv2
for generation task using GPT-Neo-2.7B while
maintaining consistent parameter settings. Specif-
ically, K is set to be 3. The results are shown in
Figure 4. Notably, the highest accuracy is achieved
at K ′ = 20. Consistent with the previous analysis,
increasing the value of K ′ provides more oppor-
tunities for demonstrations that are less similar to
the test query but are more compatible with the
inference LLM. However, the performance of the
model does not keep increasing as K increases. It
is explainable since the demonstrations exhibiting
low similarity to the test query may rank higher
after re-ranking. Though these demonstrations may
be more appropriate to the inference model, they
are not appropriate to the test query. Therefore, it’s
essential to keep the balance between the similar-
ity to the test query and the appropriateness to the
model.
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Task NLI Comm Reasoning Para Detection Sentiment CLF Reading Comprehension
Dataset RTE COPA PIQA MRPC SST2 YELP OBQA SQuADv1
Metric acc↑ acc↑ acc↑ acc↑ f1↑ acc↑ acc↑ acc↑ em↑ f1↑

GPT-Neo
(2.7B)

0-Shot 35.74 67.00 68.60 44.11 42.71 51.60 79.00 44.00 0.20 4.82
Random 34.29 68.00 72.60 60.53 71.70 55.40 77.40 45.00 8.00 16.91
UPRISE 62.81 71.00 72.80 73.28 80.28 78.60 93.20 49.20 38.20 49.51
MDR 66.06 75.00 75.40 76.47 83.61 81.00 93.80 49.80 41.80 51.89

LLaMA
(7B)

0-Shot 49.45 67.00 74.80 35.04 15.33 51.00 83.20 47.59 0.00 5.95
Random 47.29 73.00 75.80 58.82 70.62 52.60 79.00 52.00 0.00 4.90
UPRISE 62.81 79.00 77.60 72.54 79.41 83.60 96.60 56.80 0.20 7.21
MDR 65.34 84.00 78.40 76.43 83.67 84.20 97.39 58.80 0.00 7.62

Vicuna
(13B)

0-Shot 53.42 74.00 77.60 51.35 66.01 60.19 78.80 46.00 0.60 9.79
Random 49.45 77.00 77.00 58.08 69.84 77.00 83.00 49.60 0.60 9.27
UPRISE 53.06 86.00 79.00 69.36 77.63 89.20 94.80 61.60 0.60 9.47
MDR 55.23 90.00 81.80 70.58 78.57 90.40 95.60 62.40 0.60 10.70

Table 2: Overall experimental results on seen datasets.

6.2.3 The joint impact of K and K ′.
As K and K ′ jointly impact the final experimen-

tal results, we evaluate the model’s performance
on the WIC dataset using GPT-Neo-2.7B to assess
how increasing both K and K ′ simultaneously on
the same dataset affects the results. All other pa-
rameters remain unchanged. As observed in A.2
Table 7, increasing K from 4 to 10 only brings
marginal improvement, aligning with findings in Li
et al. (2023) and Chen et al. (2023). When K ≤ 10,
the optimal K ′ falls within the range of 15 to 20.
Consequently, selecting K ′ = 20 proves to be the
optimal choice for the retrieval-based ICL.

Additionally, we perform experiments by setting
K = K ′ on WSC273 dataset using GPT-Neo-2.7B
(i.e., MDR only re-ranks the order of demonstra-
tions). As shown in A.2 Table 4, MDR consistently
outperforms baselines as K ′ increases, providing
further validation of the effectiveness of MDR in
evaluating and retrieving model-specific appropri-
ate demonstrations for ICL.

6.2.4 The impact of C.
We apply parameter tuning method to explore

the impact of C for different inference LLMs. Ex-
periments are conducted with C from 0.0 to 1.0 on
one classification dataset, i.e., WSC273, and one
generation dataset, i.e., SQuADv2, while keeping
other parameters unchanged. As shown in Fig 5,
the best accuracy occurs when C = 0.9, indicating
the importance of considering the appropriateness
to the inference model when evaluating the quality
of a demonstration. Additionally, models perform
badly when C = 0.0 and C = 1.0, demonstrating
that solely relying on the loss or the eigenvalue-
based metric is inadequate to measure the appropri-
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ateness of a demonstration for a specific model.
We discover an erratic pattern when C is small,

indicating that loss takes a large proportion in our
metric. Given that loss itself is an uncertainty fac-
tor, the re-rank process can be influenced. This
influence causes the quality of demonstrations to
depend more on similarity in the first step. In such
cases, the performance across different datasets
can suffer from fluctuations since various datasets
retrieve demonstrations with different extents of
similarity. On the other hand, when C increases to
a certain extent (such as between 0.7 and 1.0), the
accuracy on both datasets across all three models
consistently demonstrates a stable improvement.
This illustrates that enhancing the proportion of
robustness can make the re-rank process less sen-
sitive to similarity and become more effective. In
such a scenario, loss, robustness, and similarity can
collaboratively work well. To further validate the
pattern of C, we conduct experiments on two addi-
tional datasets using GPT-Neo-2.7B and LLaMA-7B.
As shown in A.2 Table 8, the accuracy reaches a
peak at 0.8 or 0.9, indicating that increasing C to a
larger value reduces more unstable factors.

7 Related Work

In this section, we introduce previous works
on exploring different strategies for selecting
in-context demonstrations for LLMs. Two pri-
mary types of retrievers for ICL are commonly
used. One is off-the-shelf retrievers, such as fine-
tuned BERT (Liu et al., 2022), BM25 (Robert-
son and Zaragoza, 2009) or SBERT (Reimers and
Gurevych, 2019). The other approaches train a task-
specific retriever using designed signals, such as
question answering (Das et al., 2021), code genera-
tion (Poesia et al., 2022) and dialogue state track-
ing (Hu et al., 2022). In particular, Rubin et al.
(2022) introduce Efficient Prompt Retriever (EPR),
which employs a LM to score demonstrations, and
trains a dense retriever using contrastive learning.
Additionally, Ye et al. (2023) propose CEIL to
select diverse and helpful ICL demonstrations by
using determinantal point processes. Recently, Li
et al. (2023) propose UDR, a unified retriever de-
signed for a wide range of tasks. Unlike UDR,
which focuses on testing on seen tasks, Cheng
et al. (2023) utilize a single retriever for cross-task
and cross-model scenario on unseen tasks. How-
ever, previous studies neglect the biases of different
inference LLMs. In this paper, we fully consider

LLMs biases and strive to retrieve the most ap-
propriate demonstrations for a specific inference
model during inference stage.

8 Conclusion

In this paper, we introduce MDR, a simple yet
effective method to evaluate and retrieve the model-
specific appropriate demonstrations for ICL with-
out re-training the retriever. MDR offers the feasi-
bility of evaluating the appropriateness of a demon-
stration for LLMs without supervision. Moreover,
given a trained retriever, MDR makes it more appli-
cable to use it on various larger inference models.

In summary, MDR offers a promising insight
for enhancing LLMs performance by leveraging
their biases, presenting a notable perspective over
existing retrieval-based methods and even prompt
engineering.

Ethical Considerations

We believe that this study contributes intellec-
tual value to the dependable application of retrieval-
based in-context learning in the field of NLP, with
potential broader implications for tasks in other ar-
eas. It is noteworthy that there are no direct societal
consequences, and all experiments are conducted
on open datasets in this work.

Limitations

Given the constraints of computing power, incor-
porating language models with larger scales poses
a challenge for us. Despite selecting numerous and
diverse tasks in this paper, the chosen set remains
limited. Moreover, while results using automatic
metrics provide a fair assessment of task perfor-
mance, we aim to conduct a human evaluation in
the near future.
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A Appendix

A.1 Datasets
We give detailed split statistics and evaluation

metric for each test datasets. The datasets are col-
lected following FLAN (Wei et al., 2022a) and
UDR (Li et al., 2023). we select 15 unseen datasets
across 8 task types and various data domains from
FLAN (Wei et al., 2022a) and UDR (Li et al., 2023)
to evaluate the performance of MDR , including:

• Word Sense Disambiguation: WIC (Pile-
hvar and Camacho-Collados, 2019).

• Natural Language Inference: WNLI (Wang
et al., 2019) and ANLI (Nie et al., 2020).

• Multi Choice: WSC273 (Levesque et al.,
2012) and Cosmos QA (Huang et al., 2019).

• Sentiment Classification: Amazon (Li et al.,
2023), MR (Li et al., 2023) and Rotten toma-
toes (Pang and Lee, 2005).

• Question Answering: SQuADv2 (Rajpurkar
et al., 2016) and Trivia QA (Joshi et al., 2017).

• Translation: WMT14 (Bojar et al., 2014) and
WMT16 (Bojar et al., 2016).

• Text Summarization: Samsum (Gliwa et al.,
2019).

• Code Summarization: Java (Li et al., 2023)
and Python (Li et al., 2023).

For test efficiency, we limit the test set size of each
dataset. Specifically, we randomly sample a 2000
subset for whose test set size is ≥ 2000 when test-
ing on GPT-Neo-2.7B and 500 for whose test set
size is ≥ 500 when testing on Vicuna-13B. We
randomly sample a 2000 subset for classification
tasks and a 500 subset for generation tasks when
testing on LLaMA-7B. The detailed split statistics
and evaluation metric are shown in Table 3.

Additionally, we select 8 representative datasets
from the demonstration pool as the seen datasets,
including:

• Natural Language Inference: RTE (Ben-
tivogli et al., 2009).

• Commonsense Reasoning: COPA (Roem-
mele et al., 2011) and PIQA (Bisk et al.,
2020).

• Paraphrase Detection: MRPC (Dolan and
Brockett, 2005).

• Sentiment Classification: SST2 (Socher
et al., 2013) and YELP (Zhang et al., 2015).

• Reading Comprehension: OBQA (Mi-
haylov et al., 2018) and SQuADv1 (Rajpurkar
et al., 2016).

Similarly, we limit the test set size of each dataset to
be 500. The detailed split statistics and evaluation
metric are shown in Table 5.

We set the maximum sequence generation length
to be 100. The test process of GPT-Neo-2.7B can
be implemented with only one 3090-24GB. The
memory occupied by LLaMA-7B and Vicuna-13B
is below 70GB, which means that all tests can be
completed with a single A100-80GB.

A.2 Ablation Study
We present the experimental results in this sec-

tion.

A.3 Case Study
To further demonstrate the effectiveness of

MDR, we present the rankings of demonstra-
tions retrieved using the Maximum Inner-Product
method and the rankings after re-ordering by
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Cluster Task Report
Split

TestSize
(GPT-Neo-2.7B)

TestSize
(LLaMA-7B)

TestSize
(Vicuna-13B) Metric

WSD WIC validation 638 638 500 acc

NLI
WNLI train 635 635 500 acc
ANLI train_r1 2000 2000 500 acc

Multi Choice
WSC273 test 273 273 273 acc
CMQA validation 2000 2000 500 acc

Sentiment
Classification

Amazon test 2000 2000 500 acc
MR test 2000 2000 500 acc
RT test 1070 1070 500 acc

Question
Answering

SQuADv2 test 2000 500 500 em

Trivia QA validation 2000 500 500
em
f1

Translation
WMT14 test 2000 500 500 bleu
WMT16 test 2000 500 500 bleu

Text Sum SamSum test 819 500 500
rouge-1
rouge-2
rouge-l

Code Sum
Java test 2000 500 500 bleu

Python test 2000 500 500 bleu

Table 3: The statistics, split and evaluation metrics of unseen datasets.

K=K’ UPRISE MDR

0 72.52
3 75.82 75.82 (+0.00)
5 76.19 76.55 (+0.36)
7 76.92 77.65 (+0.73)
9 76.55 78.30 (+1.75)

11 76.92 77.65 (+0.73)

Table 4: Experimental results on WSC273 dataset using
GPT-Neo-2.7B when K = K ′.

MDR (Table 6). The results demonstrate a sig-
nificant influence of MDR on rankings. Firstly,
demonstration No.144251, initially ranked sec-
ond using similarity-based retrieval, shifts to the
sixth position after re-ranking when applied to
GPT-Neo-2.7B, and further drops beyond the sev-
enth rank on LLaMA-7B. Secondly, the rankings of
the top demonstrations exhibit notable variations.
These results emphasize that demonstrations with
high similarity to the test query do not necessar-
ily align with the model bias. On the contrary,
demonstrations with lower similarity still show the
potential to enhance their rankings after re-ranking
by MDR. Consequently, it becomes crucial to con-

sider model biases during demonstrations retrieval.
MDR furnishes a direct insight into this aspect of
the field.

More specifically, we present the results for a
task query tested on GPT-Neo-2.7B and LLaMA-7B
using UPRISE and MDR, respectively. As shown
in Table 9, for a given test query, UPRISE retrieves
the same demonstrations for different inference
LLMs, resulting in varying predictions. In contrast,
when using MDR, as shown in Table 10, MDR re-
trieves different demonstrations for different infer-
ence models, all of which yield correct answers.
This confirms the effectiveness of MDR.
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Cluster Task Report
Split

TestSize
(GPT-Neo-2.7B)

TestSize
(LLaMA-7B) Metric

NLI RTE validation 500 500 acc

Commonsense
Reasoning

COPA validation 500 500 acc
PIQA validation 500 500 acc

Paraphrase
Detection

MRPC validation 500 500
acc
f1

Sentiment
Classification

SST2 validation 500 500 acc
YELP test 500 500 acc

Reading
Comprehension

OBQA test 500 500 acc

Table 5: The statistics, split and evaluation metrics of seen datasets.

Infer
Model

Retrieval
Phase

Prompt
Attribute

Rank#1
Prompt

Rank#2
Prompt

Rank#3
Prompt

Rank#4
Prompt

Rank#5
Prompt

Rank#6
Prompt

Rank#7
Prompt

/ Similarity-based
Search

id 160353 144251 160717 159436 147132 147879 148630
task yelp sst2 yelp yelp sst2 sst2 sst2

GPT-Neo
(2.7B)

Eigenvalue-based
Re-rank

id 145331 147894 146698 145985 147132 144251 148200
task sst2 sst2 sst2 sst2 sst2 sst2 sst2
score 3.2532 3.2605 3.2899 3.2945 3.3019 3.3052 3.3152

LLaMA
(7B)

Eigenvalue-based
Re-rank

id 147844 145985 146698 151484 147894 149971 147132
task sst2 sst2 sst2 sst2 sst2 sst2 sst2
score 0.3886 0.3929 0.398 0.3996 0.4005 0.4042 0.4069

Table 6: The first line is the top-7 demonstrations extracted by Maximum Inner-Product. The second and third lines
represent the top-7 demonstrations after re-ranking with our proposed eigenvalue-based metric under GPT-Neo-2.7B
and LLaMA-7B.

K\K’ 5 10 15 20 25 30 35 40 45 50
0 49.68
1 52.19 51.80 52.50 52.19 52.35 51.72 51.09 50.94 51.09 51.25
2 52.29 52.97 53.44 54.07 52.97 53.91 53.91 53.60 53.60 50.94
3 52.97 53.29 53.76 54.38 52.97 53.76 53.44 53.44 53.29 53.13
4 53.76 53.29 54.07 53.29 53.29 52.19 52.35 53.29 52.66 52.82
5 52.51 53.61 53.13 54.86 53.61 53.13 53.61 53.13 53.13 52.82
6 / 53.29 53.76 53.29 52.35 53.44 52.66 53.44 53.44 53.60
7 / 54.23 53.76 54.38 52.19 53.13 52.97 53.29 53.13 53.13
10 / 53.44 53.13 54.07 52.35 52.19 52.66 52.66 53.13 53.13
12 / / 54.07 53.13 52.82 53.13 52.19 52.35 52.97 53.44
14 / / 54.07 53.13 53.29 53.13 51.88 52.19 53.13 53.13
16 / / / 52.66 52.82 53.13 52.35 52.03 52.82 52.50
18 / / / 52.82 53.65 52.97 53.13 52.35 52.50 52.97
20 / / / 52.66 53.44 53.29 52.82 52.03 52.82 53.29

Table 7: The joint ablation study of parameters K and K ′ on WIC dataset using GPT-Neo-2.7B.

Model C 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GPT-Neo
(2.7B)

WIC 51.00 50.52 50.30 50.78 51.07 51.30 51.40 51.97 52.23 53.29 53.12
RT 70.39 70.36 70.31 70.22 70.31 70.44 70.57 70.61 71.10 71.01 70.97

LLaMA
(7B)

WCI 51.72 51.75 51.94 51.78 51.82 51.88 51.94 52.02 52.31 52.66 52.62
RT 75.32 76.00 75.80 75.40 75.80 76.50 76.40 76.60 77.10 77.20 76.90

Table 8: Additional ablation study of C on WIC and RT datasets with GPT-Neo-2.7B and LLaMA-7B.
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UPRISE
Dataset: Amazon
Retrieved example numbers: 3
Test Query
Sentiment of the sentence: The first time I used this product it was fabulous. My hair turned out beautifully.
When I tried another day to get the same results, the curling iron wouldn’t heat up. It is
Ground Truth
terrible
Retrieved demonstrations
Q: What is the sentiment of the following review? “Their Chocolate is divine; so creamy and smooooth!
Whether you get a Pure Chocolate or a Blended Mocha you will be in Chocolate Heaven. I have even
bought the chocolate powder for home and it never disappoints. It is so nice to shop the district with a
mocha or pure chocolate in hand. I cannot walk by without stopping in :-)"
A: Positive

Q: “can only love the players it brings to the fore for the gifted but no-nonsense human beings they are
and for the still-inestimable contribution they have made to our shared history." How would the sentiment
of this sentence be perceived?
A: Positive

Q: Is the following review positive or negative? “Sara is so talented. She new exactly what I wanted and
she gave me the best hair cut ever. I will use her from now on."
A: Positive

Prediction of GPT-Neo-2.7B:
terrible
Prediction of LLaMA-7B:
great

Table 9: The results of the case study for a task query tested on GPT-Neo-2.7B and LLaMA-7B when using UPRISE.
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MDR
Dataset: Amazon
Retrieved example numbers: 3
Test Query
Sentiment of the sentence: The first time I used this product it was fabulous. My hair turned out beautifully.
When I tried another day to get the same results, the curling iron wouldn’t heat up. It is
Ground Truth
terrible

GPT-Neo-2.7B
Retrieved demonstrations
Q: “both heartbreaking and heartwarming ... just a simple fable done in an artless sytle , but it ’s
tremendously moving." How would the sentiment of this sentence be perceived?
A: Positive

Q: “filling nearly every minute ... with a lighthearted glow , some impudent snickers , and a glorious dose
of humankind ’s liberating ability." How would the sentiment of this sentence be perceived?
A: Positive

Q: “a journey spanning nearly three decades of bittersweet camaraderie and history , in which we feel
that we truly know what makes holly and marina tick , and our hearts go out to them as both continue to
negotiate their imperfect , love-hate relationship." How would the sentiment of this sentence be perceived?
A: Positive

Prediction of GPT-Neo-2.7B:
terrible

LLaMA-7B
Retrieved demonstrations
Q: “both heartbreaking and heartwarming ... just a simple fable done in an artless sytle , but it ’s
tremendously moving." How would the sentiment of this sentence be perceived?
A: Positive

Q: “both a beautifully made nature film and a tribute to a woman whose passion for this region and its
inhabitants still shines in her quiet blue eyes." How would the sentiment of this sentence be perceived?
A: Positive

Q: “muccino , who directed from his own screenplay , is a canny crowd pleaser , and the last kiss ...
provides more than enough sentimental catharsis for a satisfying evening at the multiplex . Ḧow would
the sentiment of this sentence be perceived?
A: Positive

Prediction of LLaMA-7B:
terrible

Table 10: The results of the case study for a task query tested on GPT-Neo-2.7B and LLaMA-7B when using MDR.
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