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Abstract

Automatic text-based diacritic restoration mod-
els generally have high diacritic error rates
when applied to speech transcripts as a result
of domain and style shifts in spoken language.
In this work, we explore the possibility of im-
proving the performance of automatic diacritic
restoration when applied to speech data by uti-
lizing parallel spoken utterances. In particular,
we use the pre-trained Whisper ASR model
fine-tuned on relatively small amounts of dia-
critized Arabic speech data to produce rough
diacritized transcripts for the speech utterances,
which we then use as an additional input for di-
acritic restoration models. The proposed frame-
work consistently improves diacritic restoration
performance compared to text-only baselines.
Our results highlight the inadequacy of cur-
rent text-based diacritic restoration models for
speech data sets and provide a new baseline for
speech-based diacritic restoration.

1 Introduction

The Arabic script consists of primary alphabetic
characters and secondary diacritics. The alphabetic
characters represent consonants and long vowels,
while diacritics include short vowels, consonant
doubling, and nunation, which is an additional
‘n’ sound that indicates indefinite nouns in stan-
dard and classical Arabic. Since these diacritics
are peripheral rather than main alphabetical char-
acters, proficient Arabic language users typically
omit them. As a result, most text resources, in-
cluding speech transcriptions, are non-diacritized,
and currently available Arabic datasets are heav-
ily under-specified for pronunciation. Contextual
information provides a basis for implicitly filling
out the missing information for proficient speak-
ers, but new learners, nonnative speakers, as well
as low-resource speech recognition and synthesis
models, often struggle to identify the correct sense
and pronunciation due to the lack of diacritics. Con-
sequently, many tasks aimed at achieving higher

performance necessitate diacritizing the script as
a preliminary step. To address these challenges,
text-based diacritic restoration models (i.e., mod-
els that take undiacritized text as input and pro-
duce diacritized output) have been employed to
address the issue of missing diacritics for text and
speech applications (Fashwan and Alansary, 2016;
Fadel et al., 2019a,b; Al-Thubaity et al., 2020;
AlKhamissi et al., 2020; Obeid et al., 2022). In
speech applications, such as Automatic Speech
Recognition (ASR) and Text-to-Speech synthesis
(TTS), text-based diacritic restoration models have
been employed in various ways. Some previous
works employed automatic text-based diacritizers
to restore the diacritics in speech transcriptions and
train a diacritized ASR system (Al Hanai and Glass,
2014; Abed et al., 2019). Alternatively, ASR mod-
els can be trained without diacritics, and text post-
processing can be employed afterwards to restore
the diacritics (Aldarmaki and Ghannam, 2023). In
TTS, datasets are curated carefully for phonetic
coverage, so the training speech transcriptions are
carefully annotated and manually diacritized. For
instance, the Classical Arabic Text-To-Speech cor-
pus (ClArTTS) (Kulkarni et al., 2023) was ex-
tracted from a recorded classical Arabic audiobook
and was manually diacritized and verified to ensure
consistency. The reliance on manual diacritiza-
tion means that all available datasets for TTS are
relatively small, making TTS a low-resource appli-
cation in Arabic. Automatic diacritization is often
used in deployed TTS systems to pre-process the
text before synthesis.

Uni-modal text-based diacritic restoration mod-
els may not be optimal for speech applications (Al-
darmaki and Ghannam, 2023). Speech utterances
are typically less structured than text and may have
unusual grammar, repetitions, or missing context,
which results in domain and style shifts that lead to
poor generalization of these models when applied
on speech transcripts. Further, in ASR applications,
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the output may contain transcription errors and mis-
spellings that further sabotage the text diacritiza-
tion models used in post-processing. The existence
of paired text and speech data presents an oppor-
tunity for incorporating an additional modality for
disambiguation and diacritic restoration. As shown
in Aldarmaki and Ghannam (2023), ASR models
trained to directly produce diacritics outperform
text-based diacritizers applied on ASR outputs by
a large margin. Given the existence of large speech
datasets that contain paired undiacritized texts with
speech audios, we explore the potential to improve
the performance of automatic diacritic restoration
for these datasets.1 This kind of automatic diacriti-
zation could potentially enable the development of
large diacritized speech corpora for both ASR and
TTS. In particular, we look into whether the speech
signal could facilitate more robust diacritization
for speech-based datasets compared to text-only
diacritic restoration models. To that end, we pro-
pose a diacritic restoration framework that incorpo-
rates a pre-trained diacritized speech recognition
model. Our experiments show that the framework
improves performance compared to an equivalent
text-only model, which presents a promising di-
rection for speech-based diacritic restoration. Our
findings can be summarized as follows:

1. The proposed diacritic restoration framework
results in lower diacritic error rates for read
Classical Arabic speech compared to all text-
only diacritizers, resulting in a 45% relative
reduction in diacritic error rate compared to
the best-performing baseline.

2. We experiment with both Transformer and
LSTM-based architectures with similar scales.
While both result in lower error rates com-
pared to the text-only baselines, the LSTM
model results in overall better performance.

3. The performance of the proposed framework
partially depends on the performance of the
ASR model used to produce the provisional
diacritics. Since diacritized datasets are lim-
ited for Modern Standard Arabic (MSA) and
Dialectal Arabic (DA), more work is needed
to improve performance for these variants.

1As an example, the QASR data set contain ∼2000
hours of transcribed Arabic speech data, mostly undiacritized
(Mubarak et al., 2021).

2 Related Work

2.1 Text-based diacritic restoration

Early approaches for Arabic diacritic restoration
mainly relied on morphological rules. For ex-
ample, Fashwan and Alansary (2016) proposed a
rule-based approach to address the case ending
diacritization problem in Modern Standard Ara-
bic text. This system relied on morphological and
syntactic analyses, taking into account the part-of-
speech of each word and its position within the
sentence. Morphological analysis has been used
as the basis for diacritization in several models,
such as MADAMIRA (Pasha et al., 2014) and the
recent Camelira multi-dialectal morphological dis-
ambiguator (Obeid et al., 2022). In these systems,
diacritic restoration is a result of complete morpho-
logical analysis and disambiguation, rather than a
stand-alone objective. In recent years, researchers
have investigated different neural network-based
architectures for stand-alone Arabic diacritization
systems. These methods do not rely on morpholog-
ical analyzers, dictionaries, or feature engineering,
but rather use sequence tagging frameworks, lever-
aging their ability to capture patterns in Arabic
text implicitly through end-to-end training. Ar-
chitectures include feed-forward networks (Fadel
et al., 2019b), recurrent neural networks (RNNs)
(Abandah and Abdel-Karim, 2020; Al-Thubaity
et al., 2020; Fadel et al., 2019b), convolutional neu-
ral networks (CNNs) (Alqahtani et al., 2019), and
bidirectional LSTM networks possibly followed by
Conditional Random Fields (CRF) (Al-Thubaity
et al., 2020). Some of the most commonly used
toolkits and APIs for Arabic diacritization, includ-
ing Farasa2, ALI_Soft3, Shakkala4, Mishkal5, and
Camelira6, do not clearly disclose model details or
training data, but are often used in practical appli-
cations for their convenience.

2.2 Speech-based diacritic restoration

To the best of our knowledge, the use of speech
data in automatic diacritization has rarely been ex-
plored in previous research. The work most closely
related to ours in terms of problem formulation is
Vergyri and Kirchhoff (2004), where they explore
the use of acoustic and morphological information

2farasa.qcri.org/diacritization
3ali-soft.com
4github.com/Barqawiz/Shakkala
5github.com/linuxscout/mishkal
6camelira.abudhabi.nyu.edu
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to automatically restore diacritics in dialectal Ara-
bic speech. The proposed approach employs the
EM algorithm to automatically optimize the best
diacritic combination using either a morphologi-
cal analyzer for generating all possible diacritics
in an utterance, or using all possible diacritization
without morphological constraints. The resulting
diacritizations were used to construct a word pro-
nunciation network for the acoustic model. The
model achieved roughly 11% and 23% DER with
and without morphological analysis, respectively,
on the Egyptian CallHome corpus that contains di-
acritized transcripts in a romanized form. Using
diacritics to train speech recognition or synthesis
systems is desirable, but this requires manually dia-
critized training data to learn accurate mappings be-
tween acoustics and vowels. Aldarmaki and Ghan-
nam (2023) demonstrated through controlled ex-
periments that speech recognition models trained
with manually diacritized data sets result in much
higher diacritic recognition accuracy compared to
text-based diacritic restoration models that are used
before training (by diacritizing training speech tran-
scripts) or after inference. This study underscores
the importance of optimizing diacritic restoration
performance for speech data as the text-based mod-
els were shown to have poor generalization in the
speech domain.

3 Proposed Framework

Diacritic restoration is a sequence labeling task: the
input is a sequence of Arabic characters without
diacritics, and the output is the target diacritic for
each input character, or ‘no diacritic’ if there are
none. In our problem setting, we have a dataset
that consists of speech utterances along with their
undiacritized transcripts. Rather than applying a
text-based diacritizer on the text transcripts in isola-
tion, we propose a diacritic restoration framework
that incorporates both speech utterances and their
text transcripts to produce more accurate diacrit-
ics. The proposed model is illustrated in Figure 1.
For the speech modality, we utilize a pre-trained
ASR model to produce provisional diacritized tran-
scripts 7. The undiacritized text transcript and ASR
hypothesis are fed into two separate sequence en-
coders of identical configuration.

To fuse information from the text and speech
modalities, we apply cross-attention at the final

7‘provisional’ because they contain ASR errors that distort
both consonants and vowels.

undiacritized text transcript
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concatenation
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بتك

بَ ت      ا كَ 

Softmax

Multi-Modal Output Text-Only Output

Softmax

Query

Key\Value

Dense Layer
Multi-Head 
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Sequence Labeling
Model

X

Sequence Labeling
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Figure 1: The proposed diacritic restoration model takes
speech utterances and their undiacritized transcripts as
input, and produces diacritized text. Left: text-only
diacritic restoration, which can be any sequence label-
ing model. Full figure: Proposed framework, which
includes a speech recognition model pre-trained to pro-
duce diacritized hypotheses, and a cross-attention mech-
anism to fuse the two modalities.

layer as follows: we use the outputs of the final
dense layer of the text encoder (corresponding to
the undiacritized text on the left side in Figure 1)
as query vectors, and the outputs from the speech
side as key and value vectors. Note that ASR pre-
dictions are longer than the raw text due to the
presence of diacritics and other ASR errors, but the
cross-attention mechanism ensures that the final
output matches the length of the original undia-
critized text. The outputs of cross-attention can be
used directly as inputs to the final linear layer with
softmax activation for sequence labeling. Note that
in this configuration, the prediction relies heavily
on the representations from the speech side which
contributes the value vectors. To increase the con-
tribution from the text modality, the output of cross-
attention can be concatenated with the output of
the text encoder (denoted as X in the figure).

Notation: For the rest of the paper, we will re-
fer to this proposed framework as Text+ASR; dia-
critic restoration models that only rely on the undia-
critized text transcripts (as is the case for all the ex-
isting baselines) will be referred to as Text-Only.
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Figure 2: Top: Basic transformer self attention and prediction regions with sliding window mechanism for inference.
Bottom: Cross-attention region from ASR prediction used in each sub-sequence.

3.1 Sequence Encoder Architecture

The proposed Text+ASR model is conceptually ag-
nostic to the backbone architecture used for speech
and text encoders. In this work, we investigated
two different architectures to evaluate the efficacy
of different sequential models on the proposed ap-
proach: Transformer (Vaswani et al., 2017) and
bidirectional LSTM (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997). Note that we
use the same architecture for both encoders.

Transformer Model: We utilize the Transformer
encoder architecture with position encoding and
multi-head self-attention to enable contextual in-
tegration across the whole sentence. We employ
absolute position embeddings with learned param-
eters that are optimized along with the rest of the
network. We use multiple transformer blocks with
multi-head self-attention, followed by a dense layer
before the softmax sequence classification.

bi-LSTM Model: We use the same architecture
described in Fadel et al. (2019b), which achieves
the best diacritic restoration performance on our
test set. The model consists of an embedding layer
followed by several bidirectional LSTM layers. To
prevent overfitting, dropout layers are inserted after
each bidirectional LSTM layer. The model em-
ploys two layers of time-distributed dense units
with ReLU activation before the final output layer.

3.2 Sliding Window Inference

The trained Transformer model with absolute po-
sition embeddings can handle sequences up to the
maximum length used for training. This kind of po-
sition encoding has a poor generalization to longer
sequence lengths.8 Furthermore, given the nature

8Most types of absolute and relative positional embeddings
have poor length generalization, as shown in (Kazemnejad
et al., 2024).

of the task, attention to surrounding characters, as
well as corresponding regions in the ASR predic-
tion side, is more useful than global attention across
two long sequences. Given these reasons, we em-
ploy a sliding window mechanism to handle long
sequences at inference time and avoid any potential
generalization issues. This mechanism is described
concretely in Algorithm 1 and illustrated in Figure
2 with window = 5 and buffer = 3. Note that
this is conceptually similar to the sliding window
attention employed in the Longformer model (Belt-
agy et al., 2020) but we also proportionally handle
cross-attention with the longer ASR sequence, and
we apply the method only for inference. For the
Text-Only model, we employ the sliding window
inference, but without the ASR part (i.e. only the
top part of Figure 2).

Algorithm 1 Sliding Window Inference
Input: model, origText, asrText, window, buffer
Output: predictions

1: len← ∅
2: len← length(origText)

3: r ← length(asrText)/len

4: start← 0

5: while start < len do
6: safeStart← max(start− buffer, 0)

7: end← start+ window + buffer

8: end← min(end, len)

9: s1← origText[safeStart : end]

10: s2← asrText[safeStart ∗ r : end ∗ r]
11: result← model.predict(s1, s2)

12: end← max(start+ window, len)

13: predictions.insert(result[start : end])

14: start← end

15: end while
16: return predictions
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4 Experimental Settings

4.1 Datasets
A commonly-used corpus is the cleaned Tashkeela
Corpus; this dataset comprises a large collection
of Arabic texts mainly from Classical Arabic (CA)
literature and religious texts, and a smaller collec-
tion in the Modern Standard Arabic (MSA) variety.
It consists of 2.3M words spread over 55K lines,
which is extracted from the original Tashkeela
(Zerrouki and Balla, 2017) corpus, which has a total
of 75M words. We refer to the latter as Tashkeela
(Original) but do not use it for training. No speech
audios are available in this dataset so we use it
for experiments relevant to the Text-Only models.
Diacritized speech data sets are rather scarce. We
mainly use the CLassical Arabic Text-To-Speech
Corpus CLArTTS (Kulkarni et al., 2023), which
was developed for the purpose of text-to-speech
synthesis, so the text transcriptions have been man-
ually diacritized and verified. The corpus includes
approximately 12 hours of recorded speech from
a single male speaker (10K relatively short utter-
ances), and about 30 minutes held-out for testing.
Since the corpus consists of read Classical Ara-
bic speech, it is consistent with the content of the
Tashkeela corpus to enable fair comparison with
text-based models.

4.2 Model Setup
For the Transformer architecture, we tuned the fol-
lowing hyper-parameters on the ClArTTS valida-
tion set: number of transformer blocks, number
of attention heads, embedding size, and dropout
rate. The reported results are obtained using 128-
dimensional token and position embeddings, and
2 Transformer blocks with a feed-forward layer of
size 128. We used 4 heads for multi-head atten-
tion and 0.2 dropout rate. For the LSTM model,
we used 128-dimensional vectors for all layers,
which include an embedding layer, two bi-LSTM
layers, and two dense layers before the final out-
put. Dropout rate of 0.5 was applied after each
bi-LSTM. This is similar to the model used in the
Shakkelha model (Fadel et al., 2019b), which is
the strongest baseline on the ClArTTS test set. For
optimization, we used the Adam optimizer with
categorical cross-entropy loss. For sliding-window
inference, we used a window size 50 and a buffer
of 25 tokens on each side.9

9The code for running our experiments is available
at https://github.com/SaraShatnawi/Diacritization.

All models were implemented using the Keras
Python library and trained on one Nvidia A100
GPU with 40GB memory. The total number of pa-
rameters is∼700K for the Text-Only Transformer
and LSTM models and ∼1.5M for the Text+ASR
variants.

4.3 ASR Model

For the ASR module used in the Text+ASR frame-
work, we fine-tuned Whisper (Radford et al.,
2023),10 using the training set of the ClArTTS cor-
pus with diacritics. An analysis of this model is pro-
vided in Aldarmaki and Ghannam (2023), but due
to apparent inconsistency in their use of ClArTTS
train/test splits compared to the official dataset
splits,11 we fine-tuned the model from scratch to
avoid data leakage.12

4.4 Baselines

We compare our proposed Text+ASR model to the
Text-Only baselines that use comparable or simi-
lar training dataset. In addition to the Transformer
and LSTM models we train, we use popular di-
acritic restoration models such as the Shakkala
model (Barqawi, 2017), which was trained with the
original Tashkeela corpus of 75M words. Our im-
plementation of the LSTM Text-Only model fol-
lows the Shakkelha model described in Fadel et al.
(2019b). Shakkelha also includes a variant trained
with extra data of 22M words extracted from the
original Tashkeela corpus and the Holy Quran. We
use it as another baseline that is trained with much
more data. For a comprehensive evaluation, we
also include results from other popular diacritiza-
tion APIs even though their training details and
datasets are not disclosed, but are worth including
due to their popularity: Mishkal (Zerrouki, 2020),
ALI-Soft (URL, 2023), Farasa (QCRI, 2020), and
Camelira (Obeid et al., 2022).

5 Results & Analysis

Table 1 shows the results for our proposed model
compared to the baselines using Diacritic Error
Rates (DER). We report performance including and
excluding the ‘no diacritic’ tag, with and without
case ending diacritics.

git
10huggingface.com/openai/whisper-medium
11We obtained the splits from www.clartts.com.
12The fine-tuned model is available at huggingface.co/

sashat/whisper-medium-ClassicalAr
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Model Train Set Including ‘no diacritic’ Excluding ‘no diacritic’
w. case ending w.o case ending w. case ending w.o case ending

Mishkal (Zerrouki, 2020) - 21.79 15.80 24.70 17.09
ali-soft.com - 50.74 47.96 60.03 55.62

Farasa (QCRI, 2020) - 19.17 22.05 22.64 26.53
Camelira (Obeid et al., 2022) - 29.16 27.36 33.67 32.29

Shakkala (Barqawi, 2017) Tashkeela (Original)† 6.85 5.48 8.02 6.63
Shakkelha Tashkeela 6.02 4.87 6.89 5.70

(Fadel et al., 2019b) Tashkeela + Extra‡ 4.87 3.54 5.93 4.32

Text-Only Transformer
Tashkeela 11.73 10.00 13.22 12.39
CLArTTS 20.42 16.96 24.70 20.27

Tashkeela + CLArTTS 9.63 7.38 11.61 8.91

Text+ASR Transformer
CLArTTS 5.66 4.52 6.64 5.45

Tashkeela + ClArTTS 3.63 2.71 4.07 3.17

Text-Only LSTM
Tashkeela 6.10 4.74 6.97 5.55
CLArTTS 7.97 6.60 9.58 7.97

Tashkeela + CLArTTS 4.93 3.55 5.86 4.30

Text+ASR LSTM
CLArTTS 2.97 2.18 3.03 2.30

Tashkeela + ClArTTS 2.70 1.83 2.85 1.99

Table 1: Diacritic Error Rate (DER) % for Text+ASR model and the Text-Only models. Baselines that did not
disclose details about their training data are shown in Grey background. Baselines that are trained on variants of the
Tashkeela corpus are shown in Yellow. † refers to the original Tashkeela corpus of 75M words. ‡ extra data of 22M
words. Tashkeela refers to the subset of 2.3M words from (Fadel et al., 2019a), which is the one we use for training
our models, in addition to the ClArTTS train set. Bold scores refer to the models that have the lowest DER within
comparable models with the same architecture. Underlined scores refer to the lowest DER overall.

Performance of previous Text-Only baselines:
As seen from Table 1 (grey rows), high error rates
are attained by the text-based APIs: Mishakal, ALI-
Soft, Farasa, and Camelira on our test set. Base-
lines shown in yellow in Table 1, which are trained
on variants of the Tashkeela corpus, achieved the
lowest DER overall. As previously mentioned,
we trained LSTM Text-Only model following
the same model and training data as Shakkelha
(Tashkeela) to perform our experiments and ob-
tained comparable performance (compared to our
Text-Only LSTM model trained on Tashkeela).
Shakkelha also has a variant trained with 22M ex-
tra words (Tashkeela + Extra) which achieves better
performance, demonstrating the effect of dataset
size and quality on performance.

Performance of proposed models: Our pro-
posed Text+ASR framework results in the best per-
formance overall across all metrics, reducing abso-
lute DER by a large margin compared to their equiv-
alents Text-Only models and compared to all base-
lines. The Text+ASR model trained on ClArTTS
only, which is a much smaller data set compared
to Tashkeela, outperformed most other text-based
baselines; and outperformed the best performing
Shakkelha model with extra training data when us-
ing LSTM (and approached the performance when
using Transformer). This clearly demonstrates the

advantage of using features from speech modal-
ity to improve diacritic restoration for speech data.
Compared to the Text-Only model trained with
ClArTTS alone, the Text+ASR model improved per-
formance by more than 15% absolute DER when
using Transformer and 5% absolute DER when
using LSTM. Further, fine-tuning the Text-Only
model trained on Tashkeela with ClArTTS dataset
(Tashkeela + ClArTTS) significantly boosts its per-
formance by around 8% using Transformers and
3.4% using LSTM. Using the Text+ASR) frame-
work, using the combined data improves perfor-
mance by around 2% in Transformer but provides
similar performance in LSTM compared to using
CLaRTTS only. Overall, LSTM shows better per-
formance compared to the Transformer model. The
best performing Text-Only model is the LSTM
architecture trained with Tashkeela and fine-tuned
on ClArTTS train set, which achieves 4.93% DER
including case ending and ‘no diacritic’, while the
equivalent Text+ASR model achieves 2.7% DER, a
45% relative improvement.

5.1 Analysis

Text+ASR cross attention layer: The cross-
attention mechanism plays a major role in inte-
grating information from text and speech inputs
to produce the final diacritics. Figure 3 shows the
cross-attention weights between the raw text and

6
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Figure 3: Cross-attention weights between the undiacritized input (black) and ASR text (magenta).

ASR hypothesis obtained from one of the 4 atten-
tion heads. We can observe that the weights are
higher around the most relevant regions for predic-
tion, regardless of ASR errors. Table 2 show an
example of a phrase correctly diacritized by the
Text+ASR model trained on ClArTTS while the
Text-Only models struggle to identify the correct
form of the ambiguous phrase.

Reference

Camelira (Obeid et al., 2022)

Shakkala (Barqawi, 2017)

Text-Only[ClArTTS]

Text+ASR[ClArTTS]

Table 2: Diacritization from different models of a phrase
from the ClArTTS test set.

5.2 Ablation Experiments

Impact of concatenation at the last layer: We
experimented with or without concatenating the
outputs of cross-attention layer with the outputs of
the Text-Only encoder. As shown in Table 4, the
effect of concatenation varies depending on the en-
coder architecture. For Transformer, relying solely
on the cross-attention outputs provides slightly bet-
ter performance. On the other hand, the bi-LSTM
shows significantly better results with the concate-
nation. We surmise that this is due to the overall
better features obtained from the Text-Only model
using bi-LSTM compared to Transformer models.

Impact of the sliding window for inference: In
Section 3.2, we described a sliding window ap-
proach to handle longer sequence lengths at infer-
ence. We evaluated the performance both before
and after applying this approach. Table 5 shows
notable improvement in results following the appli-
cation of the proposed inference method.

5.3 Additional Experiments on MSA

As discussed in Section 4.1, ClArTTS dataset con-
sists of an audiobook in Classical Arabic, and the
Tashkeela corpus is derived mostly from Classical
Arabic texts. We performed additional experiments
to inspect the generalization of the diacritic restora-
tion models trained on these data sets to other vari-
ants of Arabic and other speech genres. Diacritized
datasets in other Arabic variants are rather scarce,
but a small manually diacritic dataset derived from
broadcast news has recently been released (Baali
et al., 2023). This dataset (dubbed QASR TTS)13

was manually diacritized for TTS and contains one
hour of speech by a male speaker and one hour of
speech by a female speaker. Note that this dataset
contains MSA speech (as opposed to classical Ara-
bic in CLArTTS), has a different genre (broadcast
news vs. audiobook), and may have inconsistent
speaking and pronunciation styles due to the more
casual nature of the recordings.

The results are shown in Table 3. We show
the results separately for the male and female
speakers. We observe that all models, includ-
ing all Text-Only baselines, perform poorly on
this dataset. While the Text+ASR framework re-
sults in some reduction in error rates compared
to Text-Only models with identical architectures,
the improvements are not consistent or substantial
enough. Sources of errors include lexical, domain,
and style shifts in the text itself as well as ASR
errors. As reported in Table 6, the pre-trained ASR
model results in much higher error rates on QASR
sets compared to our Classical Arabic test set.

As an illustrative example, Table 7 shows
how ASR performance affects the result of the
Text+ASR model in complex ways, sometimes
leading to better and sometimes worse perfor-
mance compared to Text-Only, which eventually
leads to similar error rates. Furthermore, all di-
acritic restoration models used as baselines per-
form poorly on this set. While we do not know

13arabicspeech.org/qasr_tts
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Model Train Set Including ‘no diacritic’ Excluding ‘no diacritic’
w. case ending w.o case ending w. case ending w.o case ending

Test Set: Male Speaker from QASR TTS
Mishkal (Zerrouki, 2020) - 25.24 14.47 25.45 12.87

ali-soft.com - 41.68 36.63 30.90 32.78
Farasa (QCRI, 2020) - 28.81 28.81 21.39 5.60

Camelira (Obeid et al., 2022) - 30.70 22.64 22.65 12.15
Shakkala (Barqawi, 2017) Tashkeela (Original)† 19.79 11.55 24.12 13.12

Shakkelha Tashkeela 20.28 12.14 24.83 13.99
(Fadel et al., 2019b) Tashkeela + Extra‡ 19.59 11.49 23.93 13.13

Text-Only Transformer
Tashkeela 23.81 16.06 27.19 16.14
CLArTTS 34.31 34.31 40.91 31.28

Tashkeela + CLArTTS 29.28 23.84 33.68 25.59

Text+ASR Transformer
CLArTTS 24.25 16.56 28.22 17.20

Tashkeela + ClArTTS 21.69 14.44 24.55 14.16

Text-Only LSTM
Tashkeela 20.20 12.02 22.59 10.95
CLArTTS 24.93 17.54 28.93 18.15

Tashkeela + CLArTTS 20.67 12.63 23.49 12.04

Text+ASR LSTM
CLArTTS 21.25 14.13 22.95 12.76

Tashkeela + ClArTTS 19.82 12.34 21.98 11.24
Test Set: Female Speaker from QASR TTS

Mishkal (Zerrouki, 2020) - 36.28 27.30 42.62 32.51
ali-soft.com - 42.80 38.39 43.98 45.93

Farasa (QCRI, 2020) - 31.10 22.29 30.14 23.69
Camelira (Obeid et al., 2022) - 32.40 23.15 34.72 24.86

Shakkala (Barqawi, 2017) Tashkeela (Original)† 34.65 28.63 43.21 35.14
Shakkelha Tashkeela 34.99 29.04 43.56 35.56

(Fadel et al., 2019b) Tashkeela + Extra‡ 34.01 27.86 42.39 34.15

Text-Only Transformer
Tashkeela 38.10 32.69 35.27 21.77
CLArTTS 46.48 42.56 47.96 37.20

Tashkeela + CLArTTS 39.19 35.35 37.27 26.19

Text+ASR Transformer
CLArTTS 38.59 33.28 36.62 23.17

Tashkeela + ClArTTS 35.69 30.72 31.84 18.85

Text-Only LSTM
Tashkeela 35.09 29.09 30.60 16.01
CLArTTS 38.26 33.25 36.04 22.82

Tashkeela + CLArTTS 35.33 29.53 31.45 17.05

Text+ASR LSTM
CLArTTS 35.59 30.69 30.25 17.37

Tashkeela + ClArTTS 34.06 29.11 29.12 15.82

Table 3: Diacritic Error Rate (DER) % of QASR (Male and Female) dataset for Text+ASR (text + ASR) and the
text-only models. Baselines that did not disclose details about their training data are shown in Grey background.
Baselines that are trained on variants of the Tashkeela corpus are shown in Yellow. † refers to the original Tashkeela
corpus of 75M words. ‡ extra data of 22M words. Tashkeela referes to the subset of 2.3M words from (Fadel et al.,
2019a), which is the one we use for training our models, in addition to the ClArTTS train set. Bold scores refer to
the models that have the lowest DER within comparable models with the same architecture. Underlined scores refer
to the lowest DER overall.

Including ‘no diacritic’ Excluding ‘no diacritic’
Model Concatenation w. case ending w.o case ending w. case ending w.o case ending

Transformer ✓ 3.83 2.78 4.19 3.10
Transformer × 3.63 2.71 4.07 3.17

LSTM ✓ 2.70 1.83 2.85 1.99
LSTM × 7.00 5.96 8.06 7.05

Table 4: Diacritic Error Rate (DER) scores on test set with and without concatenation at the last layer. Results are
shown for the Text+ASR model trained on Tashkeela + ClArTTS, but the same trend is observed for all variants.
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Including ‘no diacritic’ Excluding ‘no diacritic’
Model SW Inference w. case ending w.o case ending w. case ending w.o case ending

Transformer ✓ 3.63 2.71 4.07 3.17
Transformer × 4.12 3.11 4.61 3.54

LSTM ✓ 2.70 1.83 2.85 1.99
LSTM × 2.88 2.07 2.94 2.17

Table 5: Diacritic Error Rate (DER) scores on test set with and without applying sliding window inference. Results
are shown for the Text+ASR model trained on Tashkeela + ClArTTS, but the same trend is observed for all variants.

the full sources used to trained the diacritization
APIs, we know that the majority of content in Tash-
keela consists of Classical Arabic text, and MSA
text is estimated to be only 1.15% of the corpus
(Zerrouki and Balla, 2017). This shift in the Arabic
variant, which results in both lexical and stylistic
variations, is likely to be the leading cause for the
poor generalization of these models in this dataset.

Dataset Without Diacritics With Diacritics
CER WER CER WER

ClArTTS Test 2.20 8.02 2.90 14.43
QASR Female 11.6 36.9 27.5 87.3
QASR Male 11.1 36.4 21.06 72.4

Table 6: ASR Character Error Rate (CER) % and Word
Error Rate (WER) % using the Whisper model fine-
tuned on ClArTTS training set.

Reference

ASR

Text-Only

Text+ASR

Table 7: Diacritization of a phrase from QASR TTS test
set. The diacritic restoration models are our best models
trained on both Tashkeela and ClArTTS.

6 Discussion & Conclusion

We described a framework for diacritic restoration
that incorporates input from speech utterances as
well as text to improve the performance of dia-
critic restoration models applied to speech data.
The model consists of a pre-trained ASR model
that produces provisional diacritized hypotheses,
which are incorporated into a sequence labeling
model via a cross-attention mechanism. The pro-
posed framework can be applied to any sequence
labeling model, and we experimented with trans-
former and LSTM architectures. We also proposed
a sliding window inference method that improves

the length generalization of the model so it can
be applied more robustly to longer sequences. The
proposed framework consistently improved diacriti-
zation performance compared to an equivalent text-
only model, leading to significant reductions in
diacritic error rates on our test set compared to
all existing diacritic restoration models. We ob-
served particular performance gains on the Clas-
sical Arabic test set which is consistent with the
data used for fine-tuning the diacritized ASR and
the diacritic restoration models. The model outper-
formed all text-based baselines that are trained with
much larger text data sets, achieving a 45% relative
reduction in diacritic error rates compared to the
best performing baseline. However, given the high
variability in speech datasets, additional manually-
diacritized datasets are required to enable broader
generalization across Arabic variants (such as MSA
and dialectal Arabic) and genres (e.g. newswire or
casual speech). Our results show that highly accu-
rate diacritization can be obtained using a relatively
small diacritized speech data set used for training
the ASR model and the diacritic restoration mod-
els, which can facilitate the production of larger
diacritized corpora for speech applications.

Limitations

The main limitation of this work is the lack of di-
acritized speech data sets that could be used for
training and testing the framework. While we ob-
served strong performance on the Classical Arabic
test set, we could not develop similar models for
other variants of Arabic due to limited resources. In
addition, we could not evaluate other classical Ara-
bic test sets since we are not aware of any available
sets beyond the Quranic data set, which intersects
with the Tashkeela corpus. In our analysis, the re-
sults appear to be sensitive to ASR performance,
which in turn is a factor of the type of training data
used to fine-tune the ASR model.
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A Computational Requirements

We trained our models using one NVIDIA A100-
SXM4 GPU with 40GB memory. The GPU pro-
cessing time for our experiments varies, ranging
from 30 minutes to 3 hours, depending on the spe-
cific model and dataset employed. Specifically,
models utilizing the Tashkeela dataset require ap-
proximately three hours for training when imple-
mented with a Transformer architecture and 1 hour
and 30 minutes when utilizing LSTMs. On the
other hand, experiments with the CLArTTS dataset
exhibit a faster processing time, typically ranging
from 40 to 60 minutes for Transformer-based mod-
els and half of this time for those employing LSTM.
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