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Abstract
The diffusion model, a new generative mod-
eling paradigm, has achieved great success in
image, audio, and video generation. However,
considering the discrete categorical nature of
the text, it is not trivial to extend continuous
diffusion models to natural language. In this
work, we propose SeqDiffuSeq, a text diffu-
sion model, to approach sequence-to-sequence
text generation with an encoder-decoder Trans-
former architecture. To improve the generation
performance, SeqDiffuSeq is equipped with
the self-conditioning technique and our newly
proposed adaptive noise schedule technique.
Self-conditioning enables SeqDiffuSeq to bet-
ter use the predicted sequence information dur-
ing the generation process. The adaptive noise
schedule balances the difficulty of denoising
across time steps at the token level. Exper-
iment results illustrate the improved perfor-
mance on five sequence-to-sequence generation
tasks compared to other diffusion-based models
regarding text quality and inference time.

1 Introduction

Generative modeling is drawing more attention in
recent years of machine learning research due to
the development of diffusion models (Ho et al.,
2020). Diffusion models define the forward pro-
cess and the reverse process where the former grad-
ually diffuses data to random noise while the latter
recovers data from random noise iteratively, which
have shown superior performance on synthesiz-
ing images (Rombach et al., 2021), audios (Kong
et al., 2020), and videos (Ho et al., 2022) over other
generative methods, such as generative adversar-
ial network (GAN) (Goodfellow et al., 2014) and
normalizing flow (Kobyzev et al., 2021).

It is not trivial to extend diffusion models to the
generation of natural languages. Most of the ex-
isting diffusion models are applied to continuous
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feature space (Ho et al., 2020; Nichol and Dhari-
wal, 2021) while texts are sequences of discrete
categorical tokens. Recently, research has explored
categorical diffusion models in discrete space for
text generation (Hoogeboom et al., 2021; Austin
et al., 2022). There also exists research such as Dif-
fusionLM (Li et al., 2022) that applies continuous
diffusion models to word embedding. However,
these works only focus on unconditional and con-
trolled text generation.

Sequence-to-sequence text generation is a fun-
damental natural language processing setting and
covers various practical downstream tasks, such as
dialogue (Ni et al., 2021) and machine translation
(Liu et al., 2020). In recent practice, researchers
resort to auto-regressive (AR) (Dai et al., 2019)
or non-auto-regressive (NAR) (Gu et al., 2019)
Transformers for the tasks, and achieve good gen-
eration performance. Using diffusion models, a
recent work named DiffuSeq (Gong et al., 2022)
applies the diffusion-based method for sequence-
to-sequence text generation. They deploy encoder-
only Transformers and partially define diffusion
and denoising processes on output sequences.

In this work, we explore diffusion models
with encoder-decoder Transformer architecture for
sequence-to-sequence generation. We propose Se-
qDiffuSeq which extends the continuous diffusion
framework proposed in DiffusionLM (Li et al.,
2022) to sequence-to-sequence settings. We equip
SeqDiffuSeq with the self-conditioning technique
(Chen et al., 2022) and our newly proposed adap-
tive noise schedule. Self-conditioning helps the
model better capture the information from former it-
erations during the generation. The proposed adap-
tive noise schedule learns a token-level noise sched-
ule to better control the amount of noise injected
and information recovered during the forward and
reverse process (Nichol and Dhariwal, 2021).

We conduct experiments on five generation tasks.
Results show that SeqDiffuSeq achieves compet-

22

https://github.com/Yuanhy1997/SeqDiffuSeq


itive performance compared with AR and NAR
baselines in terms of generation quality and diver-
sity. SeqDiffuSeq also shows improved genera-
tion performance and inference speed compared
to text diffison model DiffuSeq. Ablation stud-
ies demonstrate that our model can benefit from
self-conditioning and adaptive noise schedule tech-
niques, and both are complementary to each other
in sequence-to-sequence settings.

To summarize, the main contributions of this
work are as follows:

1. We propose SeqDiffuSeq that extends the
continuous text diffusion model to sequence-
to-sequence text generation with encoder-
decoder Transformer architecture.

2. The self-conditioning and newly proposed
adaptive noise schedule technique can effec-
tively improve the generation quality of the
text diffusion model.

3. Experiments show SeqDiffuSeq achieves
promising performance with the previous
diffusion-based method DiffuSeq as well as
AR and NAR models on five generation tasks.

2 Related Work

Since the great success of diffusion models in vi-
sion (Ho et al., 2020; Rombach et al., 2021; Song
et al., 2021b), researchers have explored extend-
ing diffusion models to text generation. Consid-
ering the discrete and categorical nature of texts,
Multinomial Diffusion (Hoogeboom et al., 2021)
and D3PM (Austin et al., 2021) are proposed for
modeling categorical data. They define discrete
diffusion models using discrete categorical transi-
tions directly on texts. DiffusionBERT (He et al.,
2022) follows D3PM and introduces pre-trained
models for language modeling. Besides, recent
research also explores converting texts into con-
tinuous features to adapt to diffusion models. Bit
Diffusion (Chen et al., 2022) encodes discrete data
as binary bits and treats these binary bits as real
number features. Yu et al. (2022) is proposed to
build text diffusion models in continuous latent
space. DiffusionLM (Li et al., 2022) uses the word
embedding space for continuous diffusion mod-
els and introduces auxiliary losses to enable joint
learning of embedding and network parameters.
Following DiffusionLM, recent research explores
improving text generation quality (Strudel et al.,
2022), and DiffuSeq (Gong et al., 2022) extends it

to sequence-to-sequence settings. Compared to Dif-
fuSeq, we propose a different model architecture
and self-conditioning and adaptive noise schedule
techniques to improve sequence-to-sequence gen-
eration performance.

Noise schedules in diffusion models control the
level of noise injected and the level of information
recovered in the forward and reverse process re-
spectively. Previous research in vision and texts
demonstrates that appropriate noise schedule de-
sign can improve the generation quality perfor-
mance of diffusion models (Nichol and Dhariwal,
2021; Li et al., 2022). Concurrently, Diffusion-
BERT (He et al., 2022) proposes a spindle sched-
ule for language modeling, and CDCD (Dieleman
et al., 2022) designs a learned noise schedule for
language modeling and machine translation. Dif-
ferent from both concurrent works, SeqDiffuSeq
is proposed with a token-level noise schedule that
balances the difficulty of denoising across time
steps. Gao et al. (2023) proposes Difformer and is
orthogonal to our work.

3 Preliminary

Diffusion model is generally formulated by a de-
signed forward diffusion process and a learnt re-
verse denoising process. In the forward diffusion
process, samples gradually mix with random noise,
while in the reverse denoising process, the random
noise is gradually denoised to generate synthetic
samples. We adopt the forward and reverse pro-
cesses proposed in DDPM (Ho et al., 2020).

For the forward process, given a sample z0 from
a real-world data distribution q(z0). At each time
step t ∈ {1, 2, · · · , T}, a noise sample zt is sam-
pled from zt ∼ q(zt|zt−1) = N (zt;

√
αtzt−1, (1−

αt)I), where αt control the noise added at time
step t. In this regard, when T is large enough, a
real-world sample will gradually and ultimately
diffuse to a standard Gaussian noise distribution.

For the reverse process, the diffusion model
uses a learnt parameterized denoising distribution
zt−1 ∼ pθ(zt−1|zt) to gradually recover samples
from noise. The denoising distribution is parame-
terized by θ and is to fit the posterior distribution
q(zt−1|zt, z0) of the forward process.

q(zt−1|zt, z0) = N (zt−1; µ̃(z0, zt), β̃tI). (1)
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In this equation,

µ̃(z0, zt) =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (2)

ᾱt =
t∏

s=1

αs, βt = 1− αt, β̃t =
1− ᾱt−1

1− ᾱt
βt. (3)

With learnt denoising distribution pθ, a synthetic
real-world sample z0 can be generated from pure
random noise zT step-by-step.

4 Approach

In this section, we present the main design of our
proposed SeqDiffuSeq for sequence-to-sequence
language generation. The overview of SeqDiffuSeq
is depicted in Figure 1. In the following sections,
the input and output sequences are denoted as wx

and wy respectively. For the i-th token in wy, the
token is denoted as wi

y, where 0 < i ≤ n and
n represents the maximum output sequence word
length. In order to avoid lengthy notations, we omit
the indices referring to different data samples.

4.1 Diffusion Model
Forward Process To fit diffusion models to
sequence-to-sequence settings, we extend the text
diffusion model, DiffusionLM (Li et al., 2022).

In the sequence-to-sequence setting, the forward
process gradually changes the target output se-
quence wy to random noise. Diffusing wy to pure
random noise is independent of the input sequence
wx. For the sequence wy, we use an embedding
function gϕ to map the word tokens wi

y to con-
tinuous word embedding gϕ(w

i
y) ∈ Rd, where

d represents the dimension of embedding and ϕ
represents the parameters of the word embedding
function. The embedding for the sequence wy is
defined by stacking the tokens’ embedding and is
denoted as gϕ(wy) ∈ Rn×d. At the beginning of
the forward process, a Markovian transition pa-
rameterized by qϕ(z0|wy) = N (z0; gϕ(wy), β0I)
is added. Extended by qϕ(z0|wy), the forward pro-
cess can continue to diffuse continuous features of
z0 iteratively. For each time step t, we apply the
diffusion distribution q(zt|zt−1) to get noisier sam-
ples. Ultimately, the output sequence wy becomes
zT which is nearly pure random noise following
standard Gaussian distribution.

Reverse Process Diffusion models generate the
synthetic samples by successively sampling the de-
noising distribution in the reverse process. For each
time step t in the reverse process, a learnt denoising

distribution pθ parameterized by θ generates sam-
ples zt−1 conditioned on the former noisier sam-
ples zt. In the sequence-to-sequence setting, the
generated sequences correlate to input sequences.
Therefore, the denoising distribution is addition-
ally conditioned on the input sequence wx, and
pθ = pθ(zt−1|zt, wx). After the reverse denoising
process reaches T = 0, we round each column of
the generated ẑ0 to its nearest word in the embed-
ding space by the rounding distribution p̃ϕ(wy|ẑ0)
to generate the final word sequences.

Training Objective We optimize θ and embed-
ding parameters by minimizing the variational
bound of the data log-likelihood:

LV B = Eqϕ(z0:T ,wx,wy)[log
q(zT |z0)
p(zT )

+
T∑

t=2

log
q(zt−1|z0, zt)
pθ(zt−1|zt, wx)

− log pθ(z0|z1, wx)

+ log qϕ(z0|wy)− log p̃ϕ(wy|z0)], (4)

The training objective is to narrow down the dis-
crepancy between pθ(zt−1|zt, wx) and the poste-
rior q(zt−1|zt, z0) in the forward process. Since
q(zt−1|zt, z0) follows the form of Gaussian dis-
tribution, we parameterize the denoising distribu-
tion following Gaussian distribution family and
pθ(zt−1|zt, wx) = N (zt−1; µ̃θ(zt, wx, t), β̃tI),
where

µ̃θ(zt, wx, t) =√
ᾱt−1βt
1− ᾱt

z0θ(zt, wx, t) +

√
αt(1− ᾱt−1)

1− ᾱt
zt. (5)

z0θ(zt, wx, t) is named the denoising function and
predicts the estimated output embedding sequences
at each reverse step t. Then according to density
functions q and pθ following Gaussian distribution,
the objective can be further simplified as:

Lsimple =

Eqϕ(z0,wx,wy)[

T∑

t=2

Eq(zt|z0)∥z0θ(zt, wx, t)− z0∥2

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2
− log p̃ϕ(wy|z0)], (6)

where q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I) for effi-

cient sampling of zt during training, and µT (z0) =√
ᾱT z0. We leave the detailed derivation to Ap-

pendix B. The training objective becomes to fit
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Figure 1: The overview of SeqDiffuSeq with an encoder-decoder Transformers architecture.

gϕ(wy) and the denoising function z0θ(zt, wx, t),
which we can model with encoder-decoder Trans-
formers architectures. During training, the sam-
pling distribution qϕ contains trainable parame-
ters of word embedding. We can backpropagate
through this with reparameterization trick (Kingma
and Welling, 2013).

Denoising with Encoder-Decoder Framework
Unlike DiffuSeq (Gong et al., 2022) using encoder-
only Transformer architecture, we propose using
an encoder-decoder Transformers architecture to
model the input and output text sequences. For
z0θ(zt, wx, t), we use the encoder to process the in-
put sequences wx and use the decoder to model
the noisy output sequence zt. Following the pre-
vious work (Li et al., 2022), we inject time step
information t by adding time step embedding to zt.
Using the encoder-decoder architecture has com-
putational convenience during generation because
the input sequences wx only require one forward
computation through the encoder network during
the whole reverse process. Considering the reverse
process requires thousands of iterations to generate
the output sequences of high quality, the saving of
computational resources can be significant.

During training and generation, the function z0θ
generates denoised samples at the sequence level.
Therefore making predictions from the denoising
function z0θ resembles the non-autoregressive natu-
ral language generation. In this regard, we use a de-
coder with full attention matrices instead of causal
attention matrices to model zt at the sequence level.

4.2 Self-Conditioning
At each time step t in the reverse process, the
denoising function z0θ(zt, wx, t) makes output se-
quence predictions based on the noisier sample
zt. zt is sampled from the former denoising dis-

tribution by mixing former sequence prediction
ẑt0 = z0θ(zt+1, wx, t + 1), zt+1 and random noise.
In this regard, part of the information contained in
the former prediction ẑt0 is discarded. Bit-Diffusion
(Chen et al., 2022) proposed the self-conditioning
technique mitigating this waste of information by
additionally taking former sequence predictions as
inputs. The denoising function is formulated as
z0θ(zt, ẑ

t
0, wx, t). Self-conditioning may enable the

denoising function to refine the former sequence
predictions rather than make new predictions from
scratch. It is empirically verified that the self-
conditioning technique can boost the performance
of text diffusion models (Strudel et al., 2022).

To fit the technique into the Transformers model-
ing of z0θ in our sequence-to-sequence setting, the
sequence features ẑt0 from the former predictions
are concatenated with noisier sequence features
zt on the embedding dimension. Hence, the di-
mension of input features of Transformer decoder
becomes n × 2d. Since the former sequences
at time step t are sampled successively from T
to t which is computational-tedious during train-
ing, we take an efficient training scheme. With
half probability, z0θ(zt, ẑ

t
0, wx, t) is trained by set-

ting the input ẑt0 to 0. Otherwise, ẑt0 is first esti-
mated by z0θ(zt, 0, wx, t) and then is used for self-
conditioning training. Under the second circum-
stance, we do not backpropagate through the first
forward propagate estimated ẑt0.

4.3 Adaptive Noise Schedule

In the domain of vision and audio, the generated
sample quality (Nichol and Dhariwal, 2021) and
likelihood estimation (Kingma et al., 2021) may
potentially benefit from different appropriate time
schedules. Previous research uses different simple
functions such as linear function (Ho et al., 2020)
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or cosine function (Nichol and Dhariwal, 2021)
of α against time step t to design noise schedules.
Such designs may results in unbalanced denoising
difficulties for each step and lead to unsatisfying
generation quality. Some works proposed to allevi-
ate this problem by importance sampling (Li et al.,
2022) or loss reweighing (Gong et al., 2022).

We propose a novel adaptive noise schedule at
the token-level. Firstly, we propose to adaptively
adjust the time schedules during training to make
the denoising difficulties of z0θ predicting output
sequence increase linearly with respect to the time
step. Secondly, we separately set adaptive noise
schedule for different token positions, unlike previ-
ous text diffusion research that only designs noise
schedules on the whole sequence level. Since the
intrinsic features for embedding sequences are dif-
ferent across token positions within, we assume
that for different token positions the expected noise
schedules are different.

Concretely, we measure the difficulties of
denoising task at each time step t and to-
ken position i by the training losses Li

t =
Eqϕ(wx,wy ,zt,z0)∥z0θ(zt, ẑt0, wx, t)

i − zi0∥2. We use
the schedule of ᾱi

t which ranges from 0 to 1 to
access the noise schedule design. ᾱi

t controls the
noise level at each time step t. Our adaptive noise
schedule for each token position i is to fit a map-
ping ᾱi = Mi(Li) between Li

t and ᾱi
t by linear

interpolation. For time step t, ∀x ∈ [Li
t−1,Li

t),

Mi(x) =
ᾱi
t − ᾱi

t−1

Li
t − Li

t−1

(x− Li
t−1) + ᾱi

t−1, (7)

After initializing a noise schedule, we record the
loss Li

t
1. The mapping Mi is fitted after each train-

ing period. Ideally, the training losses should be
monotonic with respect to the time step t since
for larger T the input features zt to the denoising
function are noisier. However, overall time step
T is usually by thousands, hence this results in a
fine-grained discretization of ᾱi. Due to the em-
pirical loss estimation errors, training losses may
not be monotonic between some successive time
steps. To alleviate this issue and fit a smoother
mapping Mi, we form a coarse-grained discretiza-
tion s for ᾱi and Li: Li

s = 1
K

∑s×(K+1)
t=s×K Li

t,

ᾱi
s = 1

K

∑s×(M+1)
t=s×K ᾱi

t, s =
⌊

t
K

⌋
, where K is

the stride to evenly downsample t and ⌊·⌋ rounds
the number down to it nearest integer.

1We do not record the losses Li
t for the padding tokens.

Algorithm 1 Adaptive Noise Schedule

Input: Current recorded losses Li
t and noise

schedules ᾱi
t for each time step t and token

position i
1: if Train Step % Update Step == 0 then
2: for each token position i do
3: Fit the mapping Mi by Equation 7,
4: Take new Li,new

t value with equal interval
between mint(Li

t) and maxt(Li
t),

5: Get new schedule ᾱi,new
t = Mi(Li,new

t ),
6: end for
7: end if
8: return Noise schedule ᾱi,new

t for each t and i

With the learnt linear interpolation mapping
ᾱi
s = Mi(Li

s), we can obtain the adjusted
discretized noise schedule ᾱi,new

t by ᾱi,new
t =

Mi(Li,new
t ) where Li,new

t ’s are evenly taken be-
tween the minimum and maximum recorded val-
ues. As the training progresses, we adaptively
calibrate the noise schedule ᾱi by repeating the
above-mentioned procedure once per training up-
dates. The pseudo-code for setting adaptive noise
schedules during training is shown in Algorithm 1.

5 Experiments

5.1 Datasets

We conduct experiments on six datasets across five
different text generation tasks: Quora Question
Pairs (QQP) (DataCanary et al., 2017) for Para-
phrase Generation, Wiki-Auto (Jiang et al., 2020)
for Text Simplification, Quasar-T (Dhingra et al.,
2017) for Question Generation, Commonsense
Conversation Dataset (CCD) (Zhou et al., 2018) for
Dialogue Generation as well as the German(DE)-
English(EN) pairs of IWSLT14 and WMT14 for
Machine Translation. Detailed introductions and
statistics of the datasets as shown in Appendix C.

5.2 Baselines

We consider three kinds of models as baselines.
First, vanilla encoder-decoder Transformers and
pre-trained GPT-2 are selected as strong AR base-
lines. Second, since SeqDiffuSeq denoises out-
puts at the sequence level, we compare it with
an NAR baseline Levenshtein Transformer (LevT)
(Gu et al., 2019). For machine translation, we also
use CMLM (Ghazvininejad et al., 2019) which is
an NAR translation method with iterative refine-
ment as baselines. Besides, we compare it to other
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QQP Wiki-Auto
BLEU BERTScore dist. 1 BLEU BERTScore dist. 1

Transformers 5.80 53.92 78.89 24.45 75.90 88.86
GPT2-large FT 20.59 83.63 98.19 26.93 78.82 94.64
LevT 22.68 83.44 97.90 20.52 72.54 97.15
DiffuSeq 18.47 79.47 97.61 29.89 79.12 92.33
DiffuSeq w/ MBR=10 24.13 83.65 98.07 36.43 81.39 92.61
SeqDiffuSeq 23.28 82.91 98.06 37.09 82.11 90.81
SeqDiffuSeq w/ MBR=10 24.34 84.00 98.07 37.12 82.14 90.77

Quasar-T CCD
BLEU BERTScore dist. 1 BLEU BERTScore dist. 1

Transformers 3.64 53.34 82.36 1.89 47.81 74.93
GPT2-large FT 11.10 63.46 96.70 1.25 52.93 92.44
LevT 9.30 54.91 89.14 1.58 47.60 97.26
DiffuSeq 15.84 59.39 91.12 - - -
DiffuSeq w/ MBR=10 17.01 60.95 90.72 1.39 51.31 94.67
SeqDiffuSeq 17.20 61.35 92.70 0.84 43.82 96.50
SeqDiffuSeq w/ MBR=10 17.46 61.74 92.48 1.12 44.25 96.08

IWSLT14 WMT14
EN-DE DE-EN EN-DE DE-EN

SacreBLEU SacreBLEU SacreBLEU BLEU SacreBLEU BLEU
Transformers 26.51 33.81 26.20 27.48 30.20 31.19
CMLM w/ iter=1 14.36 21.46 - 18.05 - 21.83
CMLM w/ iter=4 23.74 32.83 - 25.94 - 29.90
CDCD - - 19.30 - 24.90 -
CDCD w/ MBR=10 - - 19.70 - 25.40 -
SeqDiffuSeq 21.96 30.16 19.16 23.63 23.28 25.22
SeqDiffuSeq w/ MBR=10 22.12 30.45 19.76 24.24 23.93 25.90

Table 1: Main results on Paraphrase, Text Simplification, Question Generation, Dialogue, and Machine Translation.
We use the results reported in the DiffuSeq paper for CCD results since reproducing CCD results requires more than
10 days of training on 8 NVIDIA A100 80GB GPUs.

diffusion-based methods. DiffuSeq (Gong et al.,
2022) is a recently proposed text diffusion model
using an encoder-only Transformer structure. We
also compare with concurrently proposed CDCD
(Dieleman et al., 2022) on machine translation.

5.3 Implementation Details

We use a 6 layers encoder-decoder Transformer
(Vaswani et al., 2017) with GeLU activation
(Hendrycks and Gimpel, 2016). For the diffusion
process, we set the maximum diffusion step T to
2000, and use the sqrt schedule from DiffusionLM
(Li et al., 2022) to initialize the adaptive time sched-
ule. For translation tasks, we construct vocabulary
using BPE (Sennrich et al., 2016). The vocabulary
size is set to 10,000 for IWSLT14 and 32,768 for
WMT14. For other tasks, we use the vocabulary of
bert-base-uncased (Devlin et al., 2019).

For training of SeqDiffuSeq, we use a learn-
ing rate of 10−4 with 10,000 warm-up steps and a
linearly-decreasing schedule. The proposed adap-
tive noise schedule is updated every 20,000 train-
ing steps and K is set to 20. We explore maximum
Bayes risk (MBR) decoding (Koehn, 2004) follow-
ing previous research (Li et al., 2022) for improv-

ing generation quality during inference. Details on
experiment settings and MBR are in Appendix D.

5.4 Main Results

To assess the generation quality of each model, we
use BLEU (Papineni et al., 2002) and BERTScore
(Zhang et al., 2020) as metrics. We also use dis-
tinct uni-gram (dist.1) to measure the word diver-
sity within generated sentences. A high dist.1 score
indicates fewer repeated words. For machine trans-
lation tasks, we additionally consider SacreBLEU
(Post, 2018). The results are listed in Table 1. To
better present the generation performance, we pro-
vide human evaluation results in Appendix G.

Primarily, for text generation quality, our pro-
posed SeqDiffuSeq achieves much better perfor-
mance measured by BLEU than DiffuSeq and other
baselines with single generation on QQP, Wiki-
Auto, and Quasar-T. On Wiki-Auto and Quasar-
T, SeqDiffuSeq even achieves better performance
with single generation than recently proposed Dif-
fuSeq with MBR of 10 candidates. When incor-
porating with MBR, SeqDiffuSeq enjoys a boost
of performance and achieves superior results over
all baselines on QQP, Wiki-Auto, and Quasar-T.
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IWSLT14 Paraphrase Text Simplification
EN-DE DE-EN QQP Wiki-Auto Avg. ∆BLEU

S-BLEU S-BLEU BLEU BERTSco. BLEU BERTSco.
SeqDiffuSeq A 21.96 30.16 23.28 83.91 37.09 82.11 -

A w/o Apt. Sche. B 19.89 28.60 21.82 81.78 33.04 79.74 -2.29
A w/o Self-Cond. C 20.76 28.28 21.64 81.45 36.46 81.62 -1.34
C w/o Apt. Sche. D 17.50 24.39 19.73 79.95 28.03 76.06 -5.71

Table 2: Ablation studies on IWSLT14, QQP and Wiki-Auto. S-BLEU represents Sacre-BLEU. BERTSco.
represents BERTScore. Self-Cond. and Apt. Sche. are short for self-conditioning and adaptive noise schedule.

Figure 2: The left figure depicts the adaptive noise schedule at different token positions on IWSLT14 DE-EN dataset.
The middle and right figures show the loss for each time step at different token positions with and without adaptive
noise schedule, respectively. Best viewed in color.

The performance is better than the pre-trained then
fine-tuned GPT-2 with more parameters on Wiki-
Auto and QQP. This indicates that SeqDiffuSeq can
generate texts with good quality for sequence-to-
sequence tasks (except CCD that all models have
inferior performance). On translation tasks, the per-
formance lags behind the AR Transformers base-
line consistently across different datasets, while
compared with NAR methods, SeqDiffuSeq con-
sistently surpasses CMLM with 1 refinement itera-
tion by 6.32 and 6.75 averaged points across four
datasets without and with MBR. CMLM with 4
iterations has better performance. When compar-
ing with CDCD, the performance with and without
MBR are competitive on WMT14 EN-DE while
the performance is worse on DE-EN. For diversity
within sequences, texts generated by SeqDiffuSeq
have fewer repeated words averagely than Trans-
formers and DiffuSeq.

6 Analysis and Discussion

6.1 Ablation Study

To verify the effectiveness of the proposed tech-
niques in SeqDiffuSeq, we conduct ablation studies
on QQP, Wiki-Auto, and IWSLT14. As shown in
Table 2, after removing the adaptive noise sched-
ule from SeqDiffuSeq and instead using the fixed
sqrt schedule proposed in DiffusionLM (B), the

performance drops consistently and the BLEU
scores decrease by 2.29 on average. Without self-
conditioning (C), the performance also degrades
by 1.34 on average. By further removing adap-
tive noise schedule (D), the performance drops
sharply by 5.71 on average and the largest drop in
terms of BLEU is 8.43 on Wiki-Auto. Comparing
adaptive noise schedule and self-conditioning tech-
nique, it is illustrated that our proposed adaptive
noise schedule brings larger improvement and two
techniques are complementary to each other.

6.2 Time Schedule
It is verified in the ablation study that the proposed
adaptive noise schedule can improve sequence-to-
sequence text generation. On the IWSLT14 DE-EN
dataset, we visualize the adaptive noise schedules
as well as the loss at each time step with and with-
out adaptive noise schedule. For the adaptive noise
schedule, we plot ᾱi

t at different token positions i
against the diffusion time step t. And for losses,
we plot averaged training losses Li

t at each position
i against time step t. Depicted in Figure 2, the
dashed line in the first sub-figure shows the sqrt
schedule, while the other lines represent the noise
schedules at different token positions. The figure
shows that the adaptive noise schedules deviate
from the sqrt schedule. At both ends of time steps,
the adaptive noise schedules are flatter compared

28



Time Acceleration
DiffuSeq 317 sec. -
SeqDiffuSeq 89 sec. ×3.56

Table 3: Inference time on QQP on one NVIDIA V100
GPU. The inference batch size is set to 50 and the overall
time step is set to 2000 for both models.

Figure 3: The top figure plots the sequence-level Div.4
score against different MBR candidate numbers on
IWSLT14 EN-DE. The bottom figure plots SacreBLEU
against different MBR candidate numbers. SDS repre-
sents SeqDiffuSeq. Best viewed in color.

to sqrt schedule, especially for tokens at larger po-
sition orders. Besides, adaptive noise schedules
are diverse for different positions, although the
trends along time steps are similar. For the token
positions at larger orders, the noise schedule lines
move toward the lower-left direction. Therefore, at
each time step, the tokens at earlier positions have
smaller noise than later positions. The information
of tokens on the left is recovered earlier at each
step. SeqDiffuSeq resembles the left-to-right gen-
eration of texts. Through a case study in Appendix
H, the phenomenon is also verified.

Comparing the second and third sub-figures, the
losses Li with adaptive noise schedule increase
linearly with respect to time steps as expected. At
each time step, the losses at earlier token positions
are smaller, indicating earlier tokens are easier to
generate for SeqDiffuSeq . More visualizations on
other datasets are listed in Appendix F.

6.3 Inference Speed

We compare SeqDiffuSeq with DiffuSeq in terms
of inference time in Table 3. Our SeqDiffuSeq
achieves 3.56 times acceleration generating one
batch of text samples. The acceleration mainly
originated from: (1) SeqDiffuSeq only requires for-
ward computation of encoder once, while DiffuSeq
needs to run forward computation for the input se-
quences for each diffusion step; (2) At each time
step, SeqDiffuSeq only models the output sequence,
while DiffuSeq has to model the concatenation of
both input and output sequences.

6.4 MBR Inference

It is shown in Table 1 that MBR with 10 candi-
dates improves DiffuSeq to more than 6 BLEU
score, while improves SeqDiffuSeq by 1.06 BLEU
score on QQP. In Figure 3, we plot SacreBLEU
scores and Diverse 4-gram (Div.4) scores (Desh-
pande et al., 2018) against MBR candidate num-
bers. Div.4 measures the proportion of distinct
4-grams in a set of generated sequences. A higher
Div.4 score means better sequence-level diversity
by different generation runs. The figure shows that
the self-conditioning technique and adaptive noise
schedule make the text diffusion model generate
less diverse sequences, and the single generated
sequence will have higher quality with both tech-
niques. Self-conditioning technique and adaptive
noise schedule deliver a trade-off between gener-
ation quality and generation diversity. With both
techniques, MBR inference is needless to gener-
ate high-quality samples for SeqDiffuSeq resulting
in a more efficient generation procedure. We also
propose a new sampling scheme to compensate
the marginal MBR improvements for SeqDiffuSeq
which is discussed in detail in Appendix E.

7 Conclusion

In this work, we explore to approach sequence-to-
sequence text generation with continuous diffusion
models. We propose SeqDiffuSeq which uses an
encoder-decoder Transformers architecture to learn
the denoising function. In order to improve text
generation performance, the denoising function in
SeqDiffuSeq is integrated with self-conditioning
technique. SeqDiffuSeq also includes a newly pro-
posed adaptive noise schedule which makes the
denoising difficulty evenly distributed across all
time steps and assigns exclusive noise schedules for
tokens from different positional orders. Through
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experiments, we illustrate the superior performance
of SeqDiffuSeq in terms of generation quality and
inference speed and provide insights into our pro-
posed adaptive noise schedule technique.

Limitation

Diffusion models generate high-quality synthetic
samples through thousands of iterations in the re-
verse process. Thousands of reverse process iter-
ations require a huge amount of forward propa-
gation computation of Transformers model which
is computationally costly, although we save nearly
four times of computational budget for one forward
computation compared to the previous diffusion-
based model DiffuSeq. In the domain of vision
synthetic, there exists research to profoundly re-
duce the time step needed for generation (Song
et al., 2021a). Reducing the reverse steps for text
generation would be a promising direction for fu-
ture research.

As shown in the discussion, equipping text dif-
fusion models with self-conditioning and adaptive
noise schedules can profoundly increase the gener-
ation quality. However, such quality improvement
is at the cost of generation diversity under different
random seeds. This leads to marginal MBR infer-
ence improvements. Although we propose a com-
pensation discussed in Appendix E. The in-depth
discussion on improving SeqDiffuSeq generation
diversity is left to future research.

Ethic Statements and Boarder Impact

The datasets and baseline models used in our re-
search are publicly available. Diffusion models,
previously successful in vision, face challenges in
NLP due to discrete token sequences. Promising
results have been shown in DiffusionLM (Li et al.,
2022) and DiffuSeq (Gong et al., 2022), but both
works use encoder-only models and have limita-
tions in scalability and efficiency. This research ex-
plores and improves the diffusion-based sequence-
to-sequence text generation models. Our work al-
ters to encoder-decoder Transformers which are
widely applied in recent LLMs such as FLAN-T5
(Chung et al., 2022) for better scalability, poten-
tial, and sampling speed acceleration (Section 6.3).
Our work also incorporates novel techniques like
self-conditioning and adaptive noise schedules, out-
performing several AR and NAR baselines. Se-
qDiffuSeq demonstrates the feasibility of encoder-
decoder diffusion models for sequence-to-sequence

tasks and may serve as a starting point for fu-
ture exploration of text diffusion models’ potential,
serving as another method approaching sequence-
to-sequence text generation besides widely imple-
mented AR and NAR models. Considering the
excellent performance of diffusion models in other
domains such as vision, text diffusion models have
great potential in generating text sequences with
high quality and may be an emerging framework
of text generation.
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A Derivation of Posterior
Given zt ∼ q(zt|zt−1) = N (zt;

√
αtzt−1, (1 −

αt)I), we can reparameterize zt =
√
αtzt−1 +√

1− αtϵt. Then, recursively,

zt

=
√
αt(

√
αt−1zt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt

=
√
ᾱtz0 +

√
1− ᾱtϵt

∼ N (zt;
√
ᾱtz0, (1− ᾱt)I). (8)

Therefore, q(zt|z0) = N (zt;
√
ᾱtz0, (1 − ᾱt)I).

According to Bayes rule, we have:

q(zt−1|zt, z0) =
q(zt|zt−1)q(zt−1|z0)

q(zt|z0)
, (9)

since q(zt|zt−1) and q(zt−1|z0) are all Gaussian
distributed, we will have:

q(zt−1|zt, z0) = N (zt−1; µ̃(z0, zt), β̃tI), (10)

where

µ̃(z0, zt) =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (11)

ᾱt =
t∏

s=1

αs, βt = 1− αt, β̃t =
1− ᾱt−1

1− ᾱt
βt. (12)

B Derivation of Training Objective

We present the detailed derivation of training ob-
jective following Ho et al. (2020); Li et al. (2022).
As mentioned in main texts, the forward process
successively perturbs the real-world sample z0 with
random noise, where z0 gradually changes to zT
for a T -time step diffusion process. zT can be ap-
proximately regarded as pure random noise which
follows standard Gaussian distribution in our case.
We define the forward process as follows:

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I), (13)

where αt controls the noise level at each time step
t.

For the reverse process, we learn a parameter-
ized denoising distribution pθ(zt−1|zt, wx, t). By
successively sampling from pθ, a synthetic real-
world sample z0 can be recovered from pure ran-
dom noise zT .

The training objective of diffusion model is to
minimize the negative likelihood of data distribtu-
ion, which is:

L̃ = E[− log pθ(z0)], (14)

then with the forward and revser process defined
as above, we can derive the variational bound for
the objective L̃:

L̃ =Eq(z0)[− log pθ(z0)]

≤Eq(z0:T )

[
− log

pθ(z0:T )

q(z1:T |z0)

]

=Eq(z0:T )


− log p(zT )−

∑

t≥1

log
pθ(zt−1|zt)
q(zt|zt−1)




=Eq(z0:T )

[
− log p(zT )−

∑

t>1

log
pθ(zt−1|zt)
q(zt|zt−1)

− log
pθ(z0|z1)
q(z1|z0)

]
. (15)

In our sequence-to-sequence settings, following
the notations in Section 4, we let the denoising
distribution pθ condition on the input sequence wx,
which is pθ(zt−1|zt, wx). Besides, with the Markov
transition extensions of embedding mapping transi-
tion qϕ(z0|wy) in the forward process and rounding
transition p̃ϕ(wy|z0) in the reverse process, the ob-
jective in Equation 15 can be extended as:

L =Eqϕ(z0:T ,wx,wy)

[
− log p(zT )

−
∑

t>1

log
pθ(zt−1|zt, wx)

q(zt|zt−1)

− log
pθ(z0|z1, wx)

q(z1|z0)

− log p̃ϕ(wy|z0) + log qϕ(z0|wy)

]
. (16)

By Bayes rule, we can derive the posterior distri-
bution of q with respect to zt−1:

q(zt−1|zt, z0) =
q(zt|zt−1, z0)q(zt−1|z0)

q(zt|z0)
, (17)

then, we have:

q(zt|zt−1) =
q(zt−1|zt, z0)q(zt|z0)

q(zt−1|z0)
. (18)

We substitute q(zt|zt−1),∀t > 1 in Equation 16
with Equation 18:

LV B =Eqϕ

[
− log

p(zT )

q(zT |z0)

−
∑

t>1

log
pθ(zt−1|zt, wx)

q(zt−1|zt, z0)
− log pθ(z0|z1, wx)

− log p̃ϕ(wy|z0) + log qϕ(z0|wy)

]
(19)
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For the time step t, t > 1, the terms
−Eqϕ

[
log pθ(zt−1|zt)

q(zt−1|zt,z0)

]
between two Gaussian dis-

tributions has a closed form solution, following Li
et al. (2022); Ho et al. (2020), we have:

− Eqϕ

[
log

pθ(zt−1|zt)
q(zt−1|zt, z0)

]

=Eqϕ

[∥∥∥∥
1

2σ2
t

(µ̃θ(zt, wx, t)− µ̃(z0, zt))

∥∥∥∥
2
]
+ C

∝Eqϕ

[
∥µ̃θ(zt, wx, t)− µ̃(z0, zt)∥2

]
, (20)

where C is a constant and σ2
t = β̃t, then substitut-

ing µ̃ and µ̃θ by Equation 2 and 5, we have:

∥µ̃θ(zt, wx, t)− µ̃(z0, zt)∥2

=

√
ᾱt−1βt
1− ᾱt

∥∥z0θ(zt, wx, t)− z0
∥∥2

∝
∥∥z0θ(zt, wx, t)− z0

∥∥2 . (21)

After omitting 1
2σ2

t
and

√
ᾱt−1βt

1−ᾱt
for any t > 2,

and substituting terms −Eqϕ

[
log pθ(zt−1|zt)

q(zt−1|zt,z0)

]
in

Equation 19 with Equation 20, 21, we have the
simplified loss function:

L̃simple =Eqϕ

[
− log

p(zT )

q(zT |z0)
+
∑

t>1

∥∥z0θ(zt, wx, t)− z0
∥∥2

− log
pθ(z0|z1, wx)

qϕ(z0|wy)

− log p̃ϕ(wy|z0)
]
. (22)

We can further substituting terms
−Eqϕ

[
log p(zT )

q(zT |z0)

]
and −Eqϕ

[
log pθ(z0|z1,wx)

qϕ(z0|wy)

]

similarly with:

− Eqϕ

[
log

p(zT )

q(zT |z0)

]
∝ Eqϕ

[
∥µ̃(zT , z0)∥2

]
,

(23)

− Eqϕ

[
log

pθ(z0|z1, wx)

qϕ(z0|wy)

]

∝ Eqϕ

[
∥z0θ(z1, wx, 1)− gϕ(wy)∥

]2
. (24)

Therefore we can derive Lsimple in Equation 6
by subsitituting terms in L̃simple with Equation 23

and 24:

Lsimple

= Eqϕ

[∑

t>1

∥z0θ(zt, wx, t)− z0∥2

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2

− log p̃ϕ(wy|z0)
]

(25)

= Eqϕ(z0,wx,wy)

[ T∑

t=2

Eq(zt|z0)∥z0θ(zt, wx, t)− z0∥2

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2

− log p̃ϕ(wy|z0)
]
. (26)

C Datasets

We conduct experiments on following datasets. The
data statistics and licenses are shown in Table 4
and 5.

Quora Question Pairs (QQP) (DataCanary et al.,
2017) is a paraphrase identification dataset. We
use the positive pairs as the paraphrase generation
task. The models need to generate a restatement
expressing the same meaning to the given sentence.
Wiki-Auto (Jiang et al., 2020) is a text simplifica-
tion dataset to revise a complex text with simplified
grammar and word choices. The dataset aligns
sentences between English Wikipedia and Simple
English Wikipedia with automatic pre-processing
and identifying procedure.
Quasar-T (Dhingra et al., 2017) is a question-
answering dataset containing trivia questions
paired with answers and contexts. We use the
dataset for evaluating question generation which
aims to generate related questions with given con-
texts. We use the pre-processed data from Lin et al.
(2018) following Gong et al. (2022).
Commonsense Conversation Dataset (CCD)
(Zhou et al., 2018) is extracted from single-round
dialogues on Reddit and is used for evaluating open
domain dialogue generation. The task requires gen-
erating feedback with commensense knowledge
given the dialogue contexts.
IWSLT14 and WMT14 are both widely used
benchmarks for machine translation. We use the
German(DE)-English(EN) pairs for both directions
of translation. We follow fairseq (Ott et al., 2019)
for data pre-processing using Moses script (Koehn
et al., 2007) and tokenizing the sentences with byte-
pair encoding (BPE) (Sennrich et al., 2016).
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Dataset Train size Dev size Test Size
QQP 144,715 2,048 2,500
Quasar-T 116,953 2,048 10,000
Wiki-Auto 677,751 2,048 5,000
CCD 3,382,137 2,048 10,000
IWSLT14 160,239 7,283 6,750
WMT14 4,475,414 45,206 3,003

Table 4: The data splits statistics.

QQP CC-BY-SA-3.0 from GLUE
Quasar-T BSD-2-Clause license
Wiki-Auto Unspecified, Wikipedia by CC-BY-SA-3.0
CCD Apache License 2.0
IWSLT14 CC-BY-NC-ND-4.0
WMT14 Unspecified

Table 5: The license of data used in experiments.

D Implementation Details

D.1 Details on Experiment Setting
Here we give details for the implementation details
of our experiments. For the Transformers structure
and model training, we list detailed design in Table
6. For all the tasks, the set the maximum train-
ing step to 1000,000 and save checkpoints every
10,000 steps. We select the best checkpoint on the
development set. For WMT14 task, we use batch
size 1024 while for other tasks we use batch size
128. For training on each datasets, we train for one
run on NVIDIA A100 GPUs with 80GB memory.
For inference, we set the maximum time step to
T = 2000, and we do not use the clamping trick
as proposed in DiffusionLM (Li et al., 2022), since
the clamping trick does not consistently improve
the generation quality across datasets.

D.2 Details on MBR
Following DiffusionLM (Li et al., 2022), we apply
Minimum Bayes Risk (MBR) decoding for one sin-
gle generation output with improved quality. For
each sample, MBR decoding uses a generated se-
quences candidate set C and finds the candidate
sequence s∗ that minimize a expected risk R:

s∗ = argmin
s∈C

R(s) = argmin
s∈C

1

|C|
∑

s′∈C
r(s, s′),

(27)

where r(·, ·) is a specific risk function and we use
the negative BLEU score following DiffusionLM
and sequence candidates in the candidate set C are

generated from the diffusion models under different
random seeds.

E Sampling by Prior

Since at each time step t, the Transformers denois-
ing function z0θ models the prediction ẑt0 of target
output sequences. In the reverse process, sampling
zt−1 is according to the denoising distribution pθ
as:

pθ(zt−1|zt, wx) = N (zt−1; µ̃θ(zt, wx, t), β̃tI).
(28)

However, we can also use the prior distribution q
in the forward process to generate zt−1, which is:

zt−1 ∼q(zt−1|ẑt0)
=N (zt−1;

√
ᾱt−1ẑ

t
0, (1− ᾱt−1)I). (29)

Comparing to generation by Equation 28, using
Equation 29 theoretically have larger variance.

1− ᾱt−1 ≥ β̃t =
1− ᾱt−1

1− ᾱt
βt, (30)

because βt

1−ᾱt
= 1−αt

1−ᾱt
≤ 1 where αt < 1,∀t and

ᾱt =
∏t

s=1 αs.
To increase the sequence level diversity, we ex-

periment with randomly replacing the denoising
distribution pθ by high variance distribution in
Equation 29 in the reverse process during genera-
tion. We denote the replacing probability as p1.

Besides, considering the variance difference be-
tween the two sampling distribution are larger at
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Tasks Translation Non-Translation
Encoder Layer 6 6
Decoder Layer 6 6
Head Number 8 12
Hidden Dimension 512 768
FFN Dimension 2048 3072
Embedding Dimension 128 128
Max. Input Length 128 128
Max. Output Length 64 64
Dropout 0.3 0.1

Table 6: Translation represents the machine translation tasks on IWLST14 and WMT14. Non-Translation represents
the Paraphase, Text Simplification, Queation Generation and Dialogue tasks on QQP, Wiki-Auto, Quasar-T and
CCD respectively.

Figure 4: The figures from left to right plot the diversity, SacreBLUE with MBR=10 and SacreBLEU for single
candidates against p2 on IWSLT14 EN-DE dataset with p1 = 0.05 fixed, repectively. The dashed lines in each
figure represents the default generation results of SeqDiffuSeq.

earlier time step in the reverse process, we also
explore to only replace the sampling distribution
in the first p2 percent of time steps. We generate
10 candidate output sentences for each sample un-
der different random seeds to compute Div.4 and
SacreBLEU scores.

As shown in the left subfigure of Figure 4, when
fixing the replacing probability to 0.05, the genera-
tion diversity are consistently and profoundly im-
proved. In the right subfigure, the generation qual-
ity consistently degrades when replacing the de-
noising distribution when generation, even though
the replacing probability is low. In the middle sub-
figure, we can see that although the generation
quality degrades for each candidate, the final out-
put sequences by MBR may improve with proper
p2. In Figure 5, we can get similar results when
fixing p2 = 0.5. In the middle subfigure of Figure
5, the final output sequences are consistently better
with different p1.

To conclude, it is shown that replacing the sam-
pling distribution from the denoising distribution
pθ to the prior distribution q can provide a trade-off
between the generation diversity and generation
quality. With a proper combination of p1 and p2,

the generation quality of SeqDiffuSeq with the aid
of MBR can be further improved. The benefits of
sampling with the prior distribution q are always
neglected in previous research.

F More Results on Adaptive Noise
Schedule

We present more visualizations of the learned adap-
tive noise schedules and the losses for each time
step on other datasets. Figure 6, 7 and 8 present
the visualizations on IWSLT14 EN-DE, QQP, and
Wiki-Auto respectively with the same arrangement
as Figure 2. The results from the figures are consis-
tent with those discussed in the main texts.

G Human Evaluation

To better demonstrate the performance of the pro-
posed SeqDiffuSeq , we conduct human evalua-
tions to compare the generated results of SeqD-
iffuSeq to those of DiffuSeq on the paraphrasing
task QQP dataset. We randomly sample 100 data
points in the test sets and let annotators decide for
the same input sequence, which generated text se-
quence is better, worse, or of similar quality. We
compare SeqDiffuSeq with the previous state-of-
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Figure 5: The figures from left to right plot the diversity, SacreBLUE with MBR=10 and SacreBLEU for single
candidates against p1 on IWSLT14 EN-DE dataset with p2 = 0.5 fixed, repectively. The dashed lines in each figure
represents the default generation results of SeqDiffuSeq.

Figure 6: The left figure depicts the adaptive noise schedule at different token positions on IWSLT14 EN-DE dataset.
The middle figure shows the loss for each time step at different token positions without the adaptive noise schedule.
The right figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best
viewed in color.

the-art text diffusion model DiffuSeq. For fairness,
the human evaluations are designed to be blind eval-
uations (i.e., the annotators are unaware of which
model the output sequence is related to).

The human annotators are graduate university
students who are proficient in English and are asked
to compare the generated sequences based on the
following instruction. Decide which generated out-
put sequence is better based on whether the one is
more consistent with the input question, whether
the one has higher grammatical and syntactic qual-
ity. Figure 9 shows the human evaluation results.

The results show that both annotators prefer the
generated output sequences by SeqDiffuSeq more.
Generated output sequences on QQP from SeqDif-
fuSeq win by 36% and 44% from two annotators,
while those from DiffuSeq only win by 24% and
30% respectively. Human evaluation results show
that SeqDiffuSeq can generate text sequences of
higher quality than DiffuSeq.

H Case Study

We select three illustrative cases and investigate the
generation process of SeqDiffuSeq. From the cases,
it shows that SeqDiffuSeq can generate reasonable
text sequences. The generation process reveals that

1. SeqDiffuSeq decides the output sequence
length by generating [SEP] tokens at the early stage
of sampling;

2. The generation process seems to follow a
left-to-right refining order;

3. The position of [SEP] token will not change
during sampling, even though there exists token
repetition in the generated sequences as shown in
red.
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Figure 7: The left figure depicts the adaptive noise schedule at different token positions on QQP dataset. The middle
figure shows the loss for each time step at different token positions without the adaptive noise schedule. The right
figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best viewed in
color.

Figure 8: The left figure depicts the adaptive noise schedule at different token positions on Wiki-Auto dataset. The
middle figure shows the loss for each time step at different token positions without the adaptive noise schedule. The
right figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best
viewed in color.

Figure 9: Pie plots of human evaluation results by two different annotators.
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Table 7: Three cases from QQP. We truncate the selected samples to the first 15 tokens. Generally, SeqDiffuSeq can
easily learn to generate [PAD] tokens after the ending token [SEP].

Time Step T − t zt

Input Text How do I read and find my YouTube comments?
400 [CLS] how do i read in??? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
800 [CLS] how do i read my a the? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
1200 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
1600 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
2000 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]

Input Text How do I use Twitter as a business source?
400 [CLS] how can i use??? a??? [SEP] [PAD] [PAD]
800 [CLS] how can i use?? as a business?? [SEP] [PAD] [PAD]
1200 [CLS] how can i use? twitter as a business source? [SEP] [PAD] [PAD]
1600 [CLS] how can i use? twitter as a business source? [SEP] [PAD] [PAD]
2000 [CLS] how can i use twitter twitter as a business source? [SEP] [PAD] [PAD]

Input Text What is the funniest joke you know?
400 [CLS] what is the the tot the you? a? [PAD] [PAD] [PAD]
800 [CLS] what is the fun?t joke you’for? in? [SEP]
1200 [CLS] what is the funniest joke you’ve ever know? [SEP]
1600 [CLS] what is the funniest joke you’ve ever know? [SEP]
2000 [CLS] what is the funniest joke you’ve ever know? [SEP]
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