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Abstract

Tools serve as pivotal interfaces that enable
humans to understand and reshape the environ-
ment. With the advent of foundation models,
Al systems can utilize tools to expand their
capabilities and interact with the real world.
Existing tool learning methodologies, encom-
passing supervised fine-tuning and prompt en-
gineering approaches, often induce large lan-
guage models to utilize tools indiscriminately,
as complex tasks often exceed their own compe-
tencies. However, introducing tools for simple
tasks, which the models themselves can read-
ily resolve, can inadvertently propagate errors
rather than enhance performance. This leads
to the research question: can we teach lan-
guage models when and how to use tools? To
meet this need, we propose Tool leaRning wlth
exeCution fEedback (TRICE), a two-stage end-
to-end framework that enables the model to con-
tinually learn through feedback derived from
tool execution, thereby learning when and how
to use tools effectively. Experimental results,
backed by further analysis, show that TRICE
can make the large language model selectively
use tools by improving the accuracy of tool us-
age while enhancing insufficient tool learning
and mitigating excessive reliance on tools'.

1 Introduction

The recent rapid advancement of foundation mod-
els (Brown et al., 2020; Ouyang et al., 2022;
Chowdhery et al., 2022; Qiao et al., 2023; Zhao
et al., 2023b) makes it practical for Al machines
to create (Cai et al., 2023; Qian et al., 2023) and
utilize tools effectively (Shen et al., 2023; Lu et al.,
2023), which greatly transcends their inherent limi-
tations in various underlying areas, including arith-
metic (Cobbe et al., 2021; Parisi et al., 2022),
knowledge updating (Sun et al., 2023; Zhao et al.,
2023a), multi-modal semantic analysis (Wu et al.,

* Corresponding Author.
'Code: https://github.com/zjunlp/TRICE.
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Figure 1: Large language model learns to use tools from
execution feedback.

2023; Driess et al., 2023), etc. Existing research
has shed light on the potential of Large Language
Models (LLMs) to exhibit a promising level of dex-
terity and finesse in tool use (Qin et al., 2023a;
Wang et al., 2023). Prior works view tools as ex-
ternal resources to augment LLMs for better per-
formance (Schick et al., 2023; Hao et al., 2023;
Patil et al., 2023; Tang et al., 2023) or employ
LLMs as a hub for human-tool interaction, respon-
sible for orchestrating the deployment and usage of
tools (Shen et al., 2023; Ge et al., 2023; Lu et al.,
2023; Driess et al., 2023).

Despite the empirical success of previous work,
a critical issue remains: LLMs often do not un-
derstand when and how to properly use which
tools. On one hand, the use of tools is necessary to
augment LLMs when facing complex problems
that surpass their inherent capabilities. On the
other hand, for simpler problems that can readily
be solved by the models themselves, introducing
tools can paradoxically propagate errors rather than
enhance performance. These errors can include but
are not limited to, improper selection of tool types,
generation of incorrect tool inputs, and ineffective
utilization of tool return results. Intuitively, it’s
crucial for LLMs to develop an awareness of when
tools are necessary and when they are not, and to
be able to make decisions about selecting the most
appropriate tools for the task at hand.

To address the above issues, we propose Tool
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https://github.com/zjunlp/TRICE

Method LM Model Scale Mechanism Feedback Peft Teacher Unseen
Toolformer (Schick et al., 2023) GPT-J 6B instruct-tuning X X X X
ToolkenGPT (Hao et al., 2023) LLaMA 13B, 30B fine-tuning X X X X
HuggingGPT (Shen et al., 2023)  ChatGPT >=100B prompt X X X v
Chameleon (Lu et al., 2023) GPT-4 >=100B prompt X X X v
ChatCoT (Chen et al., 2023) ChatGPT >=100B prompt X X X v
Gorilla (Patil et al., 2023) LLaMA 7B instruct-tuning X X 4 v
ToolLLaMA (Qin et al., 2023b) LLaMA B instruct-tuning X X (4 v
GPT4Tools (Yang et al., 2023) Vicuna 13B instruct-tuning X v 4 v
ChatGLM . .
TRICE (ours) Alpaca 6B, 7B . instruct-tuning . (4 v (4 v
Vicuna reinforcement learning

Table 1: Comparison of related works. Mechanism denotes how the LM learns to invoke tools. Feedback stands
for whether the LM learns from execution feedback. Peft means the parameter efficient tuning. Teacher expresses
whether learning from a powerful teacher like ChatGPT. Unseen indicates the zero-shot capability on unseen tools.

leaRning wlth exeCution fEedback (TRICE) as
shown in Figure 1, a two-stage end-to-end frame-
work that enables the model to continually learn
through feedback derived from execution, thereby
learning when and how to use tools effectively.
Specifically, we first prepare a dataset that helps
discern when tool usage is necessary for LLMs and
when it is not. Given the lack of gold labels, we
utilize ChatGPT (OpenAl, 2022) to automatically
generate tool usage APIs. Then, we introduce a
two-stage training strategy to teach the model when
to use tools: 1) Behavior Cloning. We conduct
instruct-tuning on the dataset to let the model im-
itate the tool-using behavior. 2) Reinforcement
Learning with Execution Feedback (RLEF). We
further reinforce the model with execution feed-
back by aligning it with desirable candidate re-
sponses, guiding the model to selectively use tools
to avoid error propagation. We detail the main
difference of TRICE with related works in Table 1.

We train and evaluate TRICE on various tasks
and backbone models. Experimental results and
further analyses demonstrate that TRICE success-
fully instructs the model to judiciously use tools,
simultaneously enhancing insufficient tool learning,
reducing excessive reliance on tools, and improv-
ing the accuracy of tool usage. In summary, the
key contributions of our study are as follows:

* We introduce TRICE, a two-stage end-to-end
training framework that leverages execution
feedback to help LLMs become more profi-
cient tool learners.

* We perform superior on eight benchmark
datasets of four tasks with various models.

» Extensive empirical analysis demonstrates
that TRICE can guide the model in judicious

tool use, thereby enhancing insufficient tool
use, reducing excessive dependency on tools,
and improving the effectiveness of tool use.

2 Related Work

Tool Learning. Though possessing remarkable
capabilities (Qiao et al., 2023; Yao et al., 2023),
LLMs still struggle in many basic aspects where
much smaller and simpler tools may precisely ex-
cel. Under this circumstance, a new paradigm,
called Tool Learning (Qin et al., 2023a), is born
to combine the strengths of both LLMs and spe-
cialized tools. Some works (Driess et al., 2023;
Shen et al., 2023; Lu et al., 2023) regard LLMs as a
decision-making hub for compositional tool using
which can be called Tool-Oriented Learning (Qin
et al., 2023a), while others (Gao et al., 2022; Liu
et al., 2023; Schick et al., 2023) treat tools as com-
plementary resources to extend the power of LLMs
which can be called Tool-Augmented Learning (Mi-
alon et al., 2023; Qin et al., 2023a). Despite their
success, tool-augmented approaches tend to force
LLMs to use tools mindlessly regardless of whether
they actually need tools for help. This may, in some
scenarios, steer LMs to erroneously choose the type
of tools or the way to use tools, making the loss out-
weighs the gain. Compared to previous works, we
try to make LMs better tool learners by teaching
them to use tools selectively instead of blindly.

Learning from Feedback. An intuitive approach
of tool learning is to fit LLMs on examples with
human-labeled tools directly (Torabi et al., 2018;
Li et al., 2022). However, this is often impractical
to annotate every possible scenario (Codevilla et al.,
2019) and difficult to generalize to new ones. It is
worth noting that humans generally have the ability
to correct and reflect on their own behavior from
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Figure 2: The overview of our proposed framework TRICE. In stage-I (Behavior Cloning), We conduct instruct-
tuning on the dataset to let the model imitate the tool-using behavior. In stage-II (RLEF), we further reinforce the
model with tool execution feedback by aligning it with desirable candidate responses.

trial and error (Allen et al., 2019). Intuitively, feed-
backs from the environments or humans enable
LLMs to understand the impact of their actions
and adapt their behavior accordingly. Reinforce-
ment learning (RL) excels at enabling models to
learn decision-making abilities in complex envi-
ronments through feedback (Schrittwieser et al.,
2020; Yao et al., 2022; Ge et al., 2023). Ouyang
et al. (2022) apply a state-of-the-art RL algorithm,
PPO (Schulman et al., 2017), to align LL.Ms with
human feedback. Liu et al. (2022) reinforce knowl-
edge for commonsense question answering with a
fixed QA model providing feedback. Yuan et al.
(2023); Lee et al. (2023) offer a promising alter-
native that leverages powerful off-the-shelf LLMs
to generate preferences. Compared to the previ-
ous feedback framework, we introduce RLEF for
tool learning which reinforces the LLMs with the
execution result of tools.

3 Methodology

Problem Overview. We mainly focus on four
kinds of tasks, with each instance in the format of
x = (s,q,t,a), where s denotes the specialized
instruction of each task, g refers to the question, ¢
stands for the tool API and a is the gold answer.
Following an instruction-following paradigm, the
complete input of the LLM is as follows:

input = [saQ]v (D

where [,] stands for text concatenating. In terms
of the output, when LLM deems that no tool is
necessary, it generates the answer a. Conversely, if
the model identifies the need for a tool, it produces
the tool API ¢, which encompasses the specific type
of tool and its corresponding input:

a use_tool = false
output = (2
t wuse_tool = true

The detailed format of each task is shown in A.1.

Given the problem, the main challenges lie in
1) determining the LLM when to or not to harness
tools for help and 2) how to impart the ability to
the LLM to make selective use of tools. For the
former, we allow the untrained model to directly
infer answers, considering the correct ones as not
requiring tools and the incorrect ones as indicating
the need for tool assistance. For the latter, we
adopt TRICE, a two-stage training strategy. In
the first stage, we use Behavior Cloning to make
the model imitate tools invoking. Building upon
this, we continue to train the model for selective
tool usage with RLEF in the second stage. The
overview of our method is illustrated in Figure 2.
Please note that all symbols are globally defined
in sections 3&4.

Data Preparation. The data preparation follows
the principles outlined in Eq.1&2. Given a raw

initial dataset Dipiy = {(q,a)} B{“l from the bench-
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mark, we utilize LLM without fine-tuning to gener-
ate predictions. Since we do not have gold labels
for tool APIs, we employ ChatGPT (OpenAl, 2022)
to generate pseudo-labels under few-shot prompt-
ing. Specifically, we generate tool API labels
t = t00lpane (t001input) for questions where the
generated predictions are incorrect. For questions
with correct predictions, we directly set ¢ = None
to indicate that tool APIs are not required. We de-
sign particular instructions s tailored to each task.
In the end, we obtain Do = {(s,q,t,a) }E‘{"‘l
according with Eq.1&2 containing the tool demand
information of the specific LLM as we desire?.
Training. As shown in Figure 2, based on Dyyq,
we conduct a two-stage training approach: I) Be-
havior Cloning (§3.1). In this stage, we teach
the model to imitate the tool usage behavior by
fine-tuning it on Dy, in an instruct-tuning man-
ner. This empowers the model with preliminary
functionality of tool API invocation. II) Reinforce-
ment Learning with Execution Feedback (§3.2).
Drawing inspiration from fine-tuning with human
feedback (Ouyang et al., 2022), we continue to
reinforce our model obtained in stage I with execu-
tion feedback by steering it to align with desirable
candidate responses.

3.1 Training Stage I: Behavior Cloning

During the behavior cloning stage, we aim to en-
able the LLM to master the schema of tool API
invocation and develop preliminary skills in se-
lectively utilizing tools. We perform supervised
fine-tuning on Dy, in this stage.

Specifically, for the model pr; with tunable pa-
rameters 6, the training loss of stage I can be for-
mulated as:

ﬁclone (9) - Z

(quvtva)ept(xol

—log prm(ols, ¢; 0),
3)

where o is the specified output of the model as
defined in Eq.2. The final parameterized model of
this stage is denoted as Ocjope.

3.2 Training Stage II: RLEF

In stage II, we continue to optimize 6¢jone With ex-
ecution feedback, so as to enhance its capability

2For more details of data preparation, please refer to Ap-
pendix A.2.

to selectively utilize tools and improve the accu-
racy of decision-making regarding tool types and
corresponding inputs.

Overall Loss. Following Yuan et al. (2023), for
each question ¢, we have k different candidate re-
sponses y; (1 < i < k) marshaled from other
LLMs (e.g. ChatGPT, LLaMA) or human experts.
We apply a reward strategy to score each y; with
r; = R(a,y;) where a is the gold answer of ques-
tion g. Our goal is to instruct the LLM to determine
the more desirable response by aligning with scores
{ri}k. So we then score each y; with the LLM:

L Et log PLM (yi,m|Qa Yi,<m; Hclone)
; =
[yl

N

where m denotes the mth token of y;, p; is the
conditional log probability of y; and ||y;|| refers to
the length-normalized factor.

To facilitate the LLLM in learning the correct
score ordering of different y;, we introduce a rank-
ing loss during training:

Lok = Y max(0,p; — p;). (5)

ri<rj

Meanwhile, in order to prevent the model from de-
viating too far from the original parameters and gen-
erating unreasonable tool API invocation structure,
we reintroduce the supervised fine-tuning loss:

Lo = — Z log PLM (Om|57 q, O<m; eclone)' ©6)

m

Finally, the overall RLEF loss is defined as follows:
Lrier = &+ Lrank + L, (7

where « is a hyperparameter that determines the
proportion of the rank loss.

Reward Strategy. The reward strategy aims to
give each y; an r; and rank them accordingly for
a given question g. We view the output o regu-
lated in Dy as the pseudo-human-expert (gold)
response. Then the reward strategy is derived from
two indicators: 1) accuracy of the answer and 2)
consistency of tool usage with the gold response.
Specifically, we employ a five-level scoring strat-
egy. We assign the gold response with the maxi-
mum score. For the remaining, assuming that the
correctness of the response is denoted as True for
correct answers and False for incorrect answers,
and whether the use of tools aligns with the gold
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Task Tool Datasets
Math ASDiv (Miao et al., 2020)
Reasoning Calculator SVAMP (Patel et al., 2021)
GSMSK (Cobbe et al., 2021)
Question WebQuestions (Berant et al., 2013)
. WikiSearch NaturalQuestions (Kwiatkowski et al., 2019)
Answering

TriviaQA (Joshi et al., 2017)

LAMA QA Model T-RExX (Petroni et al., 2019)
M““(';:‘g“al Translator MLQA (Lewis et al., 2020)

Table 2: Tasks, datasets and the corresponding tools.

response is denoted as Yes for alignment and No
for misalignment, to ensure accurate and selective
tool usage, our scoring is prioritized as follows:

TrueYes > TrueNo > FalseYes > FalseNlNo.

If two responses share the same state, they would
receive the same score.

4 [Experiments

4.1 Experimental Settings

Tasks and Tools. As shown in Table 2, we
mainly evaluate our method on four tasks with
each task specified to an external tool. Due to lim-
ited computational resources, we randomly sample
train and test sets from each dataset to reduce the
data scale. We display the detailed data distribu-
tion for each task in Figure 11. Following Schick
et al. (2023), we use a more lenient evaluation cri-
terion than exact match. We simply check for the
last number predicted by the model for the math
reasoning task and check whether the correct an-
swer is within the first twenty words for other tasks.
The QA model we use for LAMA is a retrieval-
augmented LM fine-tuned on Natural Questions
(Kwiatkowski et al., 2019) named Atlas (Izacard
et al., 2023). We use the 600M parameter NLLB
(Costa-jussa et al., 2022) as our machine Transla-
tion model for Multilingual QA.

Candidate Response Generation. We collect
five responses for each question from four differ-
ent models, e.g. ChatGPT, InstuctGPT, Vicuna-7B,
Alpaca-7B, and the output regulated in Dy, as the
gold response. To differentiate whether or not to
use tools among candidate responses, we compel
ChatGPT and InstructGPT to utilize tools while
allowing Alpaca and Vicuna to make the choice
of using tools. For ChatGPT and InstructGPT, we
prompt them with instructions and few-shot exam-
ples, and for Alpaca-7B and Vicuna-7B, we fine-
tune them on Dy, With LoORA (Hu et al., 2022) for

a few steps in order to equip them with initial abili-
ties for question answering and tool generation”.

Baselines. We mainly experiment with the fol-
lowing LLMs: 1) GPT-3.5 (OpenAl, 2022). We
utilize the text-davinci-@03 version of GPT se-
ries. 2) ChatGLM-6B (Du et al., 2022), a general
language model pre-trained with an autoregressive
blank-filling objective. 3) Alpaca-7B (Taori et al.,
2023), a model further trained on LLaMA-7B (Tou-
vron et al., 2023) with self-instruction. 4) Vicuna-
7B (Chiang et al., 2023), an open-source chatbot
trained by fine-tuning LLaMA-7B. For GPT-3.5,
we directly utilize the OpenAl API, while for other
models, we train them all with LoRA (Hu et al.,
2022) for efficiency in both stage-1&I1.

Based on the differences in training status, we
classify the baselines of our primary experiment
into three categories (see Table 3&4): 1) Prompt-
Based. Models are directly evaluated without train-
ing under Zero-Shot or Few-Shot manners. 2)
Supervised Fine-Tuning. Models are trained purely
on question-answer paired data (0% Tool usage) or
trained purely on question-tool paired data (100%
Tool usage). 3) TRICE-Based. Models are trained
separately for each task (TRICE-SPLIT) or by com-
bining training data from all tasks (TRICE-MIX)
with TRICE. Furthermore, we observe the role of
each training stage (see Figure 3): 1) TRICE-I.
Models are trained only by the Behavior Cloning
stage. 2) TRICE-II. Models are trained only by the
RLEF stage. 3) TRICE-ALL. Models are trained
by both TRICE-I and TRICE-II. In our analysis,
we use arrows to indicate Tpositive and {negative
performance compared to the specific baseline.

Setups. We fine-tune all our models with LoRA
(Hu et al., 2022) in the format proposed in Alpaca
(). All the models are trained for 5 epochs in stage-
I and 2 epochs in stage-1I. We use the learning
rates of {2e-5, le-4, 3e-4} for ChatGLM-6B and
{2e-5, le-4} for Alpaca-7B and Vicuna-7B. The
a 1s set to {0.01, 0.1, 1} for all the models. The
detailed hyper-parameters we use are shown in Ap-
pendix A.4. Since sampling responses and training
are separated, our whole training procedure only
needs to load one model. All our training can be
completed on one 80G A800 GPU within 10 hours.

3For more details of candidate response generation, please
refer to Appendix A.3.
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Math Reasoning

Question Answering LAMA Multilingual QA

Setting Model Avg.
ASDiv  SVAMP GSMSK WebQ NaturalQ TriviaQA T-REx MLQA

GPT-3.5 64.6 62.0 19.8 46.4 15.0 41.3 58.7 344 42.8
Prompt ChatGLM (Zero-Shot) 30.8 30.5 6.3 12.1 1.6 39 21.8 36.5 17.9
Based ChatGLM (Few-Shot) 345 30.5 7.1 11.9 1.9 35 23.5 36.7 18.7
Supervised ~ ChatGLM (0% Tool) 442 355 7.2 14.9 9.5 11.2 30.6 37.7 239
Fine-Tuning ChatGLM (100% Tool) 68.2 59.5 11.8 12.5 9.9 13.8 26.8 359 29.8
TRICE ChatGLM (TRICE-SPLIT) 729 64.0 12.4 15.2 11.6 15.2 32.7 37.3 327
Based ChatGLM (TRICE-MIX) 75.6 65.5 15.8 18.5 13.7 29.0 34.7 41.7 36.8
Prompt Alpaca (Zero-Shot) 31.2 22.0 35 32.8 53 15.0 39.7 37.7 234
Based Alpaca (Few-Shot) 38.3 23.5 4.3 339 6.0 16.6 41.1 45.5 26.2
Supervised  Alpaca (0% Tool) 44.0 23.0 5.8 37.6 10.3 204 53.1 48.9 30.4
Fine-Tuning  Alpaca (100% Tool) 68.6 445 15.6 35.9 16.4 32.6 41.7 46.6 37.7
TRICE Alpaca (TRICE-SPLIT) 73.4 45.0 16.3 38.2 18.6 37.8 54.6 48.2 41.5
Based Alpaca (TRICE-MIX) 75.2 58.0 21.5 414 20.7 41.4 55.2 52.0 45.7
Prompt Vicuna (Zero-Shot) 50.4 33.0 6.4 349 7.7 16.7 42.5 35.9 28.4
Based Vicuna (Few-Shot) 56.1 355 6.9 36.2 8.8 17.6 442 38.5 30.5
Supervised ~ Vicuna (0% Tool) 52.3 385 8.1 38.8 11.5 20.8 52.9 443 334
Fine-Tuning  Vicuna (100% Tool) 69.4 48.0 15.8 37.1 17.5 339 45.7 42.1 38.7
TRICE Vicuna (TRICE-SPLIT) 72.6 49.0 16.6 432 20.7 40.8 54.1 42.6 424
Based Vicuna (TRICE-MIX) 81.2 60.5 21.8 44.1 21.2 41.6 554 49.7 46.9

Table 3: Performance of TRICE across various tasks with different backbone models. Zero-Shot: models are
directly evaluated. Few-Shot: models are prompted by 3 examples during evaluation. 0% Tool: models are trained
purely on question-answer paired data. During the above settings, the model does not rely on tools. 100% Tool:
models are trained purely on question-tool paired data. TRICE-SPLIT: models are trained with TRICE separately
for each task. TRICE-MIX: models are trained with TRICE by combining training data from all tasks.

4.2 Main Results

Selective Tool Learning of Single Tool. Within
each task, we train the model to learn the corre-
sponding tool as shown in Table 2, thereby evalu-
ating the model’s proficiency in handling a single
tool. From the rows labeled TRICE-SPLIT in Ta-
ble 3, it is evident that training by TRICE, Alpaca
and Vicuna perform on par with GPT-3.5, exhibit-
ing only a slight decrease of 11.3% and 10.4% on
average. Meanwhile, across all backbone models,
TRICE-SPLIT demonstrates significant improve-
ments compared to the prompt-based baselines,
surpassing the few-shot setting with 114.0% for
ChatGLM, 115.3% for Alpaca, and 111.9% for
Vicuna. This indicates that TRICE consistently em-
powers LLMs to use tools effectively, irrespective
of the model architecture and scale (ChatGLM-6B
is encoder-decoder, while Alpaca-7B and Vicuna-
7B are decoder-only). Moreover, whether it is com-
pletely independent (0% Tool) or dependent (100%
Tool) on tools, supervised fine-tuning fails to beat
TRICE-based training, which highlights the neces-
sity and efficacy of judicious tool learning.

Selective Tool Learning of Multi-Tools. Across
all tasks, we train the model to simultaneously learn
all the tools, assessing its capabilities in multi-tool
learning. As indicated in the rows labeled TRICE-
MIX in Table 3, training across tasks achieves state-

Unseen Dataset Unseen Tool

Model Calculator QA Model Retriever

MultiArith AddSub  SQuAD HotpotQA
GPT-3.5 51.1 59.5 45.2 36.7
Vicuna (Zero-Shot) 423 44.1 28.6 19.7
Vicuna (Few-Shot) 455 49.1 31.2 20.6
Vicuna (TRICE-SPLIT) 63.1 752 30.9 —
Vicuna (TRICE-MIX) 66.6 80.5 35.7 273

Table 4: Performance to unseen datasets and tools. The
presence of an empty value in the Unseen Tool TRICE-
APLIT section is due to our reliance on the generaliza-
tion achieved through mixed-tool training (MIX). Test-
ing the new tool individually through separate training
(SPLIT) using any single tool would not be suitable.

of-the-art performance by further exceeding the
TRICE-SPLIT with over 14.0% average score gains
across different models. Meanwhile, both Alpaca
and Vicuna outperform GPT-3.5, exhibiting im-
provements of 12.9% and 14.1%, respectively.
These results declare the potential of TRICE in se-
lective multi-tool learning, which paves the way
for expanding the capabilities of LLMs to wisely
handle more complex and diverse types of tools.

Generalization of Tool Learning. To analyze
the generalization ability of TRICE, we extend the
trained model to unseen datasets and tools. As il-
lustrated in Table 4, we evaluate Vicuna on another
two math reasoning datasets (MultiArith (Roy and
Roth, 2015) and AddSub (Hosseini et al., 2014))
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Figure 3: Performance of TRICE across all tasks at different training stages. TRICE-I: only train by Behavior
Cloning (instruct-tuning) stage. TRICE-II: only train by RLEF (reinforcement learning with execution feedback)
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Figure 4: Comparison of tool use rate statistics among different training stages. In the Zero-Shot stage, we consider

a need for tools when the model reaches a wrong answer.

and one LAMA dataset (SQuAD (Petroni et al.,
2019)). Our approach enables continuous opti-
mization of the model’s performance on unseen
datasets, with TRICE-MIX yielding superior re-
sults compared to TRICE-SPLIT. This suggests
that TRICE equips the model with general tool us-
age capabilities. Furthermore, we steer the model
towards unseen tools by simply modifying the in-
structions. The performance of Vicuna (TRICE-
MIX) augmented by a retriever on HotpotQA (Yang
et al., 2018) advances 16.7% than the few-shot
manner. Despite the disparities between GPT-3.5
on certain datasets, these findings highlight the
promise of multi-tool training based on TRICE for
facilitating the generalization of tool learning.

4.3 Analyses of Selective Tool Learning

Stage-I is the Foundation of Stable Selective Tool
Learning. Figure 3 showcases the performance
of TRICE at different training stages, with Vicuna

as the representative. It is evident that only trained
in stage I (TRICE-I), the model acquires efficacious
tool usage capabilities, resulting in a substantial
performance improvement. Upon further training
in stage II (TRICE-ALL), the model experiences
additional performance enhancements in both the
SPLIT and MIX training settings. However, the
results obtained solely from stage II (TRICE-II)
are unsatisfactory, indicating that the initial tool
generation ability bestowed upon the model during
stage I is crucial for more stable training.

Stage-II Plays a Pivotal Role in Selective Tool
Learning. To investigate how the models learn
to use tools selectively, we analyze the tool us-
age rate statistics of Vicuna during each training
stage in Figure 4. After stage I, we notice that the
model’s reliance on tools has significantly deep-
ened on most tasks. This indicates that the model
effectively learns the pattern of tool usage in stage 1.
Still, due to the imbalanced data distribution regard-
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can use a Calculator for help.

» Input: Diane wants fo buy a package of cookies. The cookies
cost 65 cents. Diane has 27 cents. How much more money
does she need?

* Gold Answer: 38

* TRICE-I Response: Diane needs 37 cents to buy the
package of cookies.

* TRICE-I Pred: 37 ¥

» TRICE-All Response: calculator(65-27)

< TRICE-All Pred: 38 v/

/ Instruction: Given a math problem, please solve it and you\/ \
« Instruction: Given a question, please answer it and you can

Case 1 /\

use a WikiSearch for help.

Input: Who plays Harley Quinn in the Lego Batman movie.
Gold Answer: Jenny Slate

TRICE-I Response: WikiSearch(Harley Quinn)

TRICE-I Pred: Rosario Dawson 3¢

TRICE-All Response: WikiSearch(Harley Quinn Lego Batman

i Case 2 g()/

+ TRICE-All Pred: Jenny Slate

use a QA model for help.
* Input: Mongolia competed at the 1992 Winter Olympics in
Albertville, ?
* Gold Answer: France
* TRICE-I Response: QA(Where were the 1992 Winter
Olympics held?)
+ TRICE-I Pred: bobsleigh 3¢
* TRICE-All Response: France
\ TRICE-Al Pred: France +/

K Instruction: Given a question, please answer it and you camﬁ Instruction: Given a context, please answer the question irm

Case 3

\ TRICE-All Pred: aging </

English and you can use a Translator for help.
+ Input: There are a number of risk factors for fungal
meningitis, including the use of ..... and the loss of
immunity associated with aging. ...t A5k ERENEX ?
Gold Answer: aging
TRICE-I Response: translator(ft 4 53¢k ®EhHX?)
TRICE-I Pred: immunity 3¢ e
TRICE-All Response: franslator(ft 4 5k n % 7) Us)
Case 4

many books does he have in total?
Gold Answer: 621
TRICE-I Response: calculator(27+80*23)
TRICE-I Pred: 1867

» TRICE-All Response: calculator((27+80)*23)
\:_TRICE-All Pred: 2461 X

K Instruction: Given a math problem, please solve it and you can use a calculator for help.
+ Input: Bryan took a look at his books and magazines. If he has 27 books and 80 magazines in each of his 23 bookshelves How

Case 5 n n n

Figure 5: Case study. We mainly show the responses and predictions of stages I and All.

ing the presence or absence of tools in the training
set, instruct-tuning tends to make the model overly
dependent on tools. However, after stage II, the
model not only shows performance improvement
(see Figure 3) but visibly reduces its dependency on
tools, which illustrates that the execution feedback
can help mitigate the model’s excessive reliance on
tools and alleviate error propagation in tool usage.
Moreover, it cannot be ignored that the fluctua-
tion of LAMA differs from others. The decision-
making process for invoking the QA model poses
challenges, leading to insufficient tool learning dur-
ing stage I. The improvement in tool usage rate dur-
ing stage II implies that the execution feedback can
help address the issue of inadequate tool learning.
The above two phenomena highlight the validity of
TRICE for selective tool usage.

Case Study. In Figure 5, we present several cases
featuring responses and predictions from different
stages. Case 1 suggests that stage II can alleviate
the insufficient tool learning in stage I, urging the
model to seek assistance from tools for questions
it struggles to answer. Though stage I equips the
model with a certain level of tool generation capa-
bility, it may not excel in making optimal decisions
about the tool’s input, as shown in Case 2. Stage
II mitigates this limitation and enhances the accu-
racy of tool use. Case 3 confirms that our proposed
method enables the model to use tools judiciously.
In Case 4, despite having the same tool invocation

in both stages I and II, the model may generate
completely opposite answers. This indicates that
stage II can further optimize the model’s ability to
leverage the return results of tools. However, as
shown in Case 5, our model still exhibits certain
flaws leading to errors in tool usage. We speculate
that this could be attributed to the scale of our back-
bone models, which generally range from 6-7B,
potentially limiting their tool learning ability.

5 Discussion

Knowledge Conflicts. In tool learning, LLMs
manipulate tools and respond to users conditioned
on a variety of knowledge sources. One particularly
challenging issue in tool learning is the problem of
knowledge conflicts (Qin et al., 2023a) which may
derive from the conflicts between model knowledge
and augmented knowledge from tools, and among
augmented knowledge from different tools. This
may lead to a lack of explainability in model predic-
tion and planning. LLMs need to have the ability to
differentiate knowledge from various sources and
discern which ones are valuable, which ones are
irrelevant, and even which ones may be harmful.
This ability becomes even more critical in highly
specialized fields such as biomedical research and
legal assistance, where the accuracy and reliabil-
ity of knowledge are of utmost importance. Our
approach leverages the feedback loop of trial and
error (see Figure 2) to learn when to use tools and
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when not to. The model learns to recognize situ-
ations where relying solely on its intrinsic knowl-
edge may not be sufficient and utilizing tools is
more reliable. Similarly, it learns to identify scenar-
ios where its own learned knowledge is capable of
solving the problem without the need for extensive
tool usage. This learning process allows the model
to adapt and make informed decisions about when
to rely on its own capabilities and when to utilize
tools effectively (see Figure 4).

Interactive Learning. Recent NLP has wit-
nessed rapid advancement in interactive learning
which considers language models as agents capa-
ble of observing, acting, and receiving feedback
in a loop with external objects such as humans,
knowledge bases, tools, models, and environments
(Wang et al., 2023). Collaboration among multi-
agents (Lin et al., 2023; Liang et al., 2023) and
learning from feedback (Chen et al., 2022; Ichter
et al., 2022) are the keys to achieving general em-
bodied intelligence as of now. Our approach is
a preliminary endeavor to explore the incorpora-
tion of embodied methods into tool learning. By
leveraging feedback obtained through interactions
between the environment (tools) and multi-agents
with varying capabilities, we enable language mod-
els to learn more desirable execution strategies (see
Figure 5). However, our current method is unable
to learn the usage of multi-tool compositions. In
the future, more sophisticated trial-and-error pro-
cesses and feedback mechanisms will be necessary
for LLMs to better utilize tools (e.g. learning multi-
tool compositions) and even create new tools.

6 Conclusion

In this paper, we focus on addressing the challenge
of selective utilization of tools by LLMs and pro-
pose a two-stage end-to-end training framework
dubbed TRICE to make LLMs better tool learners
with execution feedback. Through comprehensive
experiments, we show that our method can achieve
better performance compared to GPT-3.5. Further
analyses illustrate that TRICE can selectively use
tools by improving the accuracy of tool usage while
enhancing insufficient tool learning and mitigating
excessive reliance on tools.

Limitations

In this paper, we focus on addressing the challenge
of selective utilization of external tools by LLMs

and propose a two-stage end-to-end training frame-
work dubbed TRICE to make LLMs better tool
learners with execution feedback. Despite our best
efforts, there may be still some limitations that re-
main in this paper.

Method. Our approach can be applied to any tool-
learning scenario, including embodied robotics.
However, due to the iterative nature of execution
feedback, which relies on continuous trial-and-
error, it is typically more suitable for computation-
ally feasible virtual environments, while real-world
scenarios often require a significant time invest-
ment. In the future, we will explore more scientific
and intricate feedback mechanisms to address the
limitations above.

Language Models. Given our limited computa-
tional resources, we only conduct experiments on
three backbone models with scales of 6-7B. In the
future, we may advent on LLMs with different ar-
chitectures and larger scales.

Tasks and Datasets. Due to the limited re-
sources, we only experiment on four tasks con-
taining eight datasets. There are also numerous
tasks and scenarios that require the utilization of
more diverse and complex tools. In the future, we
will embark on further research endeavors.
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Name Stage-I Stage-II
lora_r 8 8
lora_alpha 16 16
lora_target_modules q_proj v_proj q_proj v_proj
lora_dropout 0.05 0.05
max_length 2048 2048
batch_size_per_device 48 8
gradient_accumulation_steps 8 32
warmup_steps 0 0
epochs 5 2
Ir le-4, 3e-4 le-4, 2e-5
o — 0.01,0.1, 1

Table 5: Hyperparameters to train Chatglm-6B.

Name Stage-I Stage-II
lora_r 8 8
lora_alpha 16 16
lora_target_modules q_proj v_proj q_proj v_proj
lora_dropout 0.05 0.05
max_length 512 512
batch_size_per_device 128 8
gradient_accumulation_steps 8 32
warmup_steps 0 0
epochs 5 2
Ir le-4, 2e-5 le-4, 2e-5
o — 0.01,0.1, 1

Table 6: Hyperparameters to train Alpaca-7B and
Vicuna-7B.
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Figure 6: Training loss variations of Vicuna-7B in stage
I of TRICE-MIX.
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A Appendix

A.1 Task Format

We mainly evaluate our method on four kinds of
tasks as shown in Table 2. Eq.1&2 formally define
the input and output of each task in general. Here
is the detailed format of each task.

Math Reasoning
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Figure 7: Training loss variations of Vicuna-7B in stage
IT of TRICE-MIX.

Instruction s: Given a math problem, please
solve it and you can use a calculator for
help.

Question ¢: Mrs. Hilt has 50 cents. A
pencil costs 5 cents. How many pencils
can she buy with the money she has?

Tool API ¢ (if needed): calculator(50/5)

Gold Answer a: 10

Question Answering

Instruction s: Given a question, please
answer it and you can use a WikiSearch
for help.

Question g: Where are sunbeam microwaves
made?

Tool API t (if needed): WikiSearch(Sunbeam
microwaves manufacturing location)

Gold Answer a: Florida

LAMA

Instruction s: Given a question, please
answer it and you can use a QA model for
help.

Question g: Winners of the festivals
«Chervona Ruta» (Ukraine), «Pearls of
the Season» (Ukraine), «Boards» (Moscow),
«Woodstock» ( ?

Tool API t (if needed): QA(Where is the
Woodstock festival held?)

Gold Answer a: Poland
Multilingual QA

Instruction s: Given a context, please

answer the question in English and you
can use a translator for help.

Question g: Context: Over the next decade,
she went on more than 40 field missions,
meeting with refugees and internally

displaced persons in over 30 countries.
In 2002, when asked what she hoped to
accomplish, she stated, “Awareness of
the plight of these people. I think
they should be commended for what they
have survived, not looked down upon.”
To that end, her 2001-02 field visits
were chronicled in her book Notes from My
Travels, which was published in October
2003 in conjunction with the release of
her humanitarian drama Beyond Borders.
Question: WEE10FHTEA T £/ 1ESS?

Tool API ¢ (if needed): translator (I 7E105E
WFERL T 2/ D1E557)

Gold Answer a: more than 40

A.2 Data Preparation

We present the prompt used to generate tool APIs
for Math Reasoning, Question Answering, and
LAMA in Figure 8-10. Since the sentence to be
translated happens to be the provided question,
Multilingual QA does not require ChatGPT to gen-
erate tool APIs. Due to limited computational re-
sources, we randomly sample train and test sets
from each dataset to reduce data scale and train-
ing/testing costs. The final data distribution for
each task is illustrated in Figure 11.

A.3 Response Generation

We show the prompt used to generate candidate re-
sponses for ChatGPT and GPT-3.5 in Figure 12-15.
We use the same instructions in Figure 5 to generate
candidate responses for Vicuna and Alpaca.

A.4 Training Details

The hyperparameters we use to train ChatGLM-6B
are shown in Table 5 and Alpaca-7B, Vicuna-7B
are shown in Table 6. We present the training loss
variations of Vicuna-7B in stages I and II of TRICE-
MIX in Figure 6&7. During training, we observe
that despite the decrease in training loss, prolonged
reinforcement learning training will result in a sig-
nificant performance loss. Typically, the model
achieves optimal performance within the first 10-
40 steps.
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(Iwill provide you with a math Question and a Golden answer. | need you to write “calculator(formula)” to \
invoke the API for assistance in solving the question, where “formula” is the formula to reach the Golden
answer. Here are some examples:

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?

Golden answer: 72

Output: calculator(48+48/2)

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Golden answer: 10

Output: calculator((12/60)*50)

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Golden answer: 10

Output: calculator((12/60)*50)

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she
needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much as her
parents. How much more money does Betty need to buy the wallet?

Golden answer: 5

Output: calculator(100-100/2-15-15%2)

Question: {question}
Golden answer: {answer}

\Output: /

Figure 8: Prompt used for Math Reasoning to generate tool APIs.

~

flwill provide you with a Question, Golden answers. | need you to write "WikiSearch(term)" to invoke the
API for assistance in answering the Question, where "term" is the search term you want to look up to
obtain the Golden answers. Here are some examples:

Question: Where are sunbeam microwaves made?
Golden answers: ['Florida']
Output: WikiSearch(Sunbeam microwaves manufacturing location)

Question: What type of car does Michael Weston drive?
Golden answers: ['Wishcraft']
Output: WikiSearch(Michael Weston car)

Question: What is Nina Dobrev nationality?
Golden answers: ['Bulgaria']
Output: WikiSearch(Nina Dobrev nationality)

Question: What religion are people in Russia?
Golden answers: ['Islam', 'Russian Orthodox Church']
Output: WikiSearch(Religion in Russia)

Question: {question}
Golden answers: {answers}

Q)utput: j

Figure 9: Prompt used for Question Answering to generate tool APIs.
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@ )

will provide you with a Question, Golden answers. | need you to write "QA(question)" to invoke the API
for assistance in answering the Question, where "question" is the question you want to ask to obtain the
Golden answers. Here are some examples:

Question: The army held Rome for a brief time, but was then forced to retreat to the city of Perusia
(modern Perugia, ?

Golden answers: ['Italy']

Output: QA(Which country is Perusia, or modern Perugia, located in ?)

Question: Winners of the festivals «Chervona Ruta» (Ukraine), «Pearls of the Season» (Ukraine), «Boards»
(Moscow), «Woodstock» ( ?

Golden answers: ['Poland']

Output: QA(Where is the Woodstock festival held?)

Question: It is native to the Alps and the Pyrenees Mountains of Europe (Spain, France, Italy, Switzerland,
Austria and ?

Golden answers: ['Germany']

Output: QA(Which country is mentioned as being native to the Alps and the Pyrenees Mountains alongside
Spain, France, Italy, Switzerland, and Austria ?)

Question: Heorhiy Kyrylovych Tkachenko (May 5, 1898 in Hlushkovo, Kursk region of the Russian Empire —
1993 in Kiey, ?

Golden answers: ['Ukraine']

Output: QA(Where did Heorhiy Kyrylovych Tkachenko die ?)

Question: {question}
Golden answers: {answers}

\Output: J

Figure 10: Prompt used for LAMA to generate tool APIs.

Train
\ Total=8007 \\‘ i\mal=14000 *607 \
m 11.89% 952 ASDiv B 14.29% 2000 WebQuestions AN 100.00% 12607 T-REx AN 100.00% 3607 MLQA
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Figure 11: Data distribution for each task.
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~

(Given a math problem, please solve it and you can use a calculator for help.
Here are some examples:

Input: Mrs. Hilt has 50 cents. A pencil costs 5 cents. How many pencils can she buy with the money she has?
Output: calculator(50/5)

Input: James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a
year?
Output: calculator(3*2*2*52)

Input: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much
did she earn?
Output: calculator((12/60)*50)

Input: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs.
Her parents decided to give her $15 for that purpose, and her grandparents twice as much as her parents.
How much more money does Betty need to buy the wallet?

Output: calculator(100-100/2-15*2-15)

Input:{question}
Q)utput: j

Figure 12: Prompt used for Math Reasoning to generate candidate responses.

Given a question, please answer it and you can use a WikiSearch for help.
Here are some examples:

Input: Who has scored most runs in test cricket
Output: WikiSearch(most runs scorer in test cricket)

Input: How did Jock die in Dallas?
Output: WikiSearch(Jock Ewing death)

Input: Where are the Netherlands on a world map?
Output: WikiSearch(Location of the Netherlands on world map)

Input: What is Nina Dobrev nationality?
Output: WikiSearch(Nina Dobrev nationality)

Input: {question}
Output:

g J

Figure 13: Prompt used for Question Answering to generate candidate responses.
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Given a question, please answer it and you can use a QA model for help.
Here are some examples:

Input: The City Council divide itself into ?
Output: QA(What did the City Council divide itself into?)

Input: Arcos de Canasi is a small town in the east of the La Habana Province of ?
Output: QA(Which country is Arcos de Canasi located in?)

Input: The steel is named after Damascus, the capital city of ?
Output: QA(What is the capital city of Syria?)

Input: Winners of the festivals «Chervona Ruta» (Ukraine), «Pearls of the Season» (Ukraine), «Boards»
(Moscow), « Woodstock» (?
Output: QA(Where is the Woodstock festival held?)

Input: {question}
Output:

N\

Figure 14: Prompt used for LAMA to generate candidate responses.
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Gven a context, please answer the question in English and you can use a translator for help. \
Here are some examples:

Input:

Context: Over the next decade, she went on more than 40 field missions, meeting with refugees and
internally displaced persons in over 30 countries. In 2002, when asked what she hoped to accomplish, she
stated, “Awareness of the plight of these people. | think they should be commended for what they have
survived, not looked down upon.” To that end, her 2001-02 field visits were chronicled in her book Notes
from My Travels, which was published in October 2003 in conjunction with the release of her
humanitarian drama Beyond Borders.

Question: cd dy da thyc hién bao nhiéu nhiém vy trong hon 10 ndm?

Output: translator(cé &y d3 thuc hién bao nhiéu nhiém vu trong hon 10 ndm?)

Input:

Context: John Canfield Spencer (January 8, 1788 — May 17, 1855) was an American lawyer, politician, judge
and United States Cabinet secretary in the administration of President John Tyler.

Question: John Canfield Spencer lam viéc véi Téng théng nao?

Output: translator(John Canfield Spencer Iam viéc véi Téng théng nao? )

Input:

Context: The story follows the adventures of Garde pilot Nagate Tanikaze, who lived in the underground
layer of Sidonia since birth and was raised by his grandfather. Never having met anyone else, he trains
himself in an old Guardian pilot simulator every day, eventually mastering it. After his grandfather's death,
he emerges to the surface and is selected as a Guardian pilot, just as Sidonia is once again threatened by
the Gauna.

Question: Ong duoc xét chon la gi sau khi qua doi?

Output: translator(Ong duoc xét chon |3 gi sau khi qua doi?)

Input:

Context: Emma Goldman: A Documentary History of the American Years, Volume 1 — Made for America,
1890-1901. Berkeley: University of California Press, 2003. ISBN 0-520-08670-8.

Question: Phim tai liéu dua trén khodng thoi gian nao?

Output: translator(Phim tai liéu dwa trén khoang thi gian nao?)

Input:
Context: {context}
Question: {question}

thput: j

Figure 15: Prompt used for Multilingual QA to generate candidate responses.
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