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Abstract
Evaluating retrieval-augmented generation
(RAG) systems traditionally relies on hand
annotations for input queries, passages to re-
trieve, and responses to generate. We intro-
duce ARES, an Automated RAG Evaluation
System, for evaluating RAG systems along
the dimensions of context relevance, answer
faithfulness, and answer relevance. By cre-
ating its own synthetic training data, ARES
finetunes lightweight LM judges to assess the
quality of individual RAG components. To
mitigate potential prediction errors, ARES uti-
lizes a small set of human-annotated datapoints
for prediction-powered inference (PPI). Across
eight different knowledge-intensive tasks in
KILT, SuperGLUE, and AIS, ARES accurately
evaluates RAG systems while using only a few
hundred human annotations during evaluation.
Furthermore, ARES judges remain effective
across domain shifts, proving accurate even
after changing the type of queries and/or docu-
ments used in the evaluated RAG systems. We
make our code and datasets publicly available
on Github.

1 Introduction

Retrieval-augmented generation (RAG) has be-
come a prominent approach for building user-
facing NLP applications, such as systems for ques-
tion answering (QA), fact-checking, and customer
support (Petroni et al., 2021; Wang et al., 2019).
Typically, a RAG system consists of a retriever and
a downstream language model (LM). Given a user
question, the retriever finds relevant passages from
a corpus and the LM uses these passages to gener-
ate a response. This formulation admits a multitude
of choices: what retrieval model to use, how to di-
vide the documents into retrieval chunks, and how
to prompt or finetune the LM to use the retrieved
information, to name only a few of the simplest
design decisions.

∗Project started during research internship at Databricks

The best design for a RAG system is not neces-
sarily universal across data domains, corpus sizes,
and cost/latency budgets. To tune their own RAG
systems, practitioners traditionally need hand an-
notations for test questions, passages to retrieve
(to assess the retriever), and responses to generate,
labeled specifically for their target domain. Alter-
natively, they may evaluate different approaches in
production by collecting human preferences that
compare the candidate systems. Unfortunately,
both of these strategies demand high expertise and
impose considerable annotation costs.

Model-based evaluation is an inexpensive strat-
egy to test generative output quality (Zheng et al.,
2023). For instance, the open-source RAGAS
framework (James and Es, 2023) prompts an LM
for evaluating the relevance of retrieved informa-
tion and the faithfulness and accuracy of generated
responses. Unfortunately, such strategies currently
rely for evaluation on a fixed set of heuristically
hand-written prompts, offering little adaptability
to various evaluation contexts and no guarantees
about quality.

To evaluate RAG systems rapidly and accu-
rately, we propose ARES, the Automated RAG
Evaluation System. ARES is the first automated
RAG evaluation system to generate tailored LLM
judges for each component of a RAG pipeline, lead-
ing to substantial boosts in evaluation precision and
accuracy compared to existing approaches like RA-
GAS. Furthermore, unlike existing RAG evaluation
systems, ARES provides confidence intervals for
its scoring by leveraging prediction-powered in-
ference (PPI; Angelopoulos et al. 2023). Given a
corpus of documents and a RAG system, ARES
reports three evaluation scores: context relevance
(is the retrieved information pertinent to the test
question), answer faithfulness (is the response gen-
erated by the language model properly grounded
in the retrieved context), and answer relevance (is
the response also relevant to the question). A good
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RAG system finds relevant contexts and generates
answers that are both faithful and relevant.

Many existing RAG evaluation frameworks re-
quire substantial human annotations for scoring.
ARES significantly improves data efficiency dur-
ing evaluation by only requiring three inputs: an in-
domain passage set, a human preference validation
set of approximately 150 annotated datapoints or
more, and few-shot examples of in-domain queries
and answers (e.g. five examples or more), which
are used for prompting LLMs in synthetic data gen-
eration.

Given the corpus of in-domain passages, ARES
proceeds in three stages. First, it leverages an LM
to construct a synthetic dataset of question–answer
pairs, derived from the passages in the corpus. Sec-
ond, it defines three separate judge models to per-
form three classification tasks (context relevance,
answer faithfulness, and answer relevance). These
judges are lightweight models fine-tuned against a
contrastive learning objective. Third, ARES scores
the different RAG systems being assessed using
prediction-powered inference (PPI; Angelopoulos
et al. 2023) to improve model-based evaluation ac-
curacy and provide statistical confidence intervals
for RAG scoring. PPI utilizes a small set of human
annotated datapoints for computing its confidence
intervals; we designate this annotated set as our hu-
man preference validation set, which is composed
of approximately 150 annotated datapoints or more
that designate both positive and negative examples
for context relevance, answer faithfulness, and an-
swer relevance.

We conduct extensive empirical evaluations,
demonstrating that ARES accurately scores
RAG systems across the six knowledge-intensive
datasets in KILT and SuperGLUE, beating exist-
ing automated evaluation approaches like RAGAS
by 59.3 and 14.4 percentage points on average
across context relevance and answer relevance eval-
uation accuracy, respectively. Additionally, ARES
accurately calculates answer hallucination occur-
rences in the AIS attribution dataset (Rashkin et al.,
2022), predicting within 2.5 percentage points of
the ground truth average for answer hallucinations.
Compared to annotation-based evaluation methods,
ARES is substantially more accurate and efficient,
requiring 78% less annotations than the baseline
approach. We also find that ARES consistently
distinguishes competitive RAG systems that are
only a few points apart in ground-truth metrics.
This precision enables ARES to guide the develop-

ment and comparison of competitive approaches
and configurations.

We make the ARES code and datasets publicly
available on Github.

2 Related Work

RAG (Guu et al., 2020; Lewis et al., 2020; Khat-
tab et al., 2021; Izacard et al., 2022)) is now a
common strategy for bolstering LLMs by combin-
ing them with retrieval systems. Through retrieval,
RAG helps LM systems gather domain-specific
knowledge, ground generations in factual informa-
tion (Shuster et al., 2021; Huo et al., 2023), and
offer a degree of transparency or interpretability
via citing sources (Mialon et al., 2023).

Multiple LLM-based evaluation techniques have
emerged for gauging LLM systems. This is essen-
tial for rapid deployment in new settings, where it
is difficult to build a traditional benchmark dataset
from scratch. Early attempts at this use LLMs
out of the box, as in MT-Bench and Chatbot
Arena (Zheng et al., 2023). AutoCalibrate (Liu
et al., 2023b) seeks to align an LLM-judge with
human preferences, leveraging a self-refinement
prompt to iteratively improve the LLM judge. How-
ever, AutoCalibrate does not offer any statistical
guarantees for the accuracy of its predictions. Other
work has used LLM prompting to evaluate system
quality across natural language generation tasks,
such as translation, summarization, and dialogue
(Kocmi and Federmann, 2023; Fu et al., 2023; Liu
et al., 2023a; Wang et al., 2023).

In the context of knowledge-intensive NLP tasks,
LLMs have been explored for assessing attribution
and factuality in LLMs (Min et al., 2023; Gekhman
et al., 2023; Yue et al., 2023). New guidelines
like LongEval (Krishna et al., 2023) and datasets
like Hagrid and ALCE (Kamalloo et al., 2023;
Gao et al., 2023) provide resources for analyzing
knowledge-intensive LLM pipelines.

The two most-closely related projects to ARES
are EXAM (Sander and Dietz, 2021) and RA-
GAS (James and Es, 2023). To evaluate RAG sys-
tems, the EXAM metric estimates how many exam
questions a reader (simulated as a QA system) can
answer correctly based on the generated response.
This requires a set of queries with several asso-
ciated sub-questions each, which adds a burden
that ARES does not bring. RAGAS is based on a
handful of heuristic hand-written prompts. These
offer little adaptability to new RAG evaluation set-

339

https://github.com/stanford-futuredata/ARES


tings (e.g., new corpora) and, as we show in our
evaluation, substantially underperform ARES.

3 ARES

ARES proceeds in three stages (Figure 1). There
are three required inputs: an in-domain passage set,
a human preference validation set of approximately
150 annotated datapoints (or more), and few-shot
examples of in-domain queries and answers (five
or more examples), which are used for prompting
LLMs in synthetic data generation. With our inputs
prepared, we begin by generating synthetic queries
(and their answers) from the passages in the target
corpus. We then use these query–passage–answer
triples to train LLM judges. Subsequently, we ap-
ply these judges to any RAG system, scoring a
sample of its in-domain query-document-answer
triples, and use prediction-powered inference (PPI)
with our human preference validation set to esti-
mate a confidence interval for the quality of each
RAG system.

3.1 LLM Generation of Synthetic Dataset
We generate synthetic queries and answers from
the corpus passages using generative LLMs. The
generated data represent both positive and negative
examples of query–passage–answer triples (e.g.,
relevant/irrelevant passages and correct/incorrect
answers). For generation, the LLM uses our in-
put set of few-shot examples with in-domain pas-
sages mapped to in-domain queries and answers;
the model then generates a synthetic question and
answer from a given in-domain passage, allowing
us to create both positive and negative training ex-
amples. We include example prompts for generat-
ing synthetic queries and answers in A.6.

For creating our synthetic data, we primarily use
on FLAN-T5 XXL (discussed in subsection 4.1).
ARES works well with this model (see section 5)
but our system can ultimately use another high-
quality model for generating synthetic queries and
answers. We then filter out low-quality queries
by testing if a given query can retrieve its original
passage as the top result using its retriever. This
filtering approach has been used in previous work
to isolate high-quality synthetic queries (Dai et al.,
2022; Saad-Falcon et al., 2023).

To generate negatives for fine-tuning our LLM
judges, we rely on two novel strategies, generating
the same number of negatives with each strategy:

1. Weak Negative Generation: For context rel-

evance negatives, we randomly sample in-
domain passages unrelated to a given syn-
thetic query. For answer faithfulness and
answer relevance negatives, we randomly
sample synthetically-generated answers from
other passages, which were created using
FLAN-T5 XXL.

2. Strong Negative Generation: For context
relevance negatives, we randomly sample in-
domain passages from the same document as
the gold passage. For datasets in which mul-
tiple passages are not available for the same
document, we use BM25 to retrieve the top-
10 passages similar to the passage and sample
from them for our context relevance strong
negatives. For answer faithfulness and an-
swer relevance negatives, we prompt FLAN-
T5 XXL (subsection 4.1) to generate a contra-
dictory answer using the few-shot prompt in
subsection A.5.

In total, the number of negatives generated
equals the number of positives generated for evalu-
ating context relevance and answer relevance.

3.2 Preparing LLM Judges
To prepare our RAG evaluation judges, we use
our synthetic dataset to fine-tune DeBERTa-v3-
Large judges (discussed in subsection 4.1) to eval-
uate three different capabilities (Chen et al., 2023;
James and Es, 2023):

1. Context Relevance: Is the passage returned
relevant for answering the given query?

2. Answer Faithfulness: Is the answer gener-
ated faithful to the retrieved passage, or does
it contain hallucinated or extrapolated state-
ments beyond the passage?

3. Answer Relevance: Is the answer generated
relevant given the query and retrieved pas-
sage?

For each metric, a separate LLM with a binary
classifier head is fine-tuned to classify positive and
negative examples. For each concatenated query-
document-answer, a single LLM judge must clas-
sify the triple as positive or negative for that judge’s
metric. To fine-tune these judges, we use our hu-
man preference validation set to evaluate model
improvement after each epoch, stopping when we
have three epochs with no improvement in loss (see
subsection A.1 for more information).
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Figure 1: Overview of ARES: As inputs, the ARES pipeline requires an in-domain passage set, a human preference
validation set of 150 annotated datapoints or more, and few-shot examples of in-domain queries and answers (five or
more), which are used for prompting LLMs in synthetic data generation. To prepare our LLM judges for evaluation,
we first generate synthetic queries and answers from the corpus passages. Using our generated training triples and a
constrastive learning framework, we fine-tune an LLM to classify query–passage–answer triples in three different
criteria: context relevance, answer faithfulness, and answer relevance. Finally, we use the LLM judges to score
RAG systems and generate confidence bounds for the ranking using PPI and the human preference validation set.

3.3 Ranking RAG Systems with Confidence
Intervals

Once we have prepared our LLM judges, we need
to use them to score and rank the competing RAG
systems. To do this, ARES samples the in-domain
query-document-answer triples produced by each
RAG approach, and the judges label each triple,
predicting their context relevance, answer faithful-
ness, and answer relevance. By averaging the in-
dividual predicted labels for each in-domain triple,
we calculate the RAG system performance across
each of the three metrics.

In principle, we could simply report these aver-
age scores as quality metrics for each RAG system.
However, these scores reflect entirely unlabeled
data with predictions from a synthetically-trained
LLM judge, and hence they may not be entirely
accurate. As an extreme alternative, we could use
just the small human preference validation set dis-
cussed previously for evaluation, reporting the ex-
tent to which each RAG system agrees with (or
deviates from) the human annotations. However,
an annotation-based evaluation approach would re-
quire labeling substantially more generative out-
puts from each RAG systems separately, which can
be costly both in terms of time and financing.

To combine the benefits of both, and hence
boost the precision of the evaluation, ARES uses
prediction-powered inference (PPI; Angelopoulos
et al. 2023) to predict the system scores. PPI is
a recent statistical method that provides tighter
confidence intervals on a small set of annotated
datapoints (i.e., our validation set) by leveraging
predictions on a much larger set of non-annotated
datapoints. PPI can leverage both the labeled dat-

apoints and the ARES judge predictions on the
non-annotated datapoints to construct confidence
intervals for our RAG system’s performance.

To do this, PPI uses the LLM judges on the hu-
man preference validation set to learn a rectifier
function for constructing a confidence set of the ML
model’s performance, using each ML prediction in
the larger non-annotated dataset. The confidence
set can then be used to create a tighter confidence
interval for the performance of the evaluated RAG
system (e.g. its context relevance, answer faithful-
ness, or answer relevance accuracy individually)
compared to simply using annotated outputs from
the evaluated RAG system. By bolstering the hu-
man preference validation set with the much larger
set of datapoints with ML predictions, PPI can de-
velop reliable confidence intervals for ML model
performance that beat previous classical inference
approaches.

The PPI rectifier function allows us to estimate
the errors of the LLM judge and generate confi-
dence bounds for the success and failure rates of the
RAG system, estimating context relevance, answer
faithfulness, and answer relevance performance.
Additionally, PPI allows us to estimate confidence
intervals with a selected level of probability; for our
experiments, we use a standard 95% alpha (proba-
bility) for our confidence interval.

With the accuracy confidence interval for each
component of the RAG, we find the midpoint of
each confidence interval and use the midpoints to
rank the RAG systems. With our ranking, we can
compare different RAG systems, as well as differ-
ent configurations of the same RAG system, to find
the best-performing approach for a given domain.
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4 Experiments

4.1 Models

For our fine-tuned judges, ARES relies on generat-
ing cheap but quality synthetic queries and answers
using LLMs. For generating our synthetic datasets,
we use FLAN-T5 XXL (Chung et al., 2022). We se-
lected DeBERTa-v3-Large (He et al., 2021) for our
fine-tuned LLM judge. Our fine-tuned LLM judges
allow us to rank RAG systems without relying on
external APIs, solely using few-shot prompts and
deployable LLMs on commercial GPUs.

For our in-context learning baseline, we use Ope-
nAI’s gpt-3.5-turbo-16k, version 10/23, (Brown
et al., 2020) in a zero/few-shot setting. For similar-
ity search over in-domain passages, we use FAISS
IndexFlatL2 for indexing (Johnson et al., 2019)
and OpenAI’s text-embedding-ada-002 for gener-
ating embeddings. We use simlarity search over
in-domain passages to filter our synthetic queries
that cannot retrieve the passage from which they
were generated. We use version 0.0.18 of RAGAS
in our experiments (James and Es, 2023).

4.2 Datasets

Our core experimental goal is to provide a rich
picture of where ARES can be applied effectively.
To test across multiple types of queries, documents,
and answers, we selected all the datasets from the
widely-used KILT and SuperGLUE benchmarks
for which RAG is appropriate.

From KILT (Petroni et al., 2021), we use Natural
Questions (NQ), HotpotQA, FEVER, and Wizards
of Wikipedia (WoW) (Kwiatkowski et al., 2019;
Yang et al., 2018; Akhtar et al., 2023; Dinan et al.,
2018). Each dataset uses Wikipedia passages but
the queries and answers offer a range of applica-
tions. Both NQ and HotpotQA feature direct ques-
tions and expect short answers, but NQ uses single
passages for reasoning while HotpotQA requires
multiple passages for reasoning. Furthermore,
FEVER focuses on fact-verification, determining if
a passage supports or refutes a given statement, and
expects an output of “SUPPORTS” or “REFUTES”.
WoW seeks to evaluate dialogue agents by mapping
user dialogue to relevant Wikipedia passages be-
fore a chatbot generates a paragraph-length chat
response incorporating passage knowledge.

From SuperGLUE (Wang et al., 2019), we use
MultiRC and ReCoRD (Khashabi et al., 2018;
Zhang et al., 2018). MultiRC focuses on di-
rect questions for seven different domains (News,

Wikipedia articles, articles on society/law/justice,
articles on history/anthropology, elementary school
science textbooks, 9/11 reports, and fiction).
ReCoRD focuses on determining the placeholder
entity in a statement, focusing on news articles
from CNN and the Daily Mail. For MultiRC and
ReCoRD, we create open-domain versions of their
tasks. For MultiRC, we perform retrieval over its
seven sets of domain passages. For ReCoRD, we
perform retrieval over its news article passages.

The efficacy of ARES relies on its ability to rank
different RAG systems while only using a human
preference validation set and domain-targeted LLM
judges. To test the limits of ARES, we need to sim-
ulate the existence of many RAG systems that are
separated by small accuracy margins on our eval-
uation metrics. For this, we create systems using
artificial query-passage-answer triples, in which
we empirically know the positive and negative ex-
amples of the mock RAG system. We generate
these mock splits of the given datasets by select-
ing (1) The positive and negative query-passage
matches for context relevance, and (2) the positive
and negative query-passage-answer matches for an-
swer relevance. We include positive and negative
examples from our evaluation sets in Table 7.

For our positive triples, we can simply use the
KILT and SuperGLUE examples without any al-
teration. For gathering negative query-passage
pairs and query-passage-answer triples, we ran-
domly sample passages and answers from either:
the same Wikipedia document or an entirely ran-
dom Wikipedia document. This sampling allows
us to artificially create mock RAG systems for test-
ing ARES. By sampling both related and unrelated
documents/answers, we hope to better gauge the
efficacy of ARES in judging RAG outputs.

We do not evaluate answer faithfulness for KILT
and SuperGLUE datasets since we do not have
human-annotated hallucinated answers to use for
evaluation. However, we do test the ARES frame-
work on real attribution datasets in Section 5.2.

Using the validation subsets for each KILT
and SuperGLUE dataset, we create nine different
dataset splits, ranging from 70% success rate to
90% success rate for each of the evaluated RAG
criteria; each dataset is separated by 2.5% accuracy
points (e.g. 70.0%, 72.5%, 75.0%, . . . , 90.0%).
Each split also represents a different mock RAG
system. Since we know the success percentages of
each dataset split, we know the appropriate rank-
ing of each mock RAG system. This allows us to
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test ARES success at both scoring and ranking the
mock RAG systems appropriately across the three
evaluation criteria.

4.3 Metrics

To calculate the correlation between the correct
ranking and the ARES ranking, we use the Kendall
rank correlation coefficient or Kendall’s τ :

τ =
(# of concordant pairs)− (# of discordant pairs)

# of pairs total

Concordant pairs are defined as two ordinal val-
ues in the ranking where the earlier value in the
sequence is lower than the later value in the se-
quence. Discordant pairs are defined as two ordinal
values in the ranking where the earlier value in the
sequence is greater than or equal to the later value
in the sequence. A Kendall’s τ greater than 0.9 is
considered successful but it ranges from 0.0 to 1.0.

In development, researchers and engineers
will be comparing different RAG configurations
through individual pairwise comparisons of model
choices, retriever selection, and document prepro-
cessing. We want to make sure that ARES has satis-
factory accuracy in pairwise comparisons across a
variety of performance gaps between RAG systems.
Kendall’s τ is explicitly designed for measuring the
accuracy of such pairwise comparisons, calculating
the correlation between a perfectly accurate pair-
wise ranking and an experimental pairwise ranking.
Thus, it is a popular and widespread metric used in
information retrieval, allowing developers to eval-
uate ranking systems empirically. Therefore, we
believe Kendall’s tau and prediction accuracy pro-
vide meaningful metrics for testing the efficacy of
ARES as a RAG evaluation system.

5 Results & Analysis

5.1 ARES Ranking

Table 1 summarizes our main evaluation of ARES
(with DeBERTa-v3-Large as the pretrained basis
for the judges). We compare against RAGAS (ver-
sion 0.0.18) and a baseline few-shot prompted GPT-
3.5 judge (gpt-3.5-turbo-16k). For the few-shot
GPT-3.5 judge, we provide few-shot examples for
guiding predictions; the prompts are included in
Appendices A.2, A.3, and A.4. For both ARES
and the GPT-3.5 judge baseline, we augment the
LLM with PPI, using a 300-datapoint human pref-
erence validation set to rectify the ML predictions
and produce confidence intervals.

Across almost all settings across the datasets
from KILT and SuperGLUE, ARES provides a
more accurate ranking of RAG systems than RA-
GAS. ARES averages a Kendall’s τ 0.065 higher
for context relevance and 0.132 higher for answer
relevance than RAGAS. Additionally, the LLM-
judge is substantially more accurate than RAGAS
at predicting context relevance and answer rele-
vance of a query-passage-answer triple. For con-
text relevance, ARES with a fine-tuned LLM-judge
is 59.9 percentage points higher than RAGAS while
for answer relevance, our system is 14.4 percent-
age points higher than RAGAS. Overall, ARES
provides a more accurate system for automatically
evaluating RAG configurations than RAGAS by
leveraging domain-adaptive techniques for prompt-
ing and training as well as utilizing PPI to bolster
model predictions.

As an additional comparison, we also include
the Kendall’s τ for RAG ranking with the ARES
LLM judge without PPI; for all datasets tested, PPI
improved the ranking prediction accuracy of the
fine-tuned LLM judge. Furthermore, we included
a sampled annotations configuration, in which we
sampled 150-datapoints from each mock RAG sys-
tem, totalling 1,350 annotations. Even with all
these annotations, the Kendall’s τ for ARES is
0.08 higher on average, across both context and an-
swer relevance, compared to sampled annotations,
despite using 78% less annotations. In sum, ARES
proves significantly more data-efficient with human
annotations while being more accurate at scoring
than standard sampled annotation methods.

Compared to the GPT-3.5 judge, ARES provides
a more accurate ranking of the RAG systems than
the GPT-3.5 judge, averaging a Kendall’s tau 0.06
higher over both context relevance and answer rel-
evance. Between the judge configurations, the fine-
tuned LLM judge of ARES can more precisely dis-
tinguish between RAG systems and guide configu-
ration decisions surrounding document splitting, re-
triever selection, and generative LLM choice. How-
ever, while the fine-tuned LLM judge had a higher
Kendall’s tau on average, the GPT-3.5 judge is
more readily deployable and does not require any
additional fine-tuning. The GPT-3.5 judge does
come with its own querying costs, which can vary
based on the date of querying as well as the total
tokens used in evaluation.

We also wanted to better understand the impor-
tance of human annotations for ARES. To this end,
we conducted two sets of experiments. First, we
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ARES Ranking of Pseudo RAG Systems

NQ HotpotQA WoW FEVER MultiRC ReCoRD

C.R A.R. C.R A.R. C.R A.R. C.R A.R. C.R A.R. C.R A.R.

Kendall’s Tau for
Sampled Annotations 0.83 0.89 0.78 0.78 0.78 0.83 0.89 0.89 0.83 0.83 0.72 0.94

Kendall’s Tau
for RAGAS 0.89 0.89 0.94 0.89 0.94 0.94 0.72 0.61 0.83 0.94 0.89 0.44

Kendall’s Tau
for GPT-3.5 Judge 0.89 0.94 0.67 0.94 0.94 0.89 0.78 0.78 0.83 0.89 0.83 0.94

Kendall’s Tau for
ARES LLM Judge 0.89 1.0 0.89 0.94 0.94 1.0 0.83 0.72 0.94 0.83 0.78 0.83

Kendall’s Tau
for ARES 0.94 1.0 0.94 0.94 1.0 1.0 0.89 0.78 0.94 0.89 0.83 0.89

RAGAS Accuracy 31.4% 71.2% 17.2% 76.0% 36.4% 77.8% 23.7% 69.2% 16.1% 75.0% 15.0% 72.8%

GPT-3.5 Judge Accuracy 73.8% 95.5% 75.3% 71.6% 84.3% 85.2% 60.4% 59.6% 72.4% 60.3% 81.0% 65.8%

ARES Accuracy 79.3% 97.2% 92.3% 81.3% 85.7% 96.1% 88.4% 78.5% 85.8% 82.7% 67.8% 92.3%

Table 1: ARES Ranking with Fine-tuned LLM Judges vs. Sampled Annotations, RAGAS and GPT-3.5 Judge:
For scoring context relevance and answer relevance (C.R. and A.R. in the table, respectively), we compare ARES
with our fine-tuned LLM judges against sampled annotations benchmark, RAGAS, and a few-shot GPT-3.5 judge.
For our sampled annotations, we gather 150 annotated datapoints from each mock RAG system and use those labels
to score the system. RAGAS also uses GPT-3.5 as its judge but it uses few-shot prompts that are not targeted for
each evaluation domain. Overall, we found that ARES ranked RAG systems more accurately than RAGAS and
GPT-3.5 across all the explored datasets. The Kendall’s tau for ARES was 0.065 higher on average for scoring
context relevance and 0.132 higher on average for scoring answer relevance than RAGAS. Additionally, we include
the Kendall’s taus for the ARES LLM Judge without PPI and found that PPI further boosted the ranking accuracy of
the judge across the board. We selected GPT-3.5 instead of GPT-4 due to the lower financial costs required to run.
For PPI in both ARES and the GPT-3.5 judge, we used 300 human annotations for our human preference validation
set. The prompts used for the GPT-3.5 judges are included in Sections A.2, A.3, and A.4.

used ARES with human annotation sets ranging
in size from 25 to 400 and found that 150 is the
minimum number required (Table 3). Second, we
explored whether GPT-4 generations could replace
human annotations entirely, finding that GPT-4 is
less good than humans in this role, though the idea
arguably has promise (Table 4).

5.2 ARES Performance on AIS

WoW CNN / DM

ARES Split Prediction 0.478 0.835
Correct Positive/Negative Split 0.458 0.859
ARES Judge Accuracy 62.5% 84.0%
Evaluation Set Size 707 510
Human Preference Data Size 200 200

Table 2: ARES Results on the AIS benchmark

To evaluate whether ARES can effectively gauge
answer faithfulness in real RAG systems, we tested
ARES on the AIS attribution benchmark (Rashkin
et al., 2022). In AIS, we selected the Wizards
of Wikipedia (WoW) and CNN/DM datasets; the

other benchmark datasets involve either table rea-
soning (ToTTo) or focus on passage summariza-
tion (QRECC) so we excluded them. In WoW
and CNN/DM, each evaluation example includes
a query, a retrieved passage, and a generated an-
swer (which is either faithful or non-attributed to
the retrieved passage).

Table 2 summarizes our AIS results. We found
that ARES can effectively score the AIS datasets,
getting within 2.5 accuracy points of the correct
scores. Furthermore, for scoring each system,
we only use 200 annotated datapoints for our hu-
man preference validation set. Our results on AIS
demonstrate the ability of ARES to reliably dis-
tinguish faithful and hallucinated answers in real-
world RAG systems.

5.3 ARES Ranking of Existing RAG Systems
We also wanted to evaluate whether ARES can
score and rank existing RAG systems across both
context relevance and answer relevance. For eval-
uation, we selected the NQ, WoW, and FEVER
datasets from KILT. We consider the answer gen-
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erations to be correct if they contained the KILT
answer in their output. For our RAG systems,
we selected three different retrievers (BM25, Ope-
nAI Ada embeddings with cosine similarity search,
and ColBERTv2 (Santhanam et al., 2022)) and
three different generative LLMs (MPT-7b-Instruct
(Team, 2023), GPT-3.5-Turbo, and GPT-4). Ad-
ditionally, we include the Facebook RAG model
(Lewis et al., 2020), which uses a DPR retriever
(Karpukhin et al., 2020) and BART sequence-to-
sequence model (Lewis et al., 2019). During re-
trieval, each RAG system only retrieves one pas-
sage to assist generation.

In Table 5, we found that ARES can reliably
score and rank RAG systems in real-world applica-
tions, averaging a Kendall’s tau of 0.91 for context
relevance and 0.97 for answer relevance. Com-
pared to RAGAS, ARES is 0.16 higher for context
relevance and 0.15 higher for answer relevance, on
average. ARES also provided accurate confidence
bounds for its predictions, capturing the ground
truth average outcomes for context relevance and
answer relevance more than 95% of the time; on av-
erage, the PPI confidence intervals were 7.4 points
wide for context relevance and 6.1 points wide for
answer relevance (see Figure 2 and Figure 3 for
ARES vs. RAGAS). Among the models tested, the
best performing retriever was ColBERTv2 while
the best performing generative LLM was GPT-4.

5.4 Strengths and Limits of Cross-Domain
Applications

The generalizability of the LLM judge used in
ARES is critical for deploying our framework in
specialized domains, particularly domains where
in-domain queries, documents, and answers are dif-
ficult to gather. Therefore, we wanted to test how
the LLM judges used in ARES would be affected
by three domain shifts: change in query type from
training to test (e.g. NQ to FEVER), change in
document type from training to test (e.g. NQ to
MultiRC), and change in both query and document
type (e.g. NQ to ReCoRD).

In Table 6, we found that the fine-tuned LLM
judges used in ARES proved successful in cross-
domain applications. Across all settings, we found
that LLM judges in ARES had strong generaliz-
ability, even when only using 300 datapoints in our
human preference validation set for PPI. Further-
more, we found that even when the LLM judge’s ac-
curacy suffered in cross-domain applications, PPI
helped mitigate the loss in accuracy and still allow

ARES to be successful. Additional examples for
PPI also continued to boost cross-domain ARES
performance in subsequent tests.

While LLM judges in ARES were successful
in cross-domain applications for KILT and Super-
GLUE, LLM judges are unable to generalize when
making more drastic shifts in domain, such as:
switching languages (e.g. English to Spanish, Ger-
man, and other languages), switching from text to
code (e.g. questions + passages to coding functions
+ documentation), and switching from retrieving
text to extraction of entities, webpages, or citations.

To test cross-lingual transfer, we used the
XGLUE datasets (Liang et al., 2020); a LLM judge
fine-tuned on NQ achieved a Kendall’s tau of 0.33
over both context relevance and answer relevance
scoring for XGLUE. To test text-to-code, we used
CodeSearchNet (Husain et al., 2019); an LLM
judge fine-tuned on NQ achieved a Kendall’s tau
of 0.28 over both context relevance and answer
relevance scoring for CodeSearchNet. To test ex-
traction task generalizability, we used T-Rex from
KILT (Elsahar et al., 2018; Petroni et al., 2021); an
LLM judge fine-tuned on NQ achieved a Kendall’s
tau of 0.38 over both context relevance and answer
relevance scoring for T-Rex. Each cross-domain
shift requires in-domain passages and few-shot
query examples for reconfiguring ARES judges.

6 Conclusion

In this work, we present ARES, a novel automated
evaluation framework for retrieval-augmented gen-
eration (RAG). ARES offers a novel training
pipeline for fine-tuning lightweight LLM judges
on synthetically generated queries and answers.
ARES can evaluate each component of a RAG sys-
tem separately to help improve system understand-
ing and create targeted solutions, and it requires
only minimal human annotations. For the eight dif-
ferent datasets in KILT, SuperGLUE, and AIS re-
quiring RAG-based solutions, we found that ARES
can accurately score and rank RAG systems based
on context relevance, answer faithfulness, and an-
swer relevance scores, beating the existing RAGAS
automated evaluation framework.

ARES is a flexible framework, and there may
be variants of it that are even more powerful than
the ones we explored here. Avenues to explore
include GPT-4 as a replacement for human labeling
(Table 4), more robust techniques for the synthetic
datasets used in fine-tuning LLM judges, utilizing
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logits in LLM judge prediction to improve PPI
confidence intervals, and testing more sophisticated
LLMs as fine-tuned judges for ARES.

7 Limitations

ARES relies on a small set of annotations in the
human preference validation set (roughly 150-300
datapoints but more is better). These annotations
often require an annotator familiar with the RAG
system’s domain application. While these annota-
tions can be easy to generate for general-domain
applications, more specialized domains, such as
law, medicine, and finance, may require annotators
with specialized expertise.

The LLMs used in ARES benefit substantially
from GPU-based hardware with substantial stor-
age. In ARES, DeBERTa-v3-Large (304M) and
FLAN-T5-XXL (11.3B) required GPUs with about
32GB of memory to run, taking several hours for
fine-tuning and generation, respectively. While
commercial GPUs are widely available, they are
not easily accessible to all NLP researchers and
practitioners due to their costs.

Additionally, all of the datasets used in our eval-
uation of ARES are in English, a well-resourced
language with abundant annotations. Future work
should explore how ARES can be employed in
other languages by utilizing different LLMs for
the ARES judge and the synthetic data generation.
This can help us better understand the strengths and
weaknesses of the current ARES framework.
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A Appendix

A.1 Fine-tuning Configuration for LLM
Judges

For our loss function used in LLM judge train-
ing, we selected cross-entropy loss using Adam

(Kingma and Ba, 2017). For our classification head,
we use a single linear classification layer and ap-
ply a 0.1 dropout to the input, which is the final
hidden state of the [CLS] token. For our learning
schedule, we use linear warmup and linear decay
(Howard and Ruder, 2018) with a 5e-6 learning rate
and a 32 training batch size across all experimental
configurations.

A.2 GPT Prompting for Context Relevance
Scoring

For the NQ, HotpotQA, MultiRC, and ReCoRD
datasets, we use 8 few-shot examples with the fol-
lowing prompt to score context relevance:

• Given the following question and document,
you must analyze the provided document and
determine whether it is sufficient for answer-
ing the question. In your evaluation, you
should consider the content of the document
and how it relates to the provided question.
Output your final verdict by strictly following
this format: "[[Yes]]" if the document is suffi-
cient and "[[No]]" if the document provided is
not sufficient. Do not provide any additional
explanation for your decision.

Question: <few-shot example here>

Document: <few-shot example here>

For FEVER, we use the following prompt to
score context relevance:

• You are an expert fact-checking agent. Given
the following statement and document, you
must analyze the provided document and de-
termine whether it is sufficient for determining
the statement’s factuality. In your evaluation,
you should consider the content of the docu-
ment and how it relates to the provided state-
ment’s factuality. Output your final verdict
by strictly following this format: "[[Yes]]" if
the document is sufficient and "[[No]]" if the
document is not sufficient. Do not provide any
additional explanation for your decision.

Statement: <few-shot example here>

Document: <few-shot example here>

For WoW, we use the following prompt to score
context relevance:

• You are an expert dialogue agent. Given the
following dialogue and document, you must
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analyze the provided document and determine
whether it is relevant for responding to the
dialogue. In your evaluation, you should con-
sider the content of the document and how
it relates to the provided dialogue. Output
your final verdict by strictly following this
format: "[[Yes]]" if the document is relevant
and "[[No]]" if the document provided is not
relevant. Do not provide any additional expla-
nation for your decision.

Dialogue: <few-shot example here>

Document: <few-shot example here>

A.3 GPT Prompting for Answer Faithfulness
Scoring

For the NQ, HotpotQA, MultiRC, and ReCoRD
datasets, we use 8 few-shot examples with the fol-
lowing prompt to score answer faithfulness:

• Given the following question, document, and
answer, you must analyze the provided answer
and determine whether it is faithful to the con-
tents of the document. The answer must not
offer new information beyond the context pro-
vided in the document. The answer also must
not contradict information provided in the doc-
ument. Output your final verdict by strictly
following this format: "[[Yes]]" if the answer
is faithful to the document and "[[No]]" if the
answer is not faithful to the document. Do not
provide any additional explanation for your
decision.

Question: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

For FEVER, we change the word "question" in
the prompt to "statement". For WoW, we change
the word "question" in the prompt to "dialogue".

A.4 GPT Prompting for Answer Relevance
Scoring

For the NQ, HotpotQA, MultiRC, and ReCoRD
datasets, we use 8 few-shot examples with the fol-
lowing prompt to score answer relevance:

• Given the following question, document, and
answer, you must analyze the provided answer
and document before determining whether
the answer is relevant for the provided ques-
tion. In your evaluation, you should consider

whether the answer addresses all aspects of
the question and provides only correct infor-
mation from the document for answering the
question. Output your final verdict by strictly
following this format: "[[Yes]]" if the answer
is relevant for the given question and "[[No]]"
if the answer is not relevant for the given ques-
tion. Do not provide any additional explana-
tion for your decision.

Question: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

For FEVER, we change the word "question" in
the prompt to "statement". For WoW, we change
the word "question" in the prompt to "dialogue".

A.5 Prompting for Generation of Synthetic
Queries and Answers

To generate synthetic queries and answers using
FLAN-T5, we use the following prompt and pro-
vide 5 few-shot examples:

• Example N

Question: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

We use the same prompting structure for gener-
ating incorrect or contradictory answers; we simply
swap out the few-shot examples to be incorrect or
contradictory instead.

A.6 Synthetic Query and Answer Generation
For generating our synthetic questions, we use the
following prompt for FLAN-T5 XXL:

• Example #1

Document: <few-shot example here>

Query: <few-shot example here>

Example #2

Document: <few-shot example here>

Query: <few-shot example here>

Example #3

Document: <few-shot example here>

Query: <few-shot example here>

Example #4

Document: <in-domain passage>

Query:
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For generating our synthetic answers, we use the
following prompt for FLAN-T5 XXL:

• Example #1

Query: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

Example #2

Query: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

Example #3

Query: <few-shot example here>

Document: <few-shot example here>

Answer: <few-shot example here>

Example #4

Query: <synthetic query here>

Document: <in-domain passage here>

Answer:
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Figure 2: RAG Systems Evaluation on NQ - Context Relevance

Figure 3: RAG Systems Evaluation on NQ - Answer Relevance
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Kendall’s Tau by Dataset

NQ MultiRC ReCoRD

PPI Labeled
Count C.R. A.R. C.R. A.R. C.R. A.R.

400 1.0 1.0 0.89 0.94 0.89 0.94
300 0.89 1.0 0.94 0.89 0.83 0.89
200 0.83 1.0 0.83 0.94 0.83 0.83
150 0.72 1.0 0.83 0.89 0.72 0.83
100 0.44 1.0 0.67 0.67 0.67 0.83
50 0.44 0.94 0.61 0.44 0.56 0.67
25 0.44 0.89 0.56 0.44 0.44 0.56

Table 3: Analysis of PPI Labeled Count vs. ARES Efficacy by Kendall’s Tau: The Kendall’s tau values represent
the correlation between the correct ranking and the ARES ranking of the pseudo RAG systems. We use the same
experimental set-up as described in subsection 4.2. We find that below about 100-150 datapoints in the human
preference validation set, ARES cannot meaningfully distinguish between the alternate RAG systems based on their
accuracies in context relevance and answer relevance (C.R. and A.R., respectively).

ARES Ranking of Pseudo RAG Systems using GPT-4 Labels

NQ ReCoRD MultiRC

Context
Relevance

Answer
Relevance

Context
Relevance

Answer
Relevance

Context
Relevance

Answer
Relevance

Kendall’s Tau 0.78 1.0 0.78 0.72 0.89 0.78

Kendall’s Tau of
Human Labeled Approach 0.94 1.0 0.83 0.89 0.94 0.89

Average PPI Range 9.2% 6.8% 8.2% 9.0% 7.7% 8.3%

Accuracy on
RAG Evaluation Sets 79.3% 96.7% 88.4% 78.3% 85.8% 82.5%

Table 4: GPT-4 Labels vs. Human Labels: We wanted to explore the practicality of using GPT-4 generated
labels instead of human annotations for our human preference validation set in ARES. In the experiments, we
generated 500 GPT-4 labels as replacements for human labeling using few-shot prompts (see Sections A.2, A.3,
and A.4). While GPT-4 generated labels decreased Kendall’s tau in most settings by 0.05 to 0.30, the ability to
cheaply produce GPT-4 generated labels significantly reduces the cost of annotation, cutting it from hundreds of
annotations to less than ten for few-shot prompts. Additionally, the efficacy of PPI continues improving as we
generate more GPT-4 generated labels. In the table, we define PPI range as the number of percentage points from
the lower number to the upper number of the PPI confidence bounding. Additionally, we use the fine-tuned LLM
judge (DeBERTa-v3-Large) for evaluation.
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ARES Ranking of Real RAG Systems

NQ WoW FEVER

C.R. A.R. C.R. A.R. C.R. A.R.

Kendall’s Tau for
Sampled Annotations 0.73 0.78 0.73 0.73 0.73 0.82

Kendall’s Tau
for RAGAS 0.82 0.82 0.73 0.82 0.73 0.87

Kendall’s Tau
for GPT-3.5 Judge 0.82 0.87 0.82 0.82 0.64 0.87

Kendall’s Tau
for ARES LLM Judge 0.91 0.96 0.91 1.0 0.73 0.87

Kendall’s Tau
for ARES 1.0 0.96 0.91 1.0 0.82 1.0

RAGAS Accuracy 35.9% 68.2% 44.4% 80.1% 21.4% 75.9%
GPT-3.5 Accuracy 80.5% 91.2% 81.2% 83.5% 61.3% 54.5%
ARES Accuracy 85.6% 93.3% 84.5% 88.2% 70.4% 84.0%

Table 5: ARES Ranking on Real-World RAG Systems: For scoring context relevance and answer relevance
(C.R. and A.R. in the table, respectively), we compare ARES with our fine-tuned LLM judges against sampled
annotations benchmark, RAGAS, and a few-shot GPT-3.5 judge. For our sampled annotations, we gather 150
annotated datapoints from each mock RAG system and use those labels to score the system. RAGAS also uses
GPT-3.5 as its judge but it uses few-shot prompts that are not targeted for each evaluation domain. Overall, we
found that ARES ranked RAG systems more accurately than RAGAS and GPT-3.5 across all the explored datasets.
Additionally, we include the Kendall’s taus for the ARES LLM Judge without PPI and found that PPI further boosted
the ranking accuracy of the judge across the board. We selected GPT-3.5 instead of GPT-4 due to the lower financial
costs required to run. For PPI in both ARES and the GPT-3.5 judge, we used 300 human annotations for our human
preference validation set. The prompts used for the GPT-3.5 judges are included in Sections A.2, A.3, and A.4.

ARES Cross-Domain Ranking of Pseudo RAG Systems

NQ to
FEVER

FEVER to
NQ

NQ to
MultiRC

MultiRC to
NQ

NQ to
ReCoRD

ReCoRD to
NQ

C.R. A.R. C.R. A.R. C.R. A.R. C.R. A.R. C.R. A.R. C.R. A.R.

Kendall’s Tau 0.89 0.89 1.0 0.83 0.94 0.89 1.0 0.89 0.78 0.89 0.89 0.94

Kendall’s Tau of
In-Domain LLM Judge 0.89 0.78 0.94 1.0 0.94 0.89 0.94 1.0 0.83 0.89 0.94 1.0

Average PPI Range 8.7% 7.2% 6.5% 11.5% 10.2% 11.3% 11.9% 11.5% 10.5% 10.1% 9.7% 6.2%

Accuracy on
RAG Evaluation Sets 92.4% 28.4% 85.7% 22.6% 81.5% 92.1% 87.6% 80.2% 29.1% 81.2% 80.1% 92.1%

Table 6: Cross-Domain Usage of Fine-tuned LLM Judges: We tested the cross-domain application of the
fine-tuned LLM judge in the ARES framework. We found that for both context relevance and answer relevance
(C.R. and A.R. in the table, respectively), fine-tuned LLM judges showed strong generalizability across domains
when changing query type (e.g. NQ and FEVER), document type (e.g. NQ and MultiRC), or both (e.g. NQ and
ReCoRD). For PPI, we used 300 labeled examples for our human preference validation set but also found that
additional examples further improved the performance of ARES. Furthermore, we found that even in scenarios
where the fine-tuned LLM judge’s accuracy significantly dropped out-of-domain (e.g. answer relevance for NQ
to FEVER), PPI mitigated the decrease in judge performance. In the table, we define PPI range as the number of
percentage points from the lower bound to the upper bound of the PPI confidence interval.
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Query Passage Answer Context
Relevance

Answer
Relevance

How can a ball that is not
moving possess energy
of position?

Mechanical energy is a combination of the energy of motion or position.
This type of energy describes objects that are moving or could move.
A moving ball can have energy from motion. An arrow can also have
the energy of motion. Both are types of mechanical energy.

The ball holds
mechanical energy 1 1

Who has a Jimmy
Stewart-like quality
of quiet trust?

One look at Fred Rooney, and you just know he’s the good guy.
A trace of childish innocence in his face gives the lanky
Bethlehem lawyer a Jimmy Stewart-like quality of quiet trust.
In black jeans and button-down shirt, he’s a kind of folk hero
in the south Bethlehem melting pot where he’s crafted a law
practice catering to working-class families - mostly Latino -
in the shadow of the hulkish remnants of Bethlehem Steel.

Fred Rooney 1 1

Before he murder the
doctor and Ralph Smith,
where did the stepfather
reside?

Surviving being shot and stabbed at the end of the previous film ,
the stepfather has been institutionalized in Puget Sound, Washington since ,
spending his time building model houses in the workshop.
Assigned a new doctor named Joseph Danvers the stepfather
begins confiding in him to gain his trust , ultimately murdering
the doctor during a session by stabbing him in the neck with a
blade smuggled out of the workshop . After killing Danvers the stepfather
beats a suspicious guard named Ralph Smith to death with his own nightstick
with only two strikes and takes his uniform , successfully
sneaking out of the sanitarium . Checking into a hotel after robbing and
murdering a traveling salesman the stepfather alters his appearance ,
takes the name Doctor Gene F. Clifford from the newspaper obituaries
and travels to Palm Meadows , Los Angeles after seeing an ad for it on
an episode of Dream House .

Los Angeles 1 0

What was the name of the
2006 film about Pushkin’s death,
and who portrayed Pushkin?

After arriving in New York City, Einstein was taken to various places and
events, including Chinatown, a lunch with the editors of the New York
Times, and a performance of Carmen at the Metropolitan Opera,
where he was cheered by the audience on his arrival.
During the days following, he was given the keys to the city by Mayor
Jimmy Walker and met the president of Columbia University, who
described Einstein as "The ruling monarch of the mind." Harry
Emerson Fosdick, pastor at New York’s Riverside Church, gave
Einstein a tour of the church and showed him a full-size statue that
the church made of Einstein, standing at the entrance.

Vasily Szaitsev portrayed
Pushkin in the film
Pushkin Returns

0 0

Table 7: Positive and Negatives Evaluation Examples
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