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Abstract

Temporal knowledge graphs (TKGs) serve as
powerful tools for storing and modeling dy-
namic facts, holding immense potential in an-
ticipating future facts. Since future facts are
inherently unknowable, effectively modeling
the intricate temporal structure of historical
facts becomes paramount for accurate predic-
tion. However, current models often rely heav-
ily on fact recurrence or periodicity, leading to
information loss due to prolonged evolutionary
processes. Notably, the occurrence of one fact
always influences the likelihood of another. To
this end, we propose HTCCN, a novel Hawkes
process-based temporal causal convolutional
network designed for temporal reasoning un-
der extrapolation settings. HTCCN employs
a temporal causal convolutional network to
model the historical interdependence of facts
and leverages Hawkes to model link forma-
tion processes inductively in TKGs. Impor-
tantly, HTCCN introduces dual-level dynamics
to comprehensively capture the temporal evo-
lution of facts. Rigorous experimentation on
four real-world datasets underscores the supe-
rior performance of HTCCN.

1 Introduction

Knowledge Graphs (KGs) serve as graph-
structured bases for storing human knowledge,
promising numerous real-world scenarios in
recommender systems (Fan et al., 2022), in-
formation retrieval (Gaur et al., 2022), and
Q&A (Cui et al., 2023). Typically, KGs
express and store knowledge in the form of
(subject, relation, object). However, facts un-
dergo continuous changes over time, and facts ex-
hibit interactions with one another. To effectively
express this dynamic information, researchers con-
struct Temporal Knowledge Graphs (TKGs) en-
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Figure 1: An illustration of interpolation reasoning and
extrapolation reasoning.

abling the representation of each fact as a quadruple
(subject, relation, object, timestamp). Gener-
ally, a TKG is represented as a sequence of static
KG snapshots, each associated with a timestamp
indicating the occurrence of facts at a specific time.

The TKG reasoning task involves inferring new
facts from known facts and is generally approached
in two main settings, i.e. interpolation and extrap-
olation (Wang et al., 2023). In the interpolation
setting, the goal is to recover historically missing
facts. Conversely, in the extrapolation setting, his-
torical facts are used to predict future facts (Liu
et al., 2022a). This paper specifically focuses on
the extrapolation setting, which poses significant
challenges and remains an unsolved problem.

The prevailing interpolation reasoning method,
as depicted in Fig. 1(a), typically extends static rea-
soning methods to TKGs. This method involves
employing an encoder to derive embeddings of
relations and entities within a particular time hyper-
plane. Subsequently, a decoder is used to predict
incomplete facts at historical timestamps (Liu et al.,
2023). However, relying solely on representations
of relations and entities based on historical hyper-
planes can lead to the model conflating future facts
within the candidate set, thereby impeding its abil-
ity to accurately reason about future facts.

The key to the extrapolation reasoning task lies
in fully understanding historical facts. As illus-
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trated in Fig. 1(b), many efforts center around ex-
tracting essential information from complex time-
structured data to facilitate answering queries and
making informed judgments (Bai et al., 2023). Rep-
resentative methods such as RE-NET (Jin et al.,
2020) and RE-GCN (Li et al., 2021b) utilize R-
GCN (Schlichtkrull et al., 2018) to capture struc-
tural information from historical snapshots, while
RNNs are employed to model the temporal infor-
mation of facts. More recent approaches, including
CluSTeR (Li et al., 2021a) and TiRGN (Li et al.,
2022a), reason based on historically observed facts,
enabling them to handle repetitive or periodic facts.

However, existing RNN-based methods model
temporal characteristics of facts as equidistant,
which does not accurately reflect real-world fact
sequences that often have varying temporal inter-
vals (Chen et al., 2020). Additionally, during the
inference process, these methods tend to rank the
probability scores of all candidate entities across
the entire graph, disregarding the crucial aspect of
factual evolution (Zhang et al., 2023b). We con-
tend that fact evolution is highly essential when
reasoning about future facts, while the fundamen-
tal concept of fact evolution lies in the conditional
intensity function, which represents the probability
of a fact occurring over time.

To address extrapolation reasoning challenges
in TKGs, we propose the Hawkes process-based
Temporal Causal Convolutional Network, denoted
as HTCCN. This innovative framework rests upon
three fundamental pillars: (1) The adept utilization
of a temporal causal convolutional network, em-
powered by inflated convolutions, which adeptly
captures historical fact dependencies and effec-
tively addresses the complex temporal dynamics
over diverse time intervals. (2) The seamless inte-
gration of Hawkes processes, harnessed to induc-
tively model the link formation processes within
TKGs, concurrently establishing conditional inten-
sity functions to capture structural and temporal
information in TKGs. (3) The incorporation of
dual-level dynamics, which comprehensively cap-
ture the evolution of facts.

In summary, the main contributions of this paper
are as follows:

• We propose a temporal extrapolation reason-
ing model HTCCN, which adeptly takes into
account the sequence of historical facts with
variable temporal intervals, the interplay of
causality among these facts, and the dynamic

evolution of the facts themselves.

• We formulate a dual-level dynamic modeling
mechanism to simultaneously capture both the
collective features of nodes and the individ-
ual characteristics of facts. This is achieved
by leveraging node-level dynamics and fact-
level dynamics, offering a more comprehen-
sive understanding of the temporal evolution
in TKGs.

• Extensive experiments are conducted across
four widely recognized TKG datasets, and
the noteworthy enhancements observed across
nearly all performance metrics underscore the
effectiveness of HTCCN in the context of
TKG extrapolation.

2 Related Work

Reasoning on TKGs has drawn a lot of attention,
mainly including neural network-based methods
and query-based methods.

Neural network-based approaches utilize deep
neural networks to learn the underlying features of
timestamps for temporal reasoning. RE-NET (Jin
et al., 2020) and TiRGN (Li et al., 2022a) combine
recurrent neural networks and neighborhood aggre-
gators to model fact sequences. RE-GCN (Li et al.,
2021b) recursively models KG sequences using
recursive evolutionary networks to learn an evolu-
tionary representation of facts for each timestamp.
TANGO (Han et al., 2021) employs neural ordi-
nary differential equations to model the structural
information of each candidate entity in a continu-
ous time domain. CEN (Li et al., 2022b) develops
an evolutionary model that represents all candidate
entities by considering the history of a few recent
timestamps. GHT (Sun et al., 2022) introduces
two Transformer variants to harness structural and
temporal information in TKGs, alongside develop-
ing a conditional intensity function for temporal
prediction. TECHS (Lin et al., 2023) utilizes a
graph convolutional network combined with tem-
poral encoding and heterogeneous attention mech-
anisms to focus on attention-driven structural fea-
tures. Meanwhile, RETIA (Liu et al., 2023) inte-
grates a relational aggregation module with LSTM
to model relations and track the temporal progres-
sion of hyper-relations. However, these models
model the temporal characteristics of facts as iso-
metric, which fail to accurately reflect the dynamic
evolutionary patterns of facts in the real world.
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Query-based approaches in temporal reasoning
concentrate on modeling entities and relations re-
lated to queries. For instance, CyGNet (Zhu et al.,
2021) reasons future facts by modeling query-
related history facts through a copy-generation net-
work. GHNN (Han et al., 2020b) introduces a
point-in-time process to model temporal informa-
tion and considers the 1-hop subgraph of query en-
tities. TITer (Sun et al., 2021) utilizes a temporal-
aware reinforcement learning strategy to contin-
uously transfer query nodes to new nodes using
relevant temporal facts and generate representation
vectors of unseen entities using the IM module.
CluSTeR (Li et al., 2021a) combines reinforcement
learning and graph convolutional networks for rea-
soning on TKGs. Meanwhile, xERTE (Han et al.,
2020a) addresses the TKG inference problem by
using query subgraphs with time-aware neighbor
sampling and attention propagation extensions, and
additionally introduces a novel backward updat-
ing scheme to simulate human reasoning behavior.
However, these approaches primarily focus on the
history associated with a query, overlooking the
complex dynamic interactions between facts.

3 Problem Definition

In this paper, we view a TKG as a sequence
of timestamp ascension-based subgraphs, namely,
G(1,τ) = {G1, G2, · · · , Gτ}, where Gt =
(Vt, Et, Ft) corresponds to the subgraph at time
t(t ∈ 1, 2, · · · , τ) with an entity set Vt and a rela-
tion set Et. Each fact in Ft is denoted by a quadru-
ple (s, r, o, t), in which s, o ∈ Vt and r ∈ Et.

Based on the historical observed facts in G(1,τ),
this paper concentrates on reasoning under the ex-
trapolation setting, i.e., predicting potential object
entity o or subject entity s via answering queries
query (s, r, ?, t) or (?, r, o, t).

4 Method

4.1 Overview of HTCCN
Leveraging the principles of the Hawkes process,
we propose the Temporal Causal Convolutional
Network (HTCCN) to effectively model the link
formation processes within TKGs inductively. The
overall framework of HTCCN is illustrated in
Fig. 2. A key strength of our approach lies in its
ability to seamlessly integrate both fact and node
dynamics into the model. This dual-level integra-
tion enables us to capture not only the individual
features of facts but also the collective features of

nodes, resulting in a more holistic understanding
of the temporal evolution within TKGs.

4.2 Hawkes Process-based TCCN

Recognizing the TKG as a multi-relational hetero-
geneous graph, previous studies (Jin et al., 2020; Li
et al., 2022a) have employed R-GCN (Schlichtkrull
et al., 2018) and RE-GCN (Li et al., 2021b) to
aggregate multi-relation and multi-hop neighbor
information at a single timestamp, storing the inter-
play between nodes in the form of hidden vectors.

However, within historical snapshots, multiple
facts frequently relate to an entity concurrently,
yet only a minority of the neighboring information
contributes to query resolution. R-GCN falls short
in addressing this issue as it treats all messages
equally, overlooking the significance of some. As
a response, we introduce HTCCN to realize the
heightened importance of concurrent facts for rea-
soning about future facts.

4.2.1 Temporal Causal Convolution
At each timestamp, we aim to derive a temporal
representation that possesses the ability to extend
into the feature space for new nodes, while preserv-
ing the inherent fact characteristics constituted by
the original entities and relations. To fulfill this
objective, we let each node engage in recursive pro-
cesses, encompassing the reception, aggregation,
and mapping of multiple relations and multi-hop
neighbor information across layers. Notably, our
approach diverges from RE-GCN, which sums re-
lational embeddings to entity embeddings within
GCNs for local information aggregation. Instead,
we opt to initially integrate entity embeddings and
relational embeddings to ensure fact plausibility,
subsequently enhancing their aggregation through
the use of 1D convolutional operations. Formally,
let hli,t ∈ Rdl denote the dl-dimensional embed-
ding of the entity i at t in the l-th layer, which is
computed by

hl+1
o,t = σ


 ∑

(s,r,o,t)∈Ft

1

co
Wl

r

(
Γ1(h

l
s,t ∥ rt)

)
+Wl

oh
l
o,t




(1)

where σ is an activation function (e.g., RReLu),
Wl

o represents a learnable weight matrix that maps
the embedding of entity o itself from the previous
layer, Wl

r is a relation-specific learnable weight
matrix to map the embeddings of subject s and
relation r, co is a normalizing factor equal to the
in-degree of o, Γ1 denotes the 1D convolutional
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Figure 2: Illustration of the proposed HTCCN model. The temporal causal convolutional network (TCCN) encodes
evolutionary representations of entities and relations. The dual-level dynamics capture individual features of facts
and collective features of nodes.

operator, and ∥ means concentrate operation.
In essence, the temporal representation of a node

is computed through the reception and aggrega-
tion of messages from both itself and its historical
neighbors from the preceding layer. Self-messages
are crucial in capturing the base intensity, whereas
messages from historical neighbors are instrumen-
tal in capturing the excitement induced by histor-
ical facts. Subsequently, these computations lead
to the generation of a temporal representation se-
quence denoted as H1:t = {H1,H2, ...,Ht}, where
Ht =

{
hl+1
1,t , h

l+1
2,t , ...,h

l+1
n,t

}
denotes the temporal

representation sequence of entities at time t.
As facts strictly adhere to a temporal sequence,

we devise a temporal causal convolutional network
in which convolutions are restricted to use inputs
at time t or earlier, preserving the temporal causal-
ity. Additionally, we introduce a dilation factor,
allowing filters to span regions larger than their
size by skipping input values in specific steps. This
strategic choice expands the model’s receptive field,
providing it with a longer effective memory. Let
d denote the dilation factor, the temporal causal
convolutions can be expressed as follows:

Et = (H1:t ∗d Γ2)(t) =

K−1∑

k=0

Γ2(k)H1:t(t− d · k) (2)

where Γ2 represents the convolution operator, and
K is the size of the kernel. Importantly, the model
can employ a stacked configuration of multiple tem-
poral causal convolutional networks, thereby ex-
panding its receptive field and efficiently capturing
long-term temporal dependencies with a smaller
number of layers. Given the temporal representa-
tion sequence H1:t, the output Et is a sequence of
the entity embeddings at time t.

After that, we employ a GRU (Gated Recurrent
Unit) to update the relation embedding, while en-
suring consistency with the update of entity embed-
dings within the subgraph sequence.

r′t = [Fmean (Et−1, Er,t) ; r] (3)

Rt = GRU (Rt−1,R
′
t) (4)

where Fmean is a mean pooling operation, Er,t in-
cludes all entities under relation r at timestamp t,
R′

t is the set of all relations r′t. The final relation
embedding matrix Rt is updated by Rt−1 and R′

t

by a single GRU layer.

4.2.2 Hawkes Process on TKG
In the sequences of TKGs, the Hawkes process
proves adept at modeling the fact-link formation
process. More precisely, our approach HTCCN
quantifies whether nodes s and o form a tempo-
ral link at timestamp t based on the conditional
intensity of the fact,

λs,o(t) = µs,o(t)+
∑

(s,o′,t′)∈Hs
t

γo′(t
′) exp(−δ(t−t′)) (5)

Here, µs,o signifies the baseline rate of the fact
where entities s and o form a temporal link at times-
tamp t, unaffected by historical facts on s or o.
Hs

t =
{
(s, o′, t′) | o′ ∈ N s,r

t′ , t′ < t
}

denotes the
set of historical facts on s with respect to time t,
designating o′ as a historical neighbor of s. γo′(t′)
quantifies the excitement instilled by a historical
neighbor o′ at time t′ on the present fact. Addi-
tionally, we introduce δ, a scalar parameter that is
amenable to learning, serving to regulate the rate
of the time decay effect concerning timestamp t.

Subsequently, based on the embeddings ets and
eto of entities s and o at timestamp t respectively,
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we employ a transfer function f to materialize the
conditional intensity as outlined in Eq. (5), as fol-
lows:

λs,o(t) = f(et
s, e

t
o) (6)

where the crux of materializing the conditional in-
tensity lies in fitting a transfer function f on the top
of temporal causal convolution layers. To accom-
modate the diversity of facts, we adopt the softplus
function, ensuring that f is adeptly tailored to the
conditional intensity.

f(x) = β · log(1 + exp(
x

β
)) (7)

Here, the parameter β serves as the scaling factor
for the transfer function f , while 1 represents a
vector of ones, ensuring that the scaling factors are
centered around one. Note that the input to f can
take various forms, such as the concatenation of
ets and ets or the element-wise square of the differ-
ence between them. In our formulation, we adopt
the latter, as it tends to yield superior empirical
performance. One possible explanation is that the
differential representation proves to be a robust pre-
dictor of whether a fact occurs between the two
nodes. Finally, f incorporates a sigmoid activation
to guarantee that the output remains positive as it
denotes the conditional intensity of the fact.

4.3 Intensity Guided Decoder
After acquiring the conditional intensities for facts,
to facilitate entity prediction and relation predic-
tion under the extrapolation setting, we present
Intensity-ConvTransE and Intensity-ConvTransR,
drawing inspiration from the ConvTransE (Shang
et al., 2019) framework. In these models, the de-
coder conducts a one-dimensional convolution op-
eration on the concatenation of entity embeddings
and relation embeddings, followed by scoring the
resulting representations. Formally, the computa-
tion of the convolution operator is:

mn =Γc

(
ets, rt, λs(t), n

)

=

K−1∑

τ=0

wc(τ)(e
t
s · λs(t) ∥ rt)(n+ τ)

(8)

where k equals the number of convolution kernels,
K is the size of the kernel, n ∈ [0, d) is the index
of output vector, and wc are learnable kernel pa-
rameters. The convolution operation integrates the
conditional intensities while preserving the trans-
lational characteristics of the embedding. Then,
the resulting output vectors Γc

(
ets, rt, λs(t)

)
=

[m0,m1, . . . ,md−1] from each convolution ker-
nel are aggregated into a matrix Mc ∈ Rk×d.
Ultimately, the Intensity-ConvTransE outputs the
scores of entities by

ψ
(
et
s, rt, λs(t)

)
= σ (Wφ · Fvec (Mc) + bc)E

o
t (9)

where σ is an activation function, Fvec is a fea-
ture map function, Wφ is a learnable weight pa-
rameter for linear transformation, bc is the basis,
and Eo

t is the set of object embeddings. Intensity-
ConvTransR calculates the scores similarly, with
the distinction that it substitutes rt with eto.

4.4 Dual-level Dynamics
To enhance our modeling of the TKG’s evolution,
we have developed a sophisticated dual-level joint
training optimization strategy, known as fact-level
dynamics and node-level dynamics.

• Fact-level dynamics: This level of dynamics
primarily concerns the conditional intensity
of facts and extrapolation reasoning. It places
paramount importance on capturing the nu-
anced individual characteristics of facts, en-
compassing factors such as conditional inten-
sities, entity and relation predictions.

• Node-level dynamics: In contrast, the node-
level dynamics pivot towards the collective
features of nodes in TKGs. It predominantly
takes into account the network’s topology, es-
pecially the number of links formed by nodes.
This perspective allows us to capture the in-
herent tendencies of facts to connect with one
another, grounded in the collective behaviors
of nodes.

4.4.1 Fact-level Dynamics
Given a fact (s, r, o, t) ∈ Ft, we anticipate a higher
conditional intensity λs,o(t). Conversely, for the
fact (s, r, o, t) /∈ Ft that did not occur, a lower con-
ditional intensity is expected. To achieve this, we
define a loss function for facts using negative log-
likelihood. This optimization strategy aims to align
the conditional intensity with the actual occurrence
or non-occurrence of a fact. Specifically, the loss
for an observed fact is defined as follows:

Li(s, o, t) = − log(λs,o(t))−Q · Ek∼Pn log(1− λs,k(t))
(10)

where k is a negative node we sampled from a dis-
tribution Pn, ensuring that the fact (s, r, k, t) /∈ Ft

has never occurred before. Additionally, Q rep-
resents the number of negative samples for each
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positive fact. Typically, Pn is defined based on the
node’s degree, i.e., Pn(v) ∝ deg(v)

3
4 .

Besides, continuing in the vein of TiRGN (Li
et al., 2022a), we adopt a similar approach by treat-
ing entity and relation predictions as multi-label
learning problems. Formulaically, the entity pre-
diction loss Le and the relation prediction loss Lr

are as follows:

Le(s, r, o, t) =
∑

(s,r,o,t)∈Ft

me
t logp (o | s, r, t) (11)

Lr(s, r, o, t) =
∑

(s,r,o,t)∈Ft

mr
t logp (r | s, o, t) (12)

where p (o | s, r, t) and p (r | s, o, t) are the final
probabilistic scores of entity and relation predic-
tions by softmax function with Eq. (9). me

t and mr
t

are the mask vectors, where the element is 1 if the
fact (s, r, o, t) ∈ Ft, otherwise 0.

4.4.2 Node-level Dynamics
While facts can be individual, they do not occur in
isolation. In particular, links are formed to connect
nodes, indicating that their behavior is jointly influ-
enced by the nodes they have in common. There-
fore, we propose to manage the collective charac-
teristics of nodes at the node level, capturing their
"fact tendencies". In essence, different nodes ex-
hibit varying tendencies to form new links with
other nodes, and even the same node may display
different tendencies at different times.

To be more precise, we can quantify the node
dynamics of a node at time t by considering the
number of new facts occurring on that node at time
t, denoted as Ns(t). Thus, we create a node dynam-
ics estimator to predict the number of new facts on
a specific node:

N̂s(t) =Wn · ets + bn (13)

where Wn is a linear transformation matrix, bn is
the basis, ets is the temporal representation of node
s, and N̂s(t) is the predicted number of new facts
that occur on node s at time t. To ensure that the
occurrence of facts aligns with the dynamics of
continuously evolving nodes in TKGs, we devise
the following node loss:

Ln(s, t) =

{
ϑ
∣∣∣N̂s(t)−Ns(t)

∣∣∣
2

, |N̂s(t)−Ns(t)| < 1

|N̂s(t)−Ns(t)| − ϑ, otherwise
(14)

where ϑ is the average degree of all nodes. The
node loss aims to ensure that the estimator N̂s(t)

accurately fits the true dynamics Ns(t) of all nodes
and times.

Ultimately, we perform joint training of fact-
level dynamics and node-level dynamics using the
following comprehensive loss function:

argmin
Θ

∑

(s,r,o,t)∈Ft

η1(Li + Le + Lr) + η2Ln (15)

where Θ denotes the parameters of HTCCN. The
hyperparameters η1 and η2 play a crucial role in
controlling the relative contribution of fact-level
dynamics and node-level dynamics, respectively.

5 Experiments

5.1 Experimental Setup
5.1.1 Datasets.
In our experiments, we utilized four exten-
sively recognized real-world TKG datasets, i.e.,
ICEWS14 (Han et al., 2020a), ICEWS05-
15 (Garcia-Duran et al., 2018), ICEWS18 (Ward
et al., 2013), and GDELT (Zhang et al., 2022).

5.1.2 Evaluation Setting and Metrics.
To evaluate the performance of our proposed model
and facilitate fair comparisons, we employ the
well-established time-aware filtered settings (Jin
et al., 2020; Zhu et al., 2021; He et al., 2021) and
leverage two widely recognized evaluation metrics,
i.e., Mean Reciprocal Rank (MRR) and Hits at N
(H@N).

5.1.3 Baselines.
In our comprehensive evaluation, we systemati-
cally compare our newly proposed HTCCN model
against a diverse array of state-of-the-art TKG
models, including CyGNet (Zhu et al., 2021),
TANGO (Han et al., 2021), RE-GCN (Li et al.,
2021b), TITer (Sun et al., 2021), CEN (Li et al.,
2022b), TiRGN (Li et al., 2022a), TLogic (Liu
et al., 2022b), EvoKG (Gao et al., 2022),
GHT (Sun et al., 2022), RPC (Liang et al., 2023),
TiPNN (Dong et al., 2023b), DaeMon (Dong et al.,
2023a), CENET (Xu et al., 2023), TECHS (Lin
et al., 2023) and RETIA (Liu et al., 2023).

5.1.4 Model Configurations.
For all datasets, we maintain an embedding size
of 200, aligning with the baseline method as es-
tablished in (Zhu et al., 2021). We utilize 2 tem-
poral causal convolutional layers with a dilation
length of 2. Dropout is set to 0.2 to prevent overfit-
ting. Regarding the intensity-guided decoder, we
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Table 1: Performance (in percentage) for entity prediction task under the time-aware filtered setting.

Method
ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

CyGNet 37.65 27.43 42.63 40.42 29.44 46.06 27.12 17.21 30.97 22.22 12.35 21.66
TANGO 36.81 27.32 40.86 42.86 32.72 48.14 28.97 19.51 32.61 19.66 12.50 20.93
RE-GCN 42.00 31.63 47.20 48.03 37.33 53.90 32.62 22.39 36.79 19.69 12.46 20.93
TITer 41.73 32.74 46.46 47.60 38.29 52.74 29.98 22.05 33.46 18.19 11.52 19.20
CEN 42.20 32.08 47.46 - - - 31.50 21.70 35.44 - - -
TiRGN 43.81 33.49 48.90 49.84 39.07 55.75 33.58 23.10 37.90 21.67 13.63 23.27
TLogic 43.04 33.56 48.27 46.97 36.21 53.13 29.82 20.54 33.95 19.80 12.20 21.70
EvoKG 27.18 - 30.84 - - - 29.28 - 33.94 19.28 - 20.55
GHT 37.40 27.77 41.66 41.50 30.79 46.85 27.40 18.08 30.76 20.04 12.68 21.37
RPC 44.55 34.87 49.80 51.14 39.47 57.11 34.91 24.34 38.74 22.41 14.42 24.36
TiPNN - - - - - - 32.17 22.74 36.24 21.17 14.03 22.98
DaeMon - - - - - - 31.85 22.67 35.92 20.73 13.65 22.53
CENET 41.30 32.58 - 47.13 37.25 - 29.65 19.98 - 19.73 12.04 -
TECHS 43.88 34.59 49.36 48.38 38.34 54.69 30.85 21.81 35.39 - - -
RETIA 42.77 32.29 47.78 47.27 36.65 52.91 32.43 22.24 36.48 19.73 12.54 21.01

HTCCN 45.39 36.58 50.84 51.94 40.32 57.79 35.63 24.90 39.26 23.46 15.18 25.21

use 50 channels and a kernel size of 4*3. Model
parameters are optimized using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.001. The training epoch is set to 20, a dura-
tion deemed adequate for achieving convergence in
most scenarios. All experimentation is conducted
on a GeForce GTX 3080 Ti. The baseline results
are sourced from previous papers (Li et al., 2022a;
Liang et al., 2023; Zhang et al., 2023a). The size
of the learnable parameters can be found in Ap-
pendix A.

5.2 Performance Comparison
The reasoning performance of HTCCN with base-
lines is presented in Table 1. Across the four bench-
mark datasets, HTCCN consistently demonstrates
superior performance compared to all 15 state-of-
the-art baselines spanning from 2021 to 2023.

Specifically, compared to the second-best perfor-
mance, HTCCN achieves an average improvement
of 2.45% in MRR, 2.39% in Hits@1, and 2.23%
in Hits@3. Notably, HTCCN exhibits particularly
significant improvements in Hits@1, with a remark-
able increase of approximately 5.27% and 2.64%
on the GDELT and ICEWS14 datasets, respectively.
These results underscore the ability of HTCCN to
reason future facts under the extrapolation setting.
The training and testing time overhead of the model
can be found in Appendix B.

Most baselines like RPC, TiRGN, RGCRN, RE-
NET, TANGO, xERTE, and RE-GCN, employ
RNN to consider adjacent timestamp facts and per-
form well in the experiments. However, HTCCN
leverages a temporal dilated causal convolutional

network and a dual-level dynamic modeling mech-
anism to capture a broader range of structural fact
features and collective features of fact nodes. Con-
sequently, HTCCN surpasses these approaches and
effectively captures fact evolution.

Compared to GHT gets the answer entity directly
comparing intensity values, HTCCN computes en-
tity scores via Intensity-ConvTransE, which inte-
grates the conditional intensities while preserving
the translational characteristics of the embedding,
making it more suitable for extrapolated reasoning.
More comparative analysis with GHT can be found
in Appendix C.

However, as faced with datasets containing nu-
merous timestamps, the reasoning performance of
TITer declines due to challenges in finding suitable
entities within a large search space, as observed on
the GDELT dataset. In contrast, HTCCN excels
in reasoning about a set of candidate entities with
high conditional intensity, effectively avoiding con-
cerns regarding time and space complexities. Con-
sequently, HTCCN demonstrates superiority across
datasets with varying numbers of timestamps.

5.3 Ablation study on different modules
The ablation experiments aimed at investigating
model effectiveness are conducted on all four TKG
datasets, employing the MRR evaluation metric.
The primary focus is to dissect the efficacy of three
pivotal design modules, i.e., temporal causal con-
volutional networks (TCCN), Hawkes processes,
and intensity-guided decoder. The experiment re-
sults are presented in Fig. 3, showcasing a com-
parative assessment across five sub-models, i.e.,
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Figure 3: Effect of main modules. By systematically removing the three primary modules, namely, TCCN, Hawkes,
and the intensity-guided decoder, the reasoning performance of HTCCN exhibits varying degrees of deterioration.
This outcome underscores the efficacy of the three meticulously designed modules in effectively modeling the
evolution of facts.
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Figure 4: Effect of dual-level dynamics. The fact-level dynamics, encompassing fact-conditional intensity, entity
prediction loss, and relation prediction loss, are instrumental in capturing the individual attributes of facts, while
the node-level dynamics focus on the collective features of nodes. A noteworthy observation emerges when we
examine the impact of removing fact-level dynamics and node-level dynamics independently.

(1) the original HTCCN model, (2) HTCCN with
TCCN removed, denoted as "- TCCN", (3) HTCCN
with TCCN replaced by GRU, denoted as "- GRU",
(4) HTCCN with the Hawkes process removed, de-
noted as "- Hawkes", (5) HTCCN with the intensity-
ConvTransE replaced by ConvTransE, denoted as "-
ConvTransE". More module ablation experiments
can be found in Appendix D.

On average, comparing the original HTCCN to
the ablated models, the MRR metric experiences
significant decreases of 3.2%, 7.43%, 7.50%, and
3.53% on the four TKGs, respectively. In partic-
ular, comparing "- TCCN" and "HTCCN", we re-
veal a significant enhancement attributed to TCCN,
substantiating its effectiveness in TKG reasoning.
Furthermore, the outcomes of "HTCCN" versus "-
GRU" emphasize that TCCN captures more fact
evolution features compared to traditional recur-
rent neural networks. The insight gained from
the "- Hawkes" comparison underscores that the
Hawkes process effectively models the fact evo-
lution process on TKGs, enabling more accurate
reasoning about potential future facts by capturing
the impact (i.e., conditional intensity) of historical
facts on future facts. Moreover, the analysis of "-
ConvTransE" highlights that the intensity-aware
decoder yields a notable enhancement in extrapo-
lation reasoning compared to the commonly used

ConvTransE.
In light of these promising results and the pre-

ceding analysis, we can assert that our proposed
TCCN, Hawkes process, and intensity-aware de-
coder efficiently capture causal and evolutionary
fact features, significantly enhancing the reasoning
performance in TKGs.

5.4 Ablation study on dual-level dynamics

To gain deeper insights into the efficacy of our
dual-level dynamics in capturing features at dis-
tinct granularities, we conduct a series of ablation
studies to scrutinize the model’s reliability. Fig. 4
succinctly portrays the results of these ablations.
Notably, the fact-level dynamics (-Le-Li-Lr) ex-
hibit the most substantial impact on performance,
underscoring the pivotal role of individual fact fea-
tures in temporal reasoning. Simultaneously, the
node-level dynamics (-Ln) display a noticeable in-
fluence on reasoning, affirming the importance of
capturing fact trends. Furthermore, the removal
of fact-conditional intensity (-Li) leads to a perfor-
mance decline, reaffirming the potency of leverag-
ing Hawkes to process temporal graphs effectively.
In the context of entity prediction, the entity predic-
tion loss (-Le) exerts a more pronounced influence
on performance compared to the relation predic-
tion loss (-Lr). This can be attributed to the con-
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siderably larger number of entities in all datasets
compared to the number of relations. Thus, these
findings provide compelling evidence that both fact-
level dynamics and node-level dynamics signifi-
cantly contribute to effective temporal reasoning.

6 Conclusion

In this paper, we propose HTCCN, a reasoning
model tailored for TKGs under the extrapolation
setting. HTCCN leverages Hawkes processes to
effectively model the link formation process in-
ductively within TKGs. Specifically, we introduce
Temporal Causal Convolutional Networks based
on Hawkes processes, enabling HTCCN to discern
the significance of concurrent facts in reasoning
about future facts. Additionally, we integrate node-
level dynamics and fact-level dynamics, aiming
to capture both collective features of nodes and
individual features of facts, thereby achieving a
more comprehensive understanding of the tempo-
ral evolution within TKGs. Experimental results
on four benchmark datasets unequivocally demon-
strate the notable advantages and effectiveness of
HTCCN in temporal entity and relationship pre-
diction. Furthermore, ablation experiments under-
score the active roles played by fact-level dynamics
and node-level dynamics in TKG inference.
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A Model size

To provide a comprehensive evaluation, we con-
duct comparative analyses of HTCCN against the
latest methods, including GHT, TiRGN, TECHS,
and RETIA. These analyses encompass a range of
aspects such as the number of parameters, parame-
ter size, training time, and testing time, as shown
in Table 2.

Table 2: Comparison of learnable parameters on
ICEWS14.

Model param_sum param_size (MB)

GHT 4744424 18.099
TiRGN 13372441 51.012
TECHS 915206 3.491
RETIA 8242772 31.444
HTCCN 25108392 72.075

Although HTCCN has a relatively higher num-
ber of learnable parameters, we find that the overall
parameter size is within acceptable limits consider-
ing modern computer storage capabilities.

B Model training and testing overhead

We compare the overheads of HTCCN, GHT, RE-
TIA, and TECHS in terms of training and testing
time, as shown in Table 3.

C Comparison with GHT

we conduct additional experiments with GHT using
two different embedding dimensions, i.e., 100 and
200. These experiments are detailed in Table 4,
labeled as GHT-100 and GHT-200, respectively.

Table 3: Time overheads on ICEWS14.

Model Train (min) Test (min)

HTCCN 5:56 1:03
GHT 25:02 5:18
RETIA 45:52 4:35
TECHS 16:40 5:04

Table 4: Comparison of GHT under 100 and 200 em-
bedding dimensions on ICEWS14.

Model MRR H@1 H@3 H@10

HTCCN 45.39 36.58 50.84 66.07
GHT-200 38.90 28.26 44.06 59.72
GHT-100 37.40 27.77 41.66 56.19

Our findings indicate that while increasing the
embedding dimension in GHT (to 200) does en-
rich the model with more semantic information, it
does not lead to a substantial improvement in the
model’s reasoning performance. Contrastingly, our
HTCCN model, with an embedding size of 200,
demonstrates significantly superior performance
compared to both versions of GHT.

D Module ablations

Furthermore, we investigate the compounded ef-
fects of simultaneously removing multiple com-
ponents, the findings of which are presented in
Table 5.

Table 5: Ablations with different components on
ICEWS14.

Method MRR H@1 H@3

HTCCN 45.39 36.58 50.84
- TCCN - Hawkes 36.17 25.83 42.69
- TCCN - ConvTransE 35.84 24.15 41.02
- GRU - Hawkes 40.60 29.52 46.71
- GRU - ConvTransE 39.32 28.93 45.48
- Hawkes - ConvTransE 41.04 30.79 47.66

This multi-component ablation study reveals that
the collective removal of components leads to a
more pronounced decrease in evaluation metrics
than the removal of individual components. This
underscores each component’s unique and indis-
pensable role in HTCCN, thereby confirming the
synergy between them.
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