
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 3632–3644

June 16-21, 2024 ©2024 Association for Computational Linguistics

SharpSeq: Empowering Continual Event Detection through
Sharpness-Aware Sequential-task Learning

Thanh-Thien Le1∗, Viet Dao2∗, Linh Van Nguyen2∗, Thi-Nhung Nguyen1,
Linh Ngo Van2† and Thien Huu Nguyen1,3

1VinAI Research 2Hanoi University of Science and Technology 3University of Oregon
{v.thienlt3, v.nhungnt89}@vinai.io,

{vietdt200661@sis, linhnv194093@sis, linhnv@soict}@hust.edu.vn,
thien@cs.oregon.edu

Abstract

Continual event detection is a cornerstone in
uncovering valuable patterns in many dynamic
practical applications, where novel events
emerge daily. Existing state-of-the-art ap-
proaches with replay buffers still suffer from
catastrophic forgetting, partially due to overly
simplistic objective aggregation. This over-
sight disregards complex trade-offs and leads
to sub-optimal gradient updates, resulting in
performance deterioration across objectives.
While there are successful, widely cited multi-
objective optimization frameworks for multi-
task learning, they lack mechanisms to ad-
dress data imbalance and evaluate whether a
Pareto-optimal solution can effectively miti-
gate catastrophic forgetting, rendering them
unsuitable for direct application to continual
learning. To address these challenges, we
propose SharpSeq, a novel continual learn-
ing paradigm leveraging sharpness-aware min-
imization combined with a generative model
to balance training data distribution. Through
extensive experiments on multiple real-world
datasets, we demonstrate the superior perfor-
mance of SharpSeq in continual event detec-
tion, proving the importance of our approach in
mitigating catastrophic forgetting in continual
event detection.

1 Introduction

Event Detection (ED) is one of the fundamental top-
ics in NLP (Nguyen et al., 2023a; Man et al., 2022)
and aims to classify an event trigger into a prede-
fined event type in an established ontology. Con-
tinual event detection (CED), however, introduces
a distinct challenge as it deals with a continuously
evolving ontology that accommodates previously
unseen event types as new data emerges. An effec-
tive CED system requires robust mechanisms that
not only enable the identification of novel events

∗Equal contribution.
†Corresponding author.

but also mitigate the phenomenon of catastrophic
forgetting, where the detection performance on pre-
viously encountered events deteriorates when new
events are introduced.

Most state-of-the-art methodologies for effec-
tive continual event detection (Cao et al., 2020a;
Yu et al., 2021; Liu et al., 2022) are built upon
memory-based techniques from continual learning
(Castro et al., 2018; Aljundi et al., 2018; Chaudhry
et al., 2018). These techniques store a fraction
of previously learned data in a replay buffer, al-
lowing the model to reinforce its performance on
past tasks while acquiring new knowledge. How-
ever, when employing memory-based techniques
in continual learning, the management of multi-
ple objectives associated with previous and current
tasks becomes crucial. Naively aggregating these
objectives by simple summation overlooks the in-
herent, complicated trade-offs involved. Thus, a
more sophisticated strategy is imperative to address
the challenge of multiple-objective optimization
(MOO) for memory-based mechanisms. In this
context, gradient-based frameworks for MOO, aim-
ing to find a solution on the Pareto front (Sener and
Koltun, 2018; Navon et al., 2022), have emerged as
some of the most successful approaches. Despite
their achievements, the effective application of
such methods to continual NLP remains largely un-
explored. Our empirical observations have shown
that directly applying these frameworks for contin-
ual event detection leads to degraded performance,
as evident in Table 4. This performance degrada-
tion can be attributed to two key factors.

The first conundrum of utilizing MOO for con-
tinual event detection is the highly imbalanced
distribution of training data in later tasks, where
current-task classes are significantly more preva-
lent. Failing to adequately address this problem
can make the model susceptible to poor generaliza-
tion (Johnson and Khoshgoftaar, 2019). Second,
the existing MOO methods lack a clear criterion to

3632

determine whether a solution on the Pareto front
would be ideal for mitigating catastrophic forget-
ting, as well as a systematic approach to reach such
a solution. In the context of continual learning,
where tasks are not simultaneously presented at
the beginning, an efficient solution must surpass
the Pareto-optimality criteria; it should also ex-
hibit remarkable robustness in learning new tasks
and minimize performance decline in previously
encountered tasks.

Regarding the above criterion, several studies
(Mirzadeh et al., 2020) have proposed a relation-
ship between solutions found at flat minima in the
loss landscape and their effectiveness in alleviat-
ing catastrophic forgetting. "Flat minima" refers
to regions where the loss function demonstrates a
relatively wide and flat basin, fostering more ro-
bust models with reduced overfitting risks. Re-
cently, a study (Phan et al., 2022a) has proposed
the use of sharpness-aware minimization (SAM)
(Foret et al., 2021) for finding Pareto-optimal so-
lutions in flatter regions of the loss landscape to
improve MOO. However, in the context of con-
tinual learning, the utilization of sharpness-aware
minimization necessitates a nuanced approach to
fully harness its potential. Specifically, it is cru-
cial to overcome the inherent instability associated
with SAM’s adversarial nature and prevent it from
negatively impacting the performance of the model.

Contribution. To address the above challenges,
in this paper, (i) we propose SharpSeq, a novel ap-
proach that enables effective utilizations of multi-
task learning frameworks with sharpness-aware
minimization (SAM) for continual event detection.
It is a meticulously devised adaptation of SAM, tai-
lored for the context of sequential task emergence
in continual learning. Our method entails strategi-
cally applying SAM exclusively to the objectives
affiliated with the current task, while excluding its
application to the objectives of previously encoun-
tered tasks. This selective integration introduces
a layer of objective filter, effectively addressing
the unique challenges posed by continual learn-
ing. To the best of our knowledge, our work is
the first to propose a strategic adaptation of SAM
and MOO for enhancing continual learning. (ii) To
address data imbalance, we propose using a gen-
erative model to learn the underlying distribution
of event triggers representations from each event
type, and thereby synthesize data to alleviate the
imbalance between past-task and current-task data
during replay.

Our extensive experiments on multiple datasets
show that our method outperforms state-of-the-art
baselines by significant margins.

2 Background

2.1 Continual Learning

Continual event detection (CED) is a continual
learning (i.e., lifelong learning) problem, which
is often categorized into three scenarios: task-
incremental learning, domain-incremental learning,
and class-incremental learning (Ke and Liu, 2022;
Van de Ven and Tolias, 2019). CED involves the
classification of events in a continuous data stream
that encompasses both new data and novel event
types (Cao et al., 2020a; Liu et al., 2022). As such,
it can be perceived as a class-incremental learning
(CIL) problem, where the model learns to adapt
and classify new events without forgetting previ-
ously learned ones. In CIL, the mention of "tasks"
only refers to different stages in training, not dis-
tinct prediction tasks. Therefore, during testing, the
model has to predict using the accumulated set of
encountered labels, without explicit task identity.

There are three prominent approaches to alle-
viate catastrophic forgetting in continual learning:
regularization-based methods (Phan et al., 2022b;
Van et al., 2022; Hai et al., 2024), architecture-
based methods (Hung et al., 2019; Liu et al., 2021c;
Mallya and Lazebnik, 2018), and replay-based
methods (Farajtabar et al., 2020; Hou et al., 2019;
Nguyen et al., 2023b; Le et al., 2024). Among
the trio, replay-based methods, which store a small
number of previously learned data in a replay buffer
to facilitate rehearsal learning on old tasks while
the model learns new tasks, have been the most
effective ones in lifelong NLP learning (de Mas-
son d'Autume et al., 2019).

2.2 Event Detection

In conventional event detection (ED) (Wadden
et al., 2019), a typical training dataset D often con-
sists of m pairs of input-label, D = {(xi, yi)}M1 .
An input x includes a context w1:L, which is a sen-
tence of length L, and its event trigger span (s, e).
The task of event detection is to classify each of
these triggers into one of the defined event types y.

One common approach to ED involves utilizing
a pretrained language model such as BERT (Devlin
et al., 2019). This model encodes the context to-
kens w1:L to obtain the contextual representations
w′
1:L. For each event trigger span (s, e), the con-

3633

textual representations w′
s and w′

e of the beginning
and ending trigger tokens are concatenated to ob-
tain the trigger representation zi. Subsequently, the
trigger representation zi is passed through a multi-
layer perceptron (MLP) to derive a feature vector
h. This feature vector h is then fed into a linear
layer followed by a softmax layer, resulting in a
probability distribution p over the predefined event
types. The entire process can be described using
the following equations:

p = Softmax(Linear(h)), (1)

where h = MLP (z) and z = [w′
s, w

′
e]. Let D,

m denote the training dataset and the number of
instances, respectively. We have the training loss
as the cross-entropy loss. However, it is important
to note that there is an imbalance between the data
of the "unknown" (i.e., Not-Any or NA) type and
other event types. To avoid the phenomenon that
NA-label instances will dominate the total gradi-
ent, we regularize the loss with the introduction of
hyperparameter coefficient ν:

Led =− ν

mNA

∑

(w,y)∈DNA

log p

− 1− ν

mnon-NA

∑

(w,y)∈Dnon-NA

log p.
(2)

In which, DNA denote the set of all NA-label in-
stances in D; Dnon-NA denote the set of all non-
NA-label instances in D; mNA and mnon-NA denote
their respective sizes.

2.3 Continual Event Detection

The continual event detection problem is formu-
lated as (Yu et al., 2021): a model is trained se-
quentially on T tasks, each of which has a dataset
Dt corresponding to event types set Ct; and {Ci}T1
are disjoint. As a result, the set of all learned types
at arbitrary timestep t is Ot = C1

⋃
C2

⋃
...
⋃
Ct.

The Not-Any (NA) label is understood as a cur-
rently undefined label; it is included in every task.

Several papers (Wu et al., 2019; Liu et al., 2022;
Yu et al., 2021) have demonstrated the effectiveness
of replay-based methods (section 2.1) in addressing
catastrophic forgetting in both continual learning
and continual event detection. In these methods,
the selection of data for the replay buffer often
employs the herding algorithm, as proposed by
Welling (2009). In the context of CED, where the
Not-Any (NA) label is present in all tasks, instances

labeled as NA are not selected for inclusion in the
replay buffer.

There are two techniques often employed in re-
hearsal when training a CED model: knowledge
distillation and knowledge transfer. The descrip-
tions of these two techniques are as follows, with
R denoting the replay buffer.

Knowledge distillation is a well-known method
to transfer knowledge from a model to another. We
denote the models we have before and after training
on the t-th task as θt−1 and θt, respectively. For-
warding an instance z stored in the memory buffer
R through these two models, using the process de-
scribed in Equation (1), we obtain the probability
distributions over learned event types pt−1 and pt.
From there, we have the distillation loss:

Ld = −
∑

z∈R
pt−1log(pt). (3)

As for knowledge transfer (Yu et al., 2021),
it makes the prediction probability of the current
model pt close to the prediction probability of the
old model scaled by temperature τ , q ∼ (pt−1)1/τ .
To achieve that, it uses the knowledge transfer loss:

Lkt = −
1

m′
∑

z∈D′
t

qt−1log(pt), (4)

where D′
t denotes the modified training set for the

t-th task, and m′ denotes its size. Yu et al. (2021)
mentioned that the instances that have a high prob-
ability of NA label given by the old model should
not be used in knowledge transfer since these in-
stances have less similarity to the old event types.
That is the reason we opt for constructing D′

t from
Dt, instead of directly using Dt, within the scope
of the knowledge transfer loss.

2.4 Gradient-based Multi-Objective
Optimization

Multi-task learning (MTL) can be conceptualized
as a multi-objective optimization problem. We de-
note θ as all model parameters within the feasible
set Θ, Li as the training loss associated with task
i, and K as the total number of tasks. We aim to
minimize, simultaneously, all K losses:

min
θ

[L1(θ), L2(θ), ..., LK(θ)]. (5)

Given θ1 and θ2 as two feasible solutions to
problem (5), we state that θ1 dominates θ2 if and
only if Li(θ

1) ≤ Li(θ
2) ∀i ∈ {1, ...,K} and

3634

∃j ∈ {1, ...,K} s.t. Lj(θ
1) < Lj(θ

2). A fea-
sible solution is deemed Pareto-optimal if it is
not dominated by any other solutions. The set of
Pareto-optimal solutions is called the Pareto front.

PCGrad (Yu et al., 2020), CAGrad (Liu et al.,
2021a), IMTL (Liu et al., 2021b), and Nash-MTL
(Navon et al., 2022) are some of the most high-
lighted papers that propose gradient-based MTL
frameworks, aiming to find a solution on the
Pareto front. Their common principal idea is to
determine the vector updating direction as a lin-
ear combination of the individual task gradients,
∆θ =

∑K
i=1 αigi. α can be perceived as a dy-

namic version of weighted loss summation since
it can change, suitably to the current state of the
model, at each descending step. Their differences
lie in their strategies of choosing α.

While these methods possess a strong theoret-
ical foundation, their empirical efficiency in the
context of continual learning has been subpar. In
continual learning, an effective solution must ful-
fill more than just the Pareto-optimal requirement;
it should also demonstrate robustness in learning
newer, unseen tasks without experiencing a drastic
performance drop in previously encountered tasks.

3 Proposed Method

To improve the common continual event detection
workflow, which we describe in subsections 2.2
and 2.3, we propose the following method. In our
proposed method, we use BERT, which is frozen
during training, as the pretrained language model.
The overview workflow of our proposed method is
illustrated in Appendix A.1.

3.1 Balancing Continual Event Detection via
Representation Generation

A notable challenge in continual event detection
is that the replay buffer size is constrained while
the dataset continuously expands throughout the
model’s lifespan. This scenario poses a dual conun-
drum: the risk of the model overfitting to the memo-
rized data and the data imbalance when implement-
ing multi-task replay strategy, both of which can di-
minish the effectiveness of rehearsal over time. To
address this issue and enhance the diversity within
the memory buffer, we utilize a generative model,
such as Variational Autoencoder (VAE) (Kingma
and Welling, 2013) or Conditional Variational Au-
toencoder (cVAE) (Sohn et al., 2015), to synthesize
representations for each event type.

It is crucial to note that: generating high-
quality natural language samples for event detec-
tion presents a more intricate challenge due to the
discrete nature of our data. Therefore, we propose
to leverage the frozen BERT model to instead learn
the distribution of latent trigger representations to
capture class-level features. This strategy is not
only more feasible than generating explicit text
data, where concerns about grammar, structures,
and other linguistic factors arise, but it also offers
significant benefits for the task of classifying these
representations.

After training on task t, for each event type c in
Ct, we learn a generative model (GM) to the latent
representations of the data of that label and store it
for subsequent sampling.

In the next task (t+ 1), for each event type c ∈
Dt, we use its corresponding GM in the memory
to sample ñ synthetic trigger representations. We
denote the generated set as R̃. The event features of
instances in replay buffer R are merged with R̃ to
get a new set called the augmented set Ra. Ra will
replace R in experience replay and distillation tasks.
Following that, we can write the replay loss (Lr),
which is the cross-entropy loss on the augmented
replay set Ra, and rewrite the distillation loss (Ld):

Lr = −
1

mRa

∑

za∈Ra

log (pza), (6)

Ld = − 1

mRa

∑

za∈Ra

pt−1
za log (ptza). (7)

In the above equations, mRa denotes the number
of trigger representations in Ra, hza = MLP (za),
and pza = Softmax(Linear(ha)).

3.2 Sharpness-Aware Sequential-Task
Learning

The training process of our model can be viewed as
a multi-objective optimization (MOO), aiming to
minimize four objectives simultaneously: Lr, Ld,
Led, and Lkt, as represented by equations (6), (7),
(2), and (3) respectively. Multi-task learning (MTL)
frameworks, such as those discussed in section 2.4,
can be employed to address this problem.

Nevertheless, the empirical performance of cur-
rent multi-task learning frameworks, as noted by
Phan et al. (2022a), has been limited, partly due to
their tendency to disregard the geometric properties
of the loss landscape while solely focusing on min-
imizing empirical error during optimization. They
propose an approach to enhance the robustness of

3635

a multi-task model by seeking the task-based flat
regions, via sharpness-aware minimization. How-
ever, we should keep in mind the unique nature of
continual event detection, and continual learning
problems in general, that distinguishes them from
traditional multi-task learning problems. Unlike
in multi-task learning, not all tasks are available
simultaneously in continual event detection. Con-
sequently, naively applying Phan et al.’s (2022a)
method to this scenario is ill-advised and might
results in declined performance (see Table 4).

Let us assume that after completing task t, we
have obtained a solution that satisfies the flat-
minima requirement. Therefore, when moving on
to t + 1, the solution already lies within the flat
regions of the loss landscapes of the loss associ-
ated with task t, namely the replay loss (Lr) and
distillation loss (Ld). Based on this observation,
to reduce the chance of disturbing the model on
old tasks with more noise from SAM, we propose
to apply the sharpness-aware multi-task learning
approach exclusively to the event detection loss
(Led) and knowledge transfer loss (Lkt). Specifi-
cally, to achieve a flat minima optimizer for these
two losses, we modify each objective Li with the
worst-case loss perturbation in a neighborhood of
the model parameter:

min
θ

max
||ϵi||2≤ρ

Li(θ + ϵi), (8)

where || · ||2 represents the l2 norm; ρ denotes the
neighborhood radius; and Li is either Led and Lkt.
It is assumed that the function Li is differentiable
up to the first order with respect to the model pa-
rameter θ. The optimization problem described
by equation (8) is known as sharpness-aware mini-
mization (SAM) (Foret et al., 2021). The gradient
of the modified loss function with respect to the
model parameter, gi, is computed as:

ϵ∗i = ρ
∇θLi(θ)

||∇θLi(θ)||2
,

gi = ∇θLi(θ + ϵ∗i).
(9)

More details regarding SAM can be found in Ap-
pendix A.2.

Once we have obtained the task-specific gradi-
ents {gi}Ki=1, we can subsequently apply one of
the gradient-based multi-task learning frameworks
(Sener and Koltun, 2018; Yu et al., 2020; Liu et al.,
2021a,b) to solve our modified MOO problem. In
our approach, we specifically leverage the Nash-

Algorithm 1 Sequential Sharpness Minimization
for Continual Event Detection
Input: Model parameters θ, pertubation radius ρ,

learning rate η and differentiable loss functions
Lr, Ld, Led, and Lkt.

Output: Updated parameter θ∗

1: for each i ∈ [r, d, ed, kt] do
2: Compute gradient gloss

i = ∇θLi(θ)
3: if i ∈ {ed, kt} then
4: Worst-case perturbation direction:

ϵ∗i = ρ · gloss
i /||gloss

i ||

5: Approximate SAM’s gradient:

gi = ∇θLi(θ + ϵ∗i)

6: else gi ← gloss
i

7: end if
8: end for
9: Calculate α:

α = MOO_algorithm(gr, gd, ged, gkt)

10: Update model parameter:

θ∗ = θ − η
∑

i∈{r,d,ed,kt}
αigi

MTL framework (Navon et al., 2022) to ensure bal-
anced improvements across all tasks. As we have
discussed in section 2.4, Nash-MTL models the
parameter updating direction at each descending
step as a linear combination of the task-specific gra-
dients, i.e., ∆θ =

∑K
i αigi. According to Navon

et al. (2022), the optimal direction for the gradient
∆θ∗, which guarantees a balanced improvement
across all objectives, is obtained by solving the
following equation with respect to α:

GTGα = [1/α1, ..., 1/αk]
T ; (10)

G denotes the matrix whose columns are the task
gradients gi. In summary, the essential steps of our
proposed paradigm is outlined in Algorithm 1.

4 Experiments

In this section, we present empirical results and
analysis to demonstrate the effectiveness of our
contributions in improving continual event detec-
tion, in comparison against several state-of-the-art
baselines.

3636

4.1 Datasets and Experimental Settings

Datasets Our methods is evaluated on two
datasets: ACE 2005 (Walker et al., 2006) and
MAVEN (Wang et al., 2020); both are preprocessed
as in Yu et al. (2021). However, the preprocess-
ing of dataset ACE is affected by random factors,
leading to differences when splitting documents.
Therefore, to ensure fairness, we rerun all base-
lines on the same preprocessed datasets. Results of
the baselines as reported in their original papers are
kept to compare directly with our methods. The de-
tailed statistics of these two datasets can be found
in Table 1.

Experimental Settings We use the Oracle nega-
tive setting (Yu et al., 2021) to assess all methods
in continual learning scenario. In this setting, the
learned types of previous tasks are excluded from
the training set of the new task except for the NA
type. Labels of future tasks are considered as NA
type. We use the task permutations in (Yu et al.,
2021) and report the average F1 on each task of 5
permutations.

Baselines Besides the aforementioned works in
continual event detection – KCN (Cao et al.,
2020a), KT (Yu et al., 2021), and EMP (Liu et al.,
2022) – the following continual learning methods
are applied to event detection tasks and used as
baselines. First, the model is finetuned sequen-
tially, task by task. In this case, the learned model
suffers from catastrophic forgetting. iCaRL (Re-
buffi et al., 2017) uses an exemplar set to perform
classification, combined with knowledge distilla-
tion. EEIL (Castro et al., 2018) utilizes representa-
tive memory to retain the old knowledge; the most
representative samples of new labels are chosen
to train with the old data to mitigate imbalanced
data. BIC (Wu et al., 2019) alleviates the model’s
bias towards new labels by using an affine trans-
formation. KCN (Cao et al., 2020b) uses a limited
set to store data for replay; then, knowledge dis-
tillation and prototype-enhanced retrospection are
used to mitigate catastrophic forgetting. KT (Yu
et al., 2021) follows a memory-based approach; it
combines knowledge distillation with knowledge
transfer. New-label samples are used to remind
the model of old knowledge, and old-label samples
are used to initialize representations for new-label
data in the classification layer. More details are
presented in section 2.3. EMP (Liu et al., 2022)
also uses knowledge distillation but adds straight

prompts into the input text to retain the old knowl-
edge. Nash-MTL (Navon et al., 2022) refers to
directly applying this MTL framework to simul-
taneously optimize the four losses mentioned in
section 3.2. Finally, Upperbound is the case that
the model is trained on all tasks at the same time.
We derive the implementations of iCaRL, EEIL,
BIC, and KCN from the source code published by
Yu et al. (2021).

Regarding our proposed method, we experiment
with the following versions: SharpSeq, SharpSeq-
G, and SharpSeq-G-A. Nash-MTL is the default
MOO algorithm for SharpSeq unless we explic-
itly discuss otherwise. SharpSeq is described in
section 3.2. SharpSeq-G is SharpSeq without Rep-
resentation Generation (RG). SharpSeq-G-A is a
version of SharpSeq-G when we use both losses
of the current task and the old tasks for sharpness-
aware minimization as in (Phan et al., 2022a). The
implementation details are shown in Appendix A.5.

4.2 Experimental Results
We can observe from Table 2 that SharpSeq-G-A
achieved significant improvements in F1 scores
across most tasks on both datasets, outperform-
ing other baselines. Notably, compared to EMP,
the final F1 score of SharpSeq-G-A increased by
4.15% in MAVEN and 4.56% in ACE. This obser-
vation demonstrates the effectiveness of finding a
flat minimum in continual learning. Moreover, the
consistent performance superiority of SharpSeq-G
over SharpSeq-G-A highlights the efficiency and
necessity of our sharpness-aware continual learning
paradigm. Furthermore, Representation Generation
(RG) enhanced the F1 scores of SharpSeq-G from
59.11% to 60.27% at the fifth task of MAVEN,
and from 56.85% to 62.60% at the fifth task of
ACE. These findings are concrete evidence of the
effectiveness of our methods. RG synthesizes old-
label data to improve balance in the training set,
benefiting multi-objective optimization algorithms.
Our optimization framework, specifically tailored
for continual learning, achieves a minimizer at flat
regions while effectively alleviating noise due to
Sharpness-Aware Minimization’s (SAM) adversar-
ial nature. These are the foundations that enable
our methods to outperform current state-of-the-art
approaches in continual event detection.

4.3 Ablation Study
In this section, we explore the impact of the gen-
erative model and multi-objective optimization

3637

MAVEN ACE
#Doc #Sentence #Mention #Negative #Doc #Sentence #Mention #Negative

Train 2522 27983 67637 280151 501 18246 4088 261027
Dev 414 4432 10880 46318 41 1846 433 53620
Test 710 8038 18904 79699 55 689 790 93159

Table 1: Statistics of two datasets. #Doc stands for the total number of documents.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
finetune 63.16 40.30 33.00 23.86 22.34 55.88 40.25 37.04 20.71 25.01
iCaRL 18.08 27.03 30.78 31.26 29.77 5.05 6.42 7.05 6.93 9.44
EEIL 63.16 48.17 44.17 40.35 37.75 55.88 48.63 57.14 50.45 52.68
BIC 63.16 55.51 53.96 50.13 49.07 55.88 58.16 61.23 59.72 59.02
KCN 63.16 55.73 53.69 48.86 47.44 55.88 58.55 61.40 59.48 58.64
KT 62.76 58.49 57.46 55.38 54.87 55.88 57.29 61.42 60.78 59.82
EMP 66.82 58.02 58.19 55.07 54.52 59.05 57.14 55.80 53.42 52.97
Nash-MTL 62.76 60.39 59.47 56.09 52.84 55.88 57.92 62.08 59.11 58.17
SharpSeq-G-A 62.28 61.52 62.55 60.52 58.67 56.47 59.08 63.46 59.23 57.53
SharpSeq-G 62.28 61.57 62.48 60.54 59.11 56.47 58.51 63.37 59.54 56.85
SharpSeq 62.28 61.85 62.92 61.31 60.27 56.47 56.99 64.44 62.47 62.60
Upperbound / / / / 63.46 / / / / 67.95

Table 2: Classification F1-scores (%) on 2 datasets MAVEN and ACE.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
KT 62.76 58.49 57.46 55.38 54.87 55.88 57.29 61.42 60.78 59.82
GMMs 62.76 59.30 59.55 58.25 57.70 55.88 56.97 62.48 60.88 62.01
GMMs+SS 62.28 61.85 62.92 61.31 60.27 56.47 56.99 64.44 62.47 62.60
VAE 62.76 60.06 59.82 57.14 55.68 55.88 57.37 61.52 59.38 59.51
VAE+SS 62.28 61.63 62.63 60.62 59.30 56.47 59.61 63.16 60.3 61.56
CVAE 62.76 59.62 59.60 56.56 54.88 55.88 57.97 64.24 60.46 61.81
CVAE+SS 62.28 61.68 62.38 60.33 58.77 56.47 57.47 63.77 60.60 61.87

Table 3: Ablation results of generation methods. "SS" is the abbreviation of SharpSeq.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
KT 62.76 58.49 57.46 55.38 54.87 55.88 57.29 61.42 60.78 59.82
Nash-MTL 63.69 60.56 59.12 55.56 52.40 55.19 58.12 62.77 58.46 55.69
Nash-MTL + SS 62.28 61.85 62.92 61.31 60.27 56.47 56.99 64.44 62.47 62.60
PCGrad 63.69 58.91 54.71 48.70 45.58 55.19 57.99 62.47 58.40 55.56
PCGrad + SS 62.28 61.45 61.52 57.78 55.48 56.47 58.36 63.62 61.53 61.58
IMTL 63.69 53.02 51.92 50.33 48.06 55.19 56.96 58.62 59.72 56.23
IMTL + SS 62.28 58.43 58.47 56.40 55.93 56.47 54.76 59.20 56.70 56.98

Table 4: Ablation result on MOO methods. "SS" is the abbreviation of SharpSeq.

3638

method choices. Additional ablation studies on
the number of GMM components and the ratio of
synthesized representations are provided in Appen-
dices A.4 and A.3.

Generative model We examine three genera-
tive methods to synthesize samples for old labels:
GMMs, VAE (Kingma and Welling, 2013), and
cVAE (Sohn et al., 2015); the results are presented
in Table 3. We can see that all generation meth-
ods result in better performance compared to the
baseline model KT. Considering the generation
method in isolation, GMMs achieved the best per-
formance, substantially improving KT by 3.83%
and 3.19% on MAVEN and ACE, respectively, af-
ter the fifth task. This outcome proves the effec-
tiveness of employing generative models to relieve
the imbalance problem. Especially, when com-
bined with SharpSeq, all of them gained significant
additional enhancements across most tasks. On
MAVEN, GMMs+SS was the best method with
the F1-Score of 60.27% after the fifth task, bet-
ter than standalone GMMs by 1.57%. GMMs+SS
were also the best method on ACE with a score of
62.60%. From these findings, we can see that the
choice of the generation method for SharpSeq is
consequential and needs to be selected carefully:
GMMs’ learning process can be perceived as a
soft-clustering process, which makes them excel in
preserving the inherent separability within the la-
tent trigger representations of different labels. Con-
versely, VAEs are trained such that their encoders
can map the data into a continuous, latent proba-
bilistic space, which allows smooth interpolations
during reconstruction. This is a strength of VAEs
in generating continuous-in-nature data types such
as images and sound. However, in the context of
our work, additional mapping of the latent trig-
ger representations to a different latent space can
result in unnecessary information loss. As such,
the expected benefit of VAEs, which is to achieve
smooth interpolation between two latent spaces, is
not significant for the replay process of our Con-
tinual Event Detection model. Moreover, GMMs
offer advantages in training and storage efficiency
compared to VAE or cVAE. While VAE requires
the creation and training of a new network for ev-
ery event type, and cVAE requires that for every
task, GMMs eliminate the need for excessive net-
work proliferation, resulting in shorter training and
inference times.

Multi-objective optimization algorithm The re-
sults in table 4 show the performances of different
MOO methods, with and without SharpSeq. When
we used MOO methods in isolation, Nash-MTL
achieved the best performance at most tasks on
both datasets. Although PCGrad and Nash-MTL’s
results on the ACE datasets were comparable, Nash-
MTL outperformed PCGrad by a significant margin
of 6.82% after five tasks on MAVEN.

However, directly applying MOO methods to KT
without any adjustments can even cause a down-
grade in performance. For instance, Nash-MTL
worsened KT’s performance by 2.47% and 4.13%
on MAVEN and ACE, respectively. The main rea-
sons for these decreases are the oversight of train-
ing data imbalance and the inherent differences
between multi-task learning and continual learning.
When the MOO methods were combined SharpSeq,
their performances improved clearly. Considering
these methods when combined with SharpSeq (SS),
Nash-MTL still had the best F1 score at most tasks,
on both datasets. Particularly, on MAVEN, Nash-
MTL+SS achieved 60.27% F1 score, better than
Nash-MTL (52.4%), and better than PCGrad+SS
(55.48%). On the ACE dataset, the results have the
same pattern: Nash-MTL+SS yielded the best out-
come, eclipsing the performance of KT by 2.78%.
The effectiveness of Nash-MTL comes from its
ability to mitigate the detrimental effects originat-
ing from the disparity in magnitudes between ob-
jectives in MOO.

5 Conclusion

In this work, we introduce SharpSeq, a novel
framework that enables the seamless integration
of state-of-the-art gradient-based multi-objective
optimization methods into continual event detec-
tion systems. By addressing the challenges of im-
balanced training data and the unique nature of
continual learning, our method significantly en-
hances the performance of continual event detec-
tion. Through rigorous empirical benchmarks, we
demonstrate the effectiveness and versatility of our
contributions, extending beyond the realm of con-
tinual event detection and showcasing the poten-
tial for leveraging multi-objective optimization in
solving various continual learning problems across
various domains. This work sets a solid founda-
tion and paves the way for future research in this
exciting and rapidly evolving field.

3639

Limitations

While our proposed methods have brought a great
improvement to continual event detection, it is nec-
essary to point out certain limitations of this re-
search. One notable limitation of SharpSeq is that
it is still susceptible to some degree of catastrophic
forgetting. Although Representation Generation al-
leviates the imbalance problem, this method might
introduces some level of noise. However, this lim-
itation can be managed through further study to
control the quality of generated data. Addition-
ally, at each task, SharpSeq has to compute back-
propagation four times, one for each objective, to
compute α, resulting in higher training cost. In con-
clusion, our proposed methods are not a definitive
solution for continual event detection, and future
research can focus on improving multi-objective
optimization and data balancing to further enhance
the method’s effectiveness.

Acknowledgements

In this research, Linh Ngo Van is supported by
NAVER Corporation within the framework of col-
laboration with the International Research Center
for Artificial Intelligence (BKAI), School of Infor-
mation and Communication Technology, HUST
under project NAVER.2024.DA03. Thien Huu
Nguyen is supported by the Army Research Of-
fice (ARO) grant W911NF-21-1-0112, the NSF
grant CNS-1747798 to the IUCRC Center for Big
Learning, and the NSF grant # 2239570.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European conference on
computer vision (ECCV), pages 139–154.

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang.
2020a. Incremental event detection via knowledge
consolidation networks. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 707–717, Online.
Association for Computational Linguistics.

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang.
2020b. Incremental event detection via knowledge
consolidation networks. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 707–717.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. 2018.

End-to-end incremental learning. In Proceedings of
the European conference on computer vision (ECCV),
pages 233–248.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Effi-
cient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420.

Cyprien de Masson d'Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang
Li. 2020. Orthogonal gradient descent for continual
learning. In International Conference on Artificial
Intelligence and Statistics, pages 3762–3773. PMLR.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2021. Sharpness-aware mini-
mization for efficiently improving generalization. In
International Conference on Learning Representa-
tions.

Nam Le Hai, Trang Nguyen, Linh Ngo Van, Thien Huu
Nguyen, and Khoat Than. 2024. Continual varia-
tional dropout: a view of auxiliary local variables in
continual learning. Machine Learning, 113(1):281–
323.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang,
and Dahua Lin. 2019. Learning a unified classifier
incrementally via rebalancing. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 831–839.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-
Hung Chen, Yi-Ming Chan, and Chu-Song Chen.
2019. Compacting, picking and growing for unfor-
getting continual learning. In Advances in Neural In-
formation Processing Systems, pages 13647–13657.

Justin M Johnson and Taghi M Khoshgoftaar. 2019. Sur-
vey on deep learning with class imbalance. Journal
of Big Data, 6(1):1–54.

Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

3640

https://doi.org/10.18653/v1/2020.emnlp-main.52
https://doi.org/10.18653/v1/2020.emnlp-main.52
https://proceedings.neurips.cc/paper_files/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://doi.org/10.1109/CVPR.2019.00092
https://doi.org/10.1109/CVPR.2019.00092

Thanh-Thien Le, Manh Nguyen, Tung Thanh Nguyen,
Linh Ngo Van, and Thien Huu Nguyen. 2024. Con-
tinual relation extraction via sequential multi-task
learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 18444–
18452.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and
Qiang Liu. 2021a. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Informa-
tion Processing Systems, 34:18878–18890.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue,
Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. 2021b. Towards impartial multi-task
learning. In International Conference on Learning
Representations.

Minqian Liu, Shiyu Chang, and Lifu Huang. 2022. In-
cremental prompting: Episodic memory prompt for
lifelong event detection. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 2157–2165, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Yaoyao Liu, Bernt Schiele, and Qianru Sun. 2021c.
Adaptive aggregation networks for class-incremental
learning. In Proceedings of the IEEE/CVF confer-
ence on Computer Vision and Pattern Recognition,
pages 2544–2553.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 7765–
7773. Computer Vision Foundation / IEEE Computer
Society.

Hieu Man, Nghia Trung Ngo, Linh Ngo Van, and
Thien Huu Nguyen. 2022. Selecting optimal con-
text sentences for event-event relation extraction. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 36, pages 11058–11066.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pas-
canu, and Hassan Ghasemzadeh. 2020. Understand-
ing the role of training regimes in continual learning.
Advances in Neural Information Processing Systems,
33:7308–7320.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai
Maron, Kenji Kawaguchi, Gal Chechik, and Ethan
Fetaya. 2022. Multi-task learning as a bargaining
game. arXiv preprint arXiv:2202.01017.

Chien Nguyen, Linh Ngo, and Thien Nguyen. 2023a.
Retrieving relevant context to align representations
for cross-lingual event detection. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 2157–2170.

Huy Nguyen, Chien Nguyen, Linh Ngo, Anh Luu, and
Thien Nguyen. 2023b. A spectral viewpoint on con-
tinual relation extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 9621–9629.

Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh
Phung, and Trung Le. 2022a. Improving multi-task
learning via seeking task-based flat regions. arXiv
preprint arXiv:2211.13723.

Hoang Phan, Anh Phan Tuan, Son Nguyen, Ngo Van
Linh, and Khoat Than. 2022b. Reducing catastrophic
forgetting in neural networks via gaussian mixture
approximation. In Advances in Knowledge Discov-
ery and Data Mining: 26th Pacific-Asia Conference,
PAKDD 2022, Chengdu, China, May 16–19, 2022,
Proceedings, Part I, pages 106–117. Springer.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn-
ing as multi-objective optimization. Advances in
neural information processing systems, 31.

Kihyuk Sohn, Xinchen Yan, and Honglak Lee. 2015.
Learning structured output representation using deep
conditional generative models. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’15, page
3483–3491, Cambridge, MA, USA. MIT Press.

Linh Ngo Van, Nam Le Hai, Hoang Pham, and Khoat
Than. 2022. Auxiliary local variables for improving
regularization/prior approach in continual learning.
In Advances in Knowledge Discovery and Data Min-
ing: 26th Pacific-Asia Conference, PAKDD 2022,
Chengdu, China, May 16–19, 2022, Proceedings,
Part I, pages 16–28. Springer.

Gido M Van de Ven and Andreas S Tolias. 2019. Three
scenarios for continual learning. arXiv preprint
arXiv:1904.07734.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilin-
gual training corpus LDC2006T06. Web Download.
Philadelphia: Linguistic Data Consortium.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang,
Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai

3641

https://openreview.net/forum?id=IMPnRXEWpvr
https://openreview.net/forum?id=IMPnRXEWpvr
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://doi.org/10.1109/CVPR.2018.00810
https://doi.org/10.1109/CVPR.2018.00810
https://doi.org/10.1109/CVPR.2018.00810
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

Lin, and Jie Zhou. 2020. Maven: A massive gen-
eral domain event detection dataset. arXiv preprint
arXiv:2004.13590.

Max Welling. 2009. Herding dynamical weights to
learn. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09,
page 1121–1128, New York, NY, USA. Association
for Computing Machinery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large
scale incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 374–382.

Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-
long event detection with knowledge transfer. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5278–
5290, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances
in Neural Information Processing Systems, 33:5824–
5836.

A Appendix

A.1 Workflow of Proposed Methods

The overview workflow of our proposed method is
illustrated in Figure 1.

A.2 Sharpness-Aware Minimization

The traditional training process concentrates only
to minimize the empirical loss, thus lead to overfit-
ting problems where the model can not generalize
the training data well and failed on the unseen data.
Foret et al. (2021) introduce a procedure to mitigate
this problem by minimizing the worst-case loss in-
stead of directly optimizing the training losses. The
new optimization problem is as the following:

min
θ

max
||ϵ||2≤ρ

L(θ + ϵ), (11)

where ||.||2 is the l2 norm and ρ is the radius of the
neighborhood; θ denotes the model’s parameters.
To solve the inner maximization in problem 11,

Foret et al. (2021) first estimate ϵ by using the first-
order Taylor expansion to estimate L(θ + ϵ).

ϵ∗ ∈ argmax
||ϵ||2≤ρ

L(θ + ϵ) ≈ argmax
||ϵ||2≤ρ

ϵT∇θL(θ)

≈ ρ
∇θL(θ)

||∇θL(θ)||2
Once ϵ is approximated, the gradient of worst-case
loss will be used to update the parameter θ:

gSAM := ∇θ max
||ϵ||2≤ρ

L(θ+ϵ) ≈ ∇θL(θ+ϵ)|θ+ϵ∗

A.3 The effects of the quantity of generated
samples

As shown in table 2, Representation Generation
pushes the performance of SharpSeq by synthesiz-
ing data for old labels. To further inspect how it
affects SharpSeq, we experiment SharpSeq with
different ratios r between the number of generated
samples and the replay set. The results of four
values of r are presented in table 5. For MAVEN,
r = 10 gains the highest performance with 60.27%
F1 score in the fifth task. while for the fifth task of
ACE, the best value of r is 20 with 62.08% score.
The effect of r on the early tasks is relatively low
but it is significant in the late tasks. We can observe
that increasing the value of r does not guarantee a
better performance of SharpSeq. The problem with
Representation Generation is that the synthesized
samples contain noise from random processes. The
noise can affect the value of ϵ in SharpSeq and
navigate the MOO algorithm to optimize the model
with wrong labels. Thus, when we generate more
samples, we need to take into consideration how to
remove noise from generated samples to avoid the
bad effect.

A.4 Number of GMMs components

Since we use GMMs to synthesize new samples
for old labels, it is important to understand how
the number of Gaussian components affects the
eventual continual event detection ability. Table
6 shows experimental results on hyperparameter
g. For MAVEN, the differences in performance
between values of g were very small, the best value
of g in MAVEN was 6, but it was lower than g = 4
by 0.04% on the fifth task. In contrast, the F1-
scores of SharpSeq on the ACE dataset varied a
lot when g changes. The best value of g on ACE
was 8 with an F1-score of 60.60% after the fifth
task. However, the increase of g does not guarantee

3642

https://doi.org/10.1145/1553374.1553517
https://doi.org/10.1145/1553374.1553517
https://doi.org/10.18653/v1/2021.emnlp-main.428
https://doi.org/10.18653/v1/2021.emnlp-main.428

-task data ()

Embedding

BERT
(Frozen)

Classifier at task

need grad

no grad

Memory
Distribution

Knowledge
Distillation

Loss

Memory
Distribution

Classifier at task Classifier at task

GMM

update

sampling

Synthesized
Representations

Event
Detection

Loss

Multi-objective
Gradient Aggregation

Balancing CED via
Representation Generation

Knowledege
Transfer

Loss
Replay
Loss

SAM

SAM

Herding
Algorithm

update

Memory
Buffer

Memory
Buffer

Past-task
Representations

Classifier at task

NA-label probability threshold

Classifier at task

Optimized classifier
at task

Figure 1: Overview of SharpSeq’s workflow.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
r = 20 62.28 61.78 62.79 61.25 60.02 56.47 57.62 62.40 62.55 62.08
r = 10 62.28 61.85 62.92 61.31 60.27 56.47 57.76 64.03 61.34 60.78
r = 5 62.28 61.73 62.78 61.03 60.03 56.47 58.95 65.38 62.64 61.16
r = 2 62.28 61.86 62.73 60.78 59.38 56.47 58.78 64.68 61.75 60.11

Table 5: Ablation results for the number of generated representations in the SharpSeq method.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
g = 2 62.28 61.69 62.66 60.98 59.78 56.47 57.09 64.42 62.02 60.54
g = 4 62.28 61.80 62.56 61.20 60.24 56.47 57.12 64.18 61.63 62.34
g = 6 62.28 61.83 62.92 61.28 60.20 56.47 56.31 64.37 62.84 61.54
g = 8 62.28 61.82 62.75 61.20 60.20 56.47 56.99 64.44 62.47 62.60

Table 6: Ablation results on the number of GMMs components in SharpSeq.

3643

an increase in performance: when g = 4, the F1-
score after the fifth task was 62.34%, which was
better than the results corresponding to g = 6 and
was worse than g = 8 by only 0.26%. Thus, the
number of components g should be tuned carefully
to avoid the detrimental effect of noise and get the
best result in the continual learning setting.

A.5 Implementation details

In the training phase, we use AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 1e − 4 and weight decay of 1e − 2. For both
datasets, we set the batch size to 128 and the train-
ing process will stop after 5 epochs if the perfor-
mance on the development set does not improve.
The setting for KT (Yu et al., 2021) is kept with
the number of instances per label in the replay set
q to be 20 and the number of instances for initial-
ization of new label h to be 20. For each method,
the best results are reported by using grid search.
The search ranges of each hyperparameter are as
follows:

• the generation ratio r is in [2, 5, 10, 20]

• the number of epochs is in [15, 30]

• the balancing coefficient ν to balance NA la-
bel and valid labels is in [45 ,

10
11 ,

20
21 ,

30
31 ,

40
41]

• the number of component of GMMs g is in
[2, 4, 6, 8]. In our experiments, we double the
value of g with labels that have more than 600
instances.

All implementations are written using PyTorch; all
experiments were conducted on an NVIDIA A100
and an NVIDIA V100. The source code will be
published as soon as this paper is accepted.

A.6 Reproducibility Checklist

• Source code with the specification of all
dependencies, including external libraries:
The source code and the necessary documen-
tation for reproducibility is submitted together
with this paper via ACL Rolling Review sub-
mission system.

• Description of computing infrastructure
used: In this work, since the number of exper-
iments is very large, we use a Tesla V100-
SXM2 GPU with 32GB memory operated
by Ubuntu Server 18.04.3 LTS and a Tesla

A100-SXM GPU with 40GB memory oper-
ated by Ubuntu 20.04. PyTorch 1.9.1 and
Huggingface-Transformer 4.23.1 (Apache Li-
cense 2.0) (Wolf et al., 2019) are used to im-
plement the models.

• Average runtime for each approach: Each
epoch of the proposed model on average takes
20 minutes for MAVEN dataset and 12 min-
utes for ACE dataset. We train the model for
maximum 30 epochs. The best epoch is cho-
sen based on F1 score over development data.

• Number of parameters in the model: The
total number of parameters of our model is
335M parameters. Since we freeze the BERT
model; the number of trainable parameters is
thus only 1.4M.

• Explanation of evaluation metrics used,
with links to code: We use the same perfor-
mance measures (average F1-scores on 5 per-
mutations of task orders) as in previous work
(Yu et al., 2021) for fair comparisons.

• Bounds for each hyper-parameter: Please
refer to Section A.5

• The method of choosing hyper-parameter
values and the criterion used to select
among them: The hyperparameters are tuned
using random search. Hyper-parameters are
chosen based on F1 scores on the development
set.

3644

