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Abstract

Few-shot Knowledge Graph (KG) Relational
Reasoning aims to predict unseen triplets
(i.e., query triplets) for rare relations in KGs,
given only several triplets of these relations
as references (i.e., support triplets). This
task has gained significant traction due to
the widespread use of knowledge graphs in
various natural language processing applica-
tions. Previous approaches have utilized meta-
training methods and manually constructed
meta-relation sets to tackle this task. Recent
efforts have focused on edge-mask-based meth-
ods, which exploit the structure of the contex-
tualized graphs of target triplets (i.e., a sub-
graph containing relevant triplets in the KG).
However, existing edge-mask-based methods
have limitations in extracting insufficient in-
formation from KG and are highly influ-
enced by spurious information in KG. To over-
come these challenges, we propose SAFER
(Subgraph Adaptation for FEw-shot Relational
Reasoning), a novel approach that effectively
adapts the information in contextualized graphs
to various subgraphs generated from support
and query triplets to perform the prediction.
Specifically, SAFER enables the extraction of
more comprehensive information from support
triplets while minimizing the impact of spuri-
ous information when predicting query triplets.
Experimental results on three prevalent datasets
demonstrate the superiority of our proposed
framework SAFER.1

1 Introduction

Knowledge Graphs (KGs) consist of many triplets,
i.e., (head, relation, tail), which repre-
sent specific relationships between real-world en-
tities (Wang et al., 2017; Ji et al., 2022). These
triplets form directed graphs that store knowl-
edge information and can be applied to various
knowledge-based tasks (Liang et al., 2022; Wang

1Our code is available at https://github.com/
HaochenLiu2000/SAFER.
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Figure 1: We provide an instance for the two limitations
of edge-mask-based methods. In this example, there are
two support triplets (music, created_by, musican)
and (news article, created_by, reporter). When
extracting support information by finding the common
subgraph, the extraction of edges with similar mean-
ings but in different graphs will fail, and some spurious
information will be extracted, which cannot correctly
represent the logical pattern of the relation created_by.

et al., 2023) such as question answering (Huang
et al., 2019; Saxena et al., 2020), information ex-
traction (Hoffmann et al., 2011; Daiber et al., 2013),
program analysis (Liang et al., 2023), and language
model enhancement (Zhang et al., 2020b; Yasunaga
et al., 2021; Xie et al., 2022). However, KGs gen-
erally cannot encompass all the necessary knowl-
edge triplets required by downstream tasks, as most
KGs are severely incomplete (Xiong et al., 2018).
Therefore, it becomes crucial to complete KGs by
inferring potential missing relations between enti-
ties. In particular, existing works for KG comple-
tion (Bordes et al., 2013; Zhu et al., 2021; Zhang
et al., 2022) often assume the availability of suf-
ficient instances (i.e., triplets) for each relation to
be predicted. However, in real-world scenarios, it
is common to encounter few-shot relations, where
only limited instances of triplets with these rela-
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tions, called support triplets, are available. KGs are
constantly being updated, for example, by includ-
ing knowledge from social networks. This often
results in new relations with a relatively scarce
number of discovered triplets, as the labeling pro-
cess can be laborious. These new relations are gen-
erally known as few-shot relations. Consequently,
predicting new relations with only limited triplets
becomes a significant task (Ma and Wang, 2023).
Therefore, it is crucial to perform the Few-shot KG
Relational Reasoning (Few-shot KGR) task (Xiong
et al., 2018), which aims to predict the existence of
(unseen) query triplets of a relation, given a back-
ground KG and a set of a limited number of support
triplets of the relation as the support set.

Currently, there exist two types of approaches
for solving the Few-shot KGR task. The first
type is meta-learning-based methods (Chen et al.,
2019; Zhang et al., 2020a; Sun et al., 2022), which
utilize the meta-learning framework (Finn et al.,
2017) to transfer useful knowledge to new KGR
tasks (Hospedales et al., 2021) with a limited num-
ber of support triplets, to tackle the issue of data
scarcity in the target few-shot tasks. Nevertheless,
the distribution of the manually selected target re-
lations plays an important role in these methods,
which will result in suboptimal performance if the
meta-training sets are not well-designed. To ad-
dress this limitation, more recent studies have ex-
plored edge-mask-based approaches (Huang et al.,
2022; Meng et al., 2023), providing an alternative
solution to Few-shot KGR tasks. Edge-mask-based
methods analyze each support (or query) triplet by
first retrieving its contextualized graph, i.e., the sub-
graph that consists of the head and tail entities of a
triplet, and the most relevant entities and relations
of the triplet. The subgraph is referred to as the
support (or query) graph. Then they extract com-
mon subgraphs across support graphs in the form
of masks that identify edges with shared meanings
for predictions on query triplets.

Despite the effectiveness of these works, we
argue that there are still two major limitations
of edge-mask-based methods. (1) Existing edge-
mask-based approaches assume that the largest
common subgraph (masks) shared across all sup-
port graphs is sufficient to represent the unseen
target relation. However, this assumption is diffi-
cult to satisfy in certain cases, e.g., when dealing
with triplets that involve different but similar re-
lations across other support graphs. As shown in
Figure 1, on the support graphs of the target rela-

tion created_by, the relations produced_by and
published_in preserve similar meanings. How-
ever, the strategy of learning edge masks fails to
harness the valuable insights from these different
yet similar relations, resulting in the insufficient ex-
traction of information from created_by. (2) The
extracted common subgraph (masks) often contains
unrelated spurious information that can negatively
impact prediction performance. For example, dur-
ing the extraction process in Figure 1 regarding
the target relation created_by, the support graphs
may include spurious relations like related_job,
as it can be unhelpful or even misleading when
predicting query triplets of relation created_by.

To overcome the aforementioned challenges, we
propose SAFER (Subgraph Adaptation for FEw-
shot Relational Reasoning), a novel subgraph-
based approach that effectively utilizes useful infor-
mation from support graphs while excluding spuri-
ous information. In SAFER, we first generate the
contextualized graphs of support and query triplets
with edge weights representing the importance of
each relation for performing relational reasoning.
Subsequently, we perform Subgraph Adaptation
comprising two crucial modules: Support Adapta-
tion and Query Adaptation, which aim to extract
valuable information from support graphs and ex-
clude spurious information, respectively. In our
Support Adaptation module, we incorporate infor-
mation from each support graph into others to en-
able the adaptation to support graphs with different
structures to extract and utilize useful information,
e.g., similar relations. In our Query Adaptation
module, we adapt the support information to the
structure of the query graph so that spurious infor-
mation among support graphs can be filtered out
in a query-adaptive manner. As a result, we can
effectively alleviate the adverse impact of spurious
information. In summary, our contributions in this
paper are as follows:

1. We scrutinize the challenges of few-shot knowl-
edge graph relational reasoning (Few-shot KGR)
from the perspective of extracting informative
common subgraphs. We also discuss the neces-
sity of tackling the challenges.

2. We develop a novel Few-shot KGR framework
consisting of Subgraph Generation and Sub-
graph Adaptation. Subgraph Adaptation in-
cludes (1) a Support Adaptation (SA) module
that enables a more comprehensive extraction
of information from the support graphs; (2) a
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Query Adaptation (QA) module that allows for
excluding the influence of spurious information
in the extracted information.

3. We conduct experiments on three prevalent real-
world KG datasets of different scales. The
results further demonstrate the superiority of
SAFER over other state-of-the-art approaches.

2 Related Work

2.1 Meta-learning-based Few-shot KGR
Meta-learning (Finn et al., 2017; Hospedales et al.,
2021) is an effective learning paradigm that trans-
fers generalizable knowledge learned from training
tasks to new test tasks. Meta-learning necessitates a
meta-training set that comprises multiple Few-shot
KGR tasks for training purposes and then gener-
alizes learned knowledge to tasks in the meta-test
set. For example, GMatching (Xiong et al., 2018)
and FSRL (Zhang et al., 2020a), acquire a uni-
versal metric to match query triplets with support
triplets (Wang et al., 2021b). The performance
of meta-learning is significantly influenced by the
quality of the manually created meta-training set.
Moreover, the meta-training set is sampled from
the same distribution as the meta-test set, which
is impractical in practice (Huang et al., 2022). To
overcome these problems, some alternative studies
based on subgraph structures are proposed to tackle
the Few-shot KGR task.

2.2 Edge-mask-based Few-shot KGR
Edge-mask-based methods, such as CSR (Huang
et al., 2022) and SARF (Meng et al., 2023), con-
sider the few-shot relational reasoning task as an
inductive reasoning problem (Spelda, 2020; Teru
et al., 2020), which relies on the relevant rela-
tions(i.e., edges) of the triplet (Galárraga et al.,
2013; Lin et al., 2018; Qu et al., 2021) in KG to
perform the prediction. These methods employ an
encoder-decoder model to encode the shared sub-
graphs of support samples (masks), i.e., common
subgraphs in KG that connect the two entities of
the triplets, into an embedding representing the
target relation. The decoder uses the embedding
to reconstruct the edge masks in a query graph
showing the shared edges. These approaches take
advantage of the edge structure to perform reason-
ing. However, these methods have the limitation
that the largest common subgraph among support
graphs may lose some of the relation’s logical pat-
terns, and the spurious information extracted will

detrimentally affect the prediction. In this paper,
our approach uses a novel adaptation process to ad-
dress the shortcomings of incomplete utilization of
structure information in edge-mask-based methods.

3 Problem Formulation

We study the problem of Few-shot Knowl-
edge Graph Relational Reasoning, i.e., Few-shot
KGR (Xiong et al., 2018; Chen et al., 2019). We
first denote the background KG as G = (E ,R, T ),
where E and R are sets of entities and relations.
T = {(h, r, t)|h, t ∈ E , r ∈ R} represents the
facts as triplets, each of which contains a head en-
tity, a tail entity, and a relation. For a new target
relation r′ /∈ R, we are given a support set Sr′ with
K triplets {(hi, r′, ti)}Ki=1 of r′, where hi, ti ∈ E .
The number of triplets in the support set K is rel-
atively small (K ≤ 5). With Sr′ as the reference,
we aim to predict tail entities, given a head entity
hq, i.e., (hq, r′, ?). There are usually multiple can-
didates of the tail entity that need to be scored and
ranked. Then the candidate with the highest score
is considered as the prediction result. So we will
consider the query triplet (hq, r′, c) (c is a candi-
date) as a full triplet to score.

4 Methodology

In this section, we introduce details of our proposed
framework SAFER. As illustrated in Figure 2, for
each support (or query) triplet, we first extract a
support (or query) graph from the background KG
and assign weights for each edge on the graph.
Then we conduct Subgraph Adaptation on the gen-
erated support and query graphs and finally achieve
the prediction score for a query triplet.

4.1 Retrieving Contextualized Graphs

To obtain structural information for the unseen tar-
get relation, we utilize the contextualized graphs of
support and query triplets, i.e., support graphs and
query graphs. Contextualized graphs are generated
based on the enclosing subgraph strategy proposed
by (Zhang and Chen, 2018; Teru et al., 2020). We
introduce how to construct contextualized graphs
in Appendix A.1.

4.2 Edge Weight Assignment

After acquiring the contextualized graph, we pro-
pose to assign weights to all edges on the contex-
tualized graphs based on their importance to the
target relation. We assign the weight we for each
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Figure 2: The framework of SAFER, which shows the scoring pipeline for a query tail candidate c of target
relation r′. We represent the same relations in colors, while the gray relations are all different. We first extract the
contextualized graph of each support and query triplet and assign weights to all edges using an aggregation process
Pw (the width of edges represents weights). Then we apply another aggregation process Pa and two adaptation
operations to perform support information extraction and query candidate scoring.

edge e by incorporating information from all sup-
port graphs to determine the importance, such that
we can effectively leverage the information within
all relations.

Specifically, we leverage the PathCon (Wang
et al., 2021a) model to extract structural informa-
tion and calculate the edge weights, as it can mea-
sure graph isomorphism. While edge-mask-based
methods apply the model repeatedly between any
two graphs to get the masks, we only apply it to get
an overall embedding gall of all support graphs.

We define an aggregation process Pw with L
iterations as follows:

biv =
1

1 + |{e|e ∈ N(v)}|
∑

e∈N(v)

bie, (1)

riv = biv∥1(v = h)∥1(v = t), (2)

bi+1
e = f(riu∥riv∥bie), u, v ∈ N(e), (3)

where bie (or biv) is the learned edge (or node) em-
bedding in iteration i. N(v) is the set of all neigh-
boring edges of v. f is a neural network (NN) con-
sisting of both non-linear and linear layers. ∥ de-
notes the concatenation of two vectors (or scalars).
In particular, Eq. (1) aggregates the embeddings of
neighboring edges of each node. Then Eq. (2) adds
the label of head and tail so that the information of
a node’s relative position to head and tail can be
considered. Eq. (3) updates all edge embeddings
based on the current embedding of the edge and its
two end nodes.

In the first step, we initilize b0e with the pretrained
relation embedding ve of the relation on edge e. We
define the embedding of G as follows:

g(G) = MaxPool(bLv )∥bLh∥bLt , (4)

where MaxPool(bLv ) is the max-pooling of all node
embeddings in G.

In the second step, similarly, we apply Pw again
to acquire the weights of edges in both the support
graphs and the query graphs. Additionally, we use
the average of the embeddings of all support graphs
gall from the first step as an input to incorporate the
overall information in the support set and initialize
b0e as ve∥gall. Here gall is defined as follows:

gall =
1

K

∑

k

g(Gk
s). (5)

Here Gk
s is the k-th support graph. We use another

f in this step. Then we perform Pw on the target
graph G. Finally, we calculate the weight we of
edge e:

we =
1

1 + exp(−Linear(bLe ))
, (6)

where Linear(·) is a linear layer, and we will serve
as the edge weight of e in the subsequential adapta-
tion modules.

Note that weight assignment does not rely on
specific loss functions or ground-truth definitions
for edge weights. Instead, it is trained in an end-to-
end manner along with other modules in the subse-
quent sections. All edges in the support graphs can
contribute to the subsequential adaptation modules
based on the weight.

4.3 Subgraph Adaptation
In this subsection, we introduce the process of our
Subgraph Adaptation module, including Support
Adaptation (SA) and Query Adaptation (QA).

After obtaining the edge-weighted support
graphs and query graphs, we achieve embeddings
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that contain the information from different sub-
graphs by aggregations. While performing the ag-
gregations, we further adapt graph information to
all support and query graphs to perform SA and QA.
We first define an L-iteration aggregation process
Pa, which is utilized in both SA and QA:

aiv(k) =
1

1 +
∑

e∈N(v)we(k)

∑

e∈N(v)

bie(k)·we(k),

(7)

biv(k) =





TSA({aiv(m)}Km=1), if SA,

TQA(a
i
v(k), {bit(m)}Km=1;λ), if QA,

(8)
riv(k) = biv(k)∥1(v = h)∥1(v = t), (9)

bi+1
e (k) = f(riu(k)∥riv(k)∥bie(k)), u, v ∈ N(e),

(10)
where k indicates that a term is calculated on the
k-th support graph, and it can be replaced by q
to represent the value on a query graph in Query
Adaptation (e.g., aiv(q) and biv(q)). N(v) is the set
of all neighboring edges of node v. we is the weight
of edge e. aiv is the aggregation output of node v at
iteration i. Here Eq. (7) aggregates the embeddings
of all neighboring edges of each node based on
edge weights. biv (or bie) is the learned node (or
edge) embedding in iteration i. The adaptation
steps are TSA(·) (for SA) and TQA(·) (for QA),
and the details will be introduced in the following
subsections. f is a neural network (NN) consisting
of non-linear and linear layers acting in both SA
and QA. λ is a hyperparameter used in QA to be
introduced. Note that we initialize b0e(k) with the
pretrained embedding of the relation on edge e to
incorporate more information.

4.3.1 Support Adaptation
To extract valuable information from all support
graphs and reduce the omissions of information,
we propose the Support Adaptation (SA) strategy
that enables the incorporation of information from
all support graphs when learning the embedding
for each support graph. During aggregation on
each graph, we average the learned embeddings
of the tail entities in all support graphs after each
iteration to absorb beneficial information from all
other support graphs. In particular, we choose to
average the embeddings of tail entities (instead of
other entities), because the tail entity preserves the
most crucial information for the prediction of the
target relation. The averaged embedding will be
used to update embeddings of all edges connected

to tail entities in all support graphs. This strategy
ensures the transfer of relational information from
one support graph to various others, thereby en-
abling adaptation to structures of different support
graphs during subsequent aggregation steps. In this
way, all edges in the support graph can contribute
to SA based on their weights.

In SA, we apply Pa to all K support graphs for
L iterations. TSA(·) is defined as

TSA({aiv(m)}Km=1) =



1
K

∑K
m=1 a

i
t(m), if v = t,

aiv(k), otherwise.

(11)

Via Eq. (11), we manage to incorporate informa-
tion from other support graphs when performing
aggregation on each support graph. Generally, if
the information from a specific relation in a sup-
port graph can be easily propagated on another sup-
port graph with a different relation, we can infer
that these two relations maintain similar meanings.
Therefore, our SA strategy allows for extracting rel-
evant relations (e.g., different yet similar relations)
among support graphs.

4.3.2 Query Adaptation
Query Adaptation (QA) is the subsequent module
that can exclude the influence of spurious informa-
tion extracted by the SA module. Generally, we
predict the score of a query triplet by comparing
the similarity between information learned from
the query graph and the support graphs. To deal
with the presence of spurious information across
query and support graphs, our QA module adapts
the tail node embeddings in support graphs to the
structure of the query graph. In this manner, the
support information unhelpful for query scoring
will be filtered out, due to different structures be-
tween support graphs and query graphs. Then we
calculate the score of a query triplet by comparing
the filtered support embedding with the embedding
of the query graph.

To perform QA, we apply the aggregation pro-
cess Pa to the query graph of the query triplet can-
didate. TQA(·) is defined as follows:

TQA(a
i
v(q), {bit(m)}Km=1;λ) =




(1− λ) · ait(q) + λ
K

∑K
m=1 b

i
t(m), if v = t,

aiv(q), otherwise.
(12)

3350



Here λ ≥ 0 is a hyperparameter of QA, which
shows the ratio of incorporation of extracted sup-
port information and the information from the
query graph. In this manner, we perform aggre-
gation for support information on the query graph.
As a result, our QA module can exclude the in-
fluence of spurious information in support graphs,
thus achieving more precise prediction results.

To perform prediction for a query triplet, we
compare two embeddings, Es and Eq, which in-
volve (filtered) support information and query in-
formation, respectively. Specifically, we define

Es = TQA(a
L
t (q), {bLt (m)}Km=1;λ) (13)

as the result of the filtered support information
with λ > 0 obtained from Eq. (12). For Eq, we
perform Pa with λ = 0 to ensure that there is no
incorporation of support information. We define
Eq as follows:

Eq = TQA(a
L
t (q), {bLt (m)}Km=1; 0). (14)

As the calculation of Eq does not involve infor-
mation from support graphs, Eq only contains the
query information. Additionally, we concatenate
the average of pretrained embeddings of all support
and query tail entities to Es and Eq, respectively,
so that the pretrained entity embedding can also
contribute to the scoring. In particular, we use the
cosine similarity between Es and Eq to measure
the score of a query candidate, denoted as

s(tq) = cos(Es∥
1

K

K∑

k=1

vts,k , Eq∥vtq), (15)

where s(tq) is the score for tq, i.e., the tail entity
of the query triplet. ts,k is the tail entity of the k-th
support triplet. We use vts,k (or vtq ) to denote the
pretrained node embedding of ts,k (or tq). Note that
both Es and Eq are solely acquired via aggregation
on the query graph. This ensures exclusion of spu-
rious information in support graphs, thus achieving
more precise scoring results.

4.4 Training Objective
To train the overall SAFER framework, we lever-
age contrastive learning with positive samples (i.e.,
same relation in support and query triplets) and
negative samples (i.e., different relations in support
and query triplets). Specifically, we use the Margin
Ranking Loss:

L = max(sneg − spos + γ, 0), (16)

where spos and sneg are scores of the positive sam-
ple and the negative sample, respectively. γ ∈ R
is a hyperparameter utilized to control the margin
that separates positive and negative samples.

5 Experiments

In this section, we elaborate on the experiments for
evaluating our proposed framework.

5.1 Experimental Settings

5.1.1 Datasets
We evaluate our framework and other baselines
on three real-world Few-shot KGR datasets, gen-
erated based on NELL (Mitchell et al., 2018),
FB15K-237 (Toutanova et al., 2015), and Concept-
Net (Speer et al., 2017), respectively. The NELL
dataset is a subset of NELL-One (Chen et al., 2019)
by selecting the relations that have between 50 and
500 triples as few-shot tasks. For FB15K-237 and
ConceptNet, we select the fewest 30 and 2 appear-
ing relations as test few-shot tasks, respectively,
following (Lv et al., 2019) and (Chen et al., 2019).
Table 1 lists the statistics of all three datasets.

5.1.2 Evaluation Metrics
We perform the evaluation for our framework and
all baselines by calculating the scores for query
candidates of each test instance using the stan-
dard ranking metrics. In particular, we utilize
the Mean Reciprocal Ranking (MRR) and Hits@h.
The MRR measures the average reciprocal rank of
the correct candidate in the ranking of all candi-
dates, where a higher value indicates better perfor-
mance. We also compute the Hits@h value, which
measures the percentage of the correct candidates
ranked within the top h = {1, 5, 10} positions. In
evaluation, each correct candidate in the test set is
paired with 50 other candidate negative triplets.

5.1.3 Baselines
We compare our framework with existing Few-
shot KGR methods, including MetaR (Chen
et al., 2019), FSRL (Zhang et al., 2020a), CSR-
OPT (Huang et al., 2022), CSR-GNN (Huang
et al., 2022), SARF+Learn (Meng et al., 2023),
and SARF+Summat (Meng et al., 2023). For meta-
learning-based methods, the training is achieved by
randomly sampling tasks from the KG rather than
the meta-training split that is originally provided, to
avoid the influence of manually constructed meta-
training sets.
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Table 1: Statistics of three Few-shot KGR datasets.

Dataset # Entities # Relations # Edges # Tasks

NELL 68,544 291 181,109 11

FB15K-237 14,543 200 268,039 30

ConceptNet 790,703 14 2,541,996 2

Table 2: Performance comparison of different KG
datasets. The best and second-best results are shown in
bold and underlined, respectively.

Dataset Method MRR Hits@1 Hits@5 Hits@10

NELL

MetaR 0.471 0.322 0.647 0.763

FSRL 0.490 0.327 0.695 0.853

CSR-OPT 0.463 0.321 0.629 0.760

CSR-GNN 0.577 0.442 0.746 0.858

SARF+Learn 0.627 0.493 0.798 0.877

SARF+Summat 0.626 0.493 0.797 0.875

SAFER (ours) 0.674 0.560 0.812 0.887

FB15K-237

MetaR 0.805 0.740 0.881 0.937
FSRL 0.684 0.573 0.817 0.912

CSR-OPT 0.619 0.512 0.747 0.824

CSR-GNN 0.781 0.718 0.851 0.907

SARF+Learn 0.779 0.718 0.846 0.905

SARF+Summat 0.753 0.688 0.814 0.884

SAFER (ours) 0.793 0.728 0.860 0.914

ConceptNet

MetaR 0.318 0.226 0.390 0.496

FSRL 0.577 0.469 0.695 0.753

CSR-OPT 0.559 0.450 0.692 0.736

CSR-GNN 0.606 0.496 0.735 0.777
SARF+Learn 0.613 0.511 0.731 0.771

SARF+Summat 0.624 0.527 0.729 0.768

SAFER (ours) 0.638 0.564 0.721 0.743

5.2 Performance Comparison

The detailed settings of our experiments are in
Appendix A.2. We evaluate SAFER along with
other methods on the three datasets. For base-
line performance, we use the experimental results
from (Huang et al., 2022) and (Meng et al., 2023).
Table 2 shows that our method outperforms base-
lines in most cases. In NELL and ConceptNet, the
improvement of SAFER on the testing MRR is
7.67% and 2.24%. The improvement of Hit@1 is
13.59% and 7.02%. On FB15K-237, our method is
the second best, while being very close to MetaR.
The reason is that FB15K-237 contains a large num-
ber of relations whose contextualized graphs con-
tain only one triplet, and thus the methods based on
the subgraphs’ structure (i.e., CSR, SARF, SAFER)
are limited in performance.

Compared to baselines, SAFER shows more sig-
nificant advantages in MRR and Hits@1. This is
because, for the query candidates with high scores,
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Figure 3: The performance of our proposed method
SAFER with different λ.

the information provided by the support and query
graphs will be similar. Thus, the spurious infor-
mation in support graphs will more seriously im-
pact the scoring. Nevertheless, our process avoids
spurious information in support graphs, which con-
tributes more to the detailed comparison between
high-score samples. Thus, SAFER achieves a more
precise scoring result.

5.3 Hyperparameter Study

The value of λ balances the removal of spurious
information and the prevention of over-filtering in
QA. To study the impact of λ, we conduct exper-
iments with different values of λ, ranging from
0.001 to 1. The experimental results are presented
in Figure 3. In general, these results indicate that
different datasets have different optimal values of
λ. For both MRR and Hits@1, the optimal λ is
0.1 for NELL and 0.5 for FB15K-237 and Concept-
Net. When λ = 1, the scoring process is actually a
direct comparison between the outputs bLt of sup-
port graphs and the query graph in Pa without any
adaptation. In this case, the results are much worse
than the optimal results, which demonstrates the
strength of our QA module. For the NELL dataset,
the optimal value of λ is much smaller because the
candidates in NELL have more complex subgraphs
and thus require a more precise comparison of the
detailed local features.

5.4 Ablation Study

In this subsection, we conduct an ablation study to
evaluate the contributions of the three modules in
SAFER: Weight Assignment, Support Adaptation,
and Query Adaptation. In particular, we remove
one module in SAFER each time and report the per-
formance of the revised model on all three datasets.
For SAFER\W, we directly set the weight we = 1
for all edges to remove the Weight Assignment
module. For SAFER\S, we remove the SA mod-
ule by removing the averaging in each iteration of
Pa and only using the average of its final outputs
as the support embedding. For SAFER\Q, we set
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Table 3: Ablation study on three datasets. The best
results are shown in bold.

Dataset Method MRR Hits@1 Hits@5 Hits@10

NELL

SAFER 0.674 0.560 0.812 0.887
SAFER\W 0.546 0.428 0.683 0.752

SAFER\S 0.575 0.434 0.753 0.832

SAFER\Q 0.533 0.422 0.659 0.715

FB15K-237

SAFER 0.793 0.728 0.860 0.914
SAFER\W 0.761 0.689 0.840 0.901

SAFER\S 0.761 0.688 0.841 0.901

SAFER\Q 0.778 0.713 0.846 0.905

ConceptNet

SAFER 0.638 0.564 0.721 0.743
SAFER\W 0.474 0.331 0.632 0.729

SAFER\S 0.510 0.399 0.629 0.728

SAFER\Q 0.533 0.404 0.710 0.742

λ = 1 to change the scoring into a direct compari-
son between the outputs bLt of support graphs and
the query graph in Pa without QA.

The results of the ablation study, presented in
Table 3, validate the effectiveness of all modules in
SAFER. Removing the Weight Assignment mod-
ule significantly decreases the MRR metric. This
demonstrates the importance of the weights in the
data preparation. Furthermore, removing the SA
module leads to a decrease in all evaluation metrics.
This is because, at each iteration of the Pa, the ag-
gregations of embeddings from other graphs can
emphasize relevant relations in the support graphs.
Without this module, the adaptation process be-
comes a simple average of the final outputs of Pa

of all support graphs, resulting in a loss of empha-
sis on critical information. Furthermore, the results
highlight the importance of the QA module, partic-
ularly in terms of MRR and Hit@1 that reflect the
similarity between high-score candidates and sup-
port samples. By filtering the support information,
QA ensures that only relevant, and useful informa-
tion from the support graph is retained. This pre-
vents the inclusion of spurious information within
the predefined limits (e.g. common subgraph), thus
ultimately contributing to improved performance.

5.5 Case Study
In this section, we study the case that, in exist-
ing edge-mask-based methods, the extracted masks
(common subgraph) could not correctly represent
the target relation all the time. We use a real ex-
ample in the ConceptNet test set to demonstrate
the limitations of extracting common subgraphs to
represent the logical pattern of the target relation.

We consider the 2-shot relational reasoning
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Figure 4: An instance on dataset ConceptNet using the
edge-mask-based method CSR and our method SAFER.
The figure shows part of support and query graphs and
the scores of the 3-top candidates of the two methods.
The shown edges prove the limitation of the extraction
of common subgraphs in edge-mask-based methods.

task with two support triplets (art, created_by,
artist) and (babies, created_by, humans),
along with a query triplet (article, created_by,
writer). Here we use an example with both two
cases of extracted spurious relations and unex-
tracted relevant relations in the edge-mask-based
methods to showcase the two limitations of edge-
mask-based methods, as shown in Figure 4. In
the observed support graphs, we can identify two
edges of relations at_location and related_to
as similar but unshared information, and edges of
relation action as spurious information.

Regarding the prediction results, our approach
SAFER ranks the true answer of the correct tail
entity writer as first of all candidates, whereas
the CSR model ranks it as third of all candidates.
In the scoring result of CSR, incorrect candidates
guideline and autism both receive higher scores
than writer. This study shows that our SAFER
can actually solve the two limitations of existing
edge-mask-based methods in information extrac-
tion and processing.

6 Conclusion

In this paper, we introduce SAFER, a novel ap-
proach designed to address the challenges in Few-
shot Knowledge Graph Relational Reasoning (Few-
shot KGR). SAFER overcomes the limitations of
existing methods by extracting useful information
while excluding spurious information. We first
generate edge-weighted subgraphs of triplets to
retrieve useful information from the knowledge
graph. With the generated subgraphs, we perform
Support Adaptation, which enables the incorpora-
tion of useful information that is difficult to extract
(e.g., different yet similar relations). Subsequently,
our Query Adaptation module filters out spurious
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information that is easily extracted (e.g., unhelp-
ful relations that are shared across support graphs).
Experimental evaluations on three datasets demon-
strate the superiority of SAFER over other state-of-
the-art baselines under different evaluation metrics.
In summary, our work provides valuable insights
into the potential of subgraph adaptation to improve
performance on Few-shot KGR tasks.
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A Appendix

A.1 Retrieving Contextualized Graphs

In this section, we introduce how we retrieve con-
textualized graphs from a triplet.

Contextualized graphs are generated based
on the enclosing subgraph strategy proposed
by (Zhang and Chen, 2018; Teru et al., 2020).
Specifically, for a given triplet (h, r, t), we first
sample the nodes within n-hop undirected neigh-
bors of both the head entity h and the tail entity
t from the background KG. To include sufficient
nodes for logic extraction, we also perform random
sampling from all neighbors of h and t. The result-
ing contextualized graph is induced by all selected
nodes and their connections. It should be noted
that the specific value of n is determined based
on the density of the KG. In particular, these con-
textualized graphs can capture the local structure
and relevant entities surrounding the support and
query triplets, thus allowing us to extract valuable
information for the relational reasoning task.

A.2 Experimental Settings

In this section, we delve into a more comprehensive
exposition of our experimental setups, including
detailed parameter settings, as applied to the three
distinct real KG datasets.

In our experiments, we have employed 3-shot
relational reasoning tasks across all three datasets.
For the NELL dataset, we set n = 2 hops, whereas,
for both the FB15K-237 and ConceptNet datasets,
we use n = 1 hop when generating the contextual-
ized graphs of their respective triplets.

Regarding the neural network f , we have in-
corporated three distinct neural networks for the
first and second steps of weight assignment and the
adaptation module. The overall iteration of all mod-
ules is set to four, and the hidden dimension of all
embeddings (excluding the initialization) has been
standardized to 128. For the standard model, we
choose the hyperparameter λ in Query Adaptation
as λ = 0.1 for NELL and λ = 0.5 for FB15K-
237 and ConceptNet. All methods have utilized
100-dimensional relation and entity embeddings.

For pretrained embeddings, we have employed
TransE (Bordes et al., 2013) for the NELL and
FB15K-237 datasets, while ComplEx (Trouillon
et al., 2016) has been utilized for ConceptNet. In
the context of the NELL dataset, the TransE em-
beddings have been integrated by concatenating
vhead − vtail to Es and Eq within the Query Adap-

tation phase. Here, vhead and vtail signify the pre-
trained embeddings of the head and tail entities,
and an optional neural network (NN(vhead−vtail))
can also be added. For the FB15K-237 dataset, a
BatchNorm Layer has been introduced within the
Linear layer in Eq. (6).

Regarding optimization, we have employed
AdamW (Loshchilov and Hutter, 2019) with the
learning rate 10−5, utilizing a linear schedule with
2,000 warm-up steps and a total of 20,000 steps.

To ensure robustness and reliability, each re-
ported experimental result is derived from the aver-
age value obtained through conducting three inde-
pendent experiments.

A.3 Experimental Details
We conduct all our SAFER training and testing
procedures using NVIDIA RTX A6000 GPUs with
a memory capacity of 48GB. Each training and
testing instance was executed on a single GPU, and
conducted using Python 3.10.10. We implement
our framework with PyTorch.

A.4 Limitations
In this section, we introduce the limitations of our
work in detail. Our SAFER model incorporates
the Query Adaptation (QA) module to mitigate the
inclusion of spurious information derived from the
Support Adaptation (SA) module. For tail candi-
dates with notably high scores, indicating substan-
tial similarity between query and support graphs,
the presence of extracted spurious information can
severely impact the scoring process. In this way,
the model tends to compare the most important and
detailed information between support and query.
Consequently, this has resulted in a remarkable en-
hancement in Mean Reciprocal Rank (MRR) and
Hits@1 metrics.

However, this adaptation process inadvertently
can still lead to the omission of certain global in-
formation from the support graph. This is a conse-
quence of transferring all support information for
processing onto the query graph. Consequently, the
improvements of SAFER in Hits@5 and Hits@10
metrics are not as pronounced as those observed in
MRR and Hits@1.

At present, we have yet to devise a solution to
effectively integrate global information into predic-
tions. Balancing the incorporation of detailed and
global information concurrently presents a chal-
lenge that necessitates further investigation and
future research endeavors.

3356


