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Abstract

In many real natural language processing ap-
plication scenarios, practitioners not only aim
to maximize predictive performance but also
seek faithful explanations for the model predic-
tions. Rationales and importance distribution
given by feature attribution methods (FAs) pro-
vide insights into how different parts of the
input contribute to a prediction. Previous stud-
ies have explored how different factors affect
faithfulness, mainly in the context of monolin-
gual English models. On the other hand, the
differences in FA faithfulness between multi-
lingual and monolingual models have yet to be
explored. Our extensive experiments, cover-
ing five languages and five popular FAs, show
that FA faithfulness varies between multilin-
gual and monolingual models. We find that the
larger the multilingual model, the less faithful
the FAs are compared to its counterpart mono-
lingual models. Our further analysis shows that
the faithfulness disparity is potentially driven
by the differences between model tokenizers.1

1 Introduction

Feature attribution methods (FAs) are commonly
used for ranking input tokens according to their
importance to a model’s prediction (Kindermans
et al., 2016; Sundararajan et al., 2017; DeYoung
et al., 2020). Subsequently, the top-k ranked tokens
are selected to form a rationale. The faithfulness of
a FA method refers to what extent its token impor-
tance scores and selected rationales actually reflect
the model’s inner reasoning mechanism (Jacovi
and Goldberg, 2020).

Previous work has mainly studied faithfulness
in the context of monolingual models, i.e. espe-
cially English (Atanasova et al., 2020; Bastings
and Filippova, 2020; Chan et al., 2022). Specif-
ically, monolingual studies have investigated the
impact of out-of-domain data (Chrysostomou and

1Our code is available https://github.com/cas
szhao/multilingual-faith.

Figure 1: Model explanations given by the same fea-
ture attribution method, e.g. attention, for multilingual
(XLM-R) and monolingual (French RoBERTa) models
for the same task (sentiment analysis in FR).

Aletras, 2022), adversarial attacks (Sinha et al.,
2021; Zhao et al., 2022a) and temporal shifts (Zhao
et al., 2022b) on the faithfulness of FAs. On the
other hand, existing studies on interpreting multi-
lingual models’ behavior and their representations
(Rama et al., 2020; Serikov et al., 2022; Gonen
et al., 2022) have not investigated the faithfulness
of FAs.

As shown in Figure 1, even for the same input
(“Personne ne veut aller à cette fête.”, i.e. “No-
body wants to go to this party.” in English), model
prediction and FA, the token importance scores
can be substantially different between multi- and
monolingual models. This indicates that the mod-
els follow different inner processes for making pre-
dictions. It is unclear whether this difference is
generally shared among input examples or even
across other languages and models. Given that
the performance of multilingual models might be
on par with monolingual counterparts in various
languages (Rust et al., 2021; Su et al., 2022), this
leaves practitioners in a dilemma between choos-
ing multilingual or monolingual models when the
application scenario requires extracting faithful ex-
planations for the model predictions.

In this paper, we seek to answer if there is a
faithfulness disparity of FAs when applied to multi-
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and monolingual models. Our main contributions
are as follows:

• We perform a large empirical study across
tasks in five languages, five popular FAs and
two groups of monolingual and multilingual
models;

• Our results reveal that the degree of faithful-
ness disparity can be attributed to the size of
the models, i.e. FAs tend to give less faith-
ful rationales for larger multilingual models,
compared to their monolingual counterparts;

• Our analysis further shows that the discrep-
ancies in faithfulness are potentially driven
by differences in tokenization rather than how
these models semantically process the input.
For example, the more aggressive tokeniza-
tion results in a larger faithfulness discrepancy
between mono- and multilingual models.

2 Related Work

2.1 Faithfulness of monolingual models

Faithfulness measures if a rationale extracted with
a given FA, accurately reflects the model’s inter-
nal reasoning process (Ribeiro et al., 2016; DeY-
oung et al., 2020; Jacovi and Goldberg, 2020;
Pezeshkpour et al., 2021).2

On the one hand, existing faithfulness studies
on monolingual models mainly focus on English.
Sinha et al. (2021) and Zhao et al. (2022a) explored
how adversarial attacks affect the faithfulness of
FAs by swapping tokens to create new inputs with
the same semantics. Bastings et al. (2022) intro-
duced ground truth, i.e. fully faithful rationales,
with specific but meaningless tokens, to evaluate
faithfulness. Chrysostomou and Aletras (2022)
investigated the impact of out-of-domain data on
faithfulness, while Zhao et al. (2022b) studied the
effect of temporal concept drift on faithfulness. On
the other hand, an increasing number of multilin-
gual language models are made available for dif-
ferent languages (Antoun et al., 2020; Chan et al.,
2020; Cañete et al., 2020; Le et al., 2020), but there
is no empirical evidence that a FA is equally faithful
between monolingual models and their counterpart
multilingual models.

2Plausibility evaluates the extent to which the rationale
aligns with human understanding (Jacovi and Goldberg, 2020)
and it is out of the scope of our study.

2.2 Interpretability of multilingual models

Previous studies on multilingual models focus on
probing or analyzing their hidden representations,
which are not directly related to the faithfulness of
model explanations. Santy et al. (2021) monitored
the changes of attention heads in multilingual mod-
els when the model is further fine-tuned on mono-
lingual and bilingual corpora. Rama et al. (2020)
probed the representations of mBERT (multilingual
BERT) between languages and they found that their
distances correlate most with phylogenetic and ge-
ographical distances between languages. Gonen
et al. (2022) analyzed the gender representations
of multilingual models. Rust et al. (2021) studied
the difference of multilingual models in processing
different languages. They found that languages ade-
quately represented in the multilingual model’s vo-
cabulary exhibit negligible performance decreases
over their monolingual counterparts. Morger et al.
(2022) examined the correlation between human
focus and model relative word importance on mono-
lingual and multilingual language models.

Rather than studying the faithfulness of multilin-
gual models, Zaman and Belinkov (2022) proposed
a faithfulness evaluation method for multilingual
models. It assumes that an interpretation system
is unfaithful if it provides different interpretations
for similar inputs and outputs where the similar in-
puts have the same meaning in different languages
without comparing mono- and multilingual models.

2.3 Performance comparison of monolingual
and multilingual models

Previous work has compared the performance of
monolingual and multilingual language models fo-
cusing on mBERT and BERT variants (Rönnqvist
et al., 2019; Nozza et al., 2020; Vulić et al., 2020;
Rust et al., 2021). Vulić et al. (2020) specifically in-
vestigated how lexical knowledge extraction strate-
gies impact performance between mono- and mul-
tilingual models, while Rust et al. (2021) further
investigated the impact of tokenizers. A general
observation drawn from these studies is that when
the mono- and multilingual models have similar
architectures and training objectives, their predic-
tive performance is comparable regardless of the
difficulty of the task. Multilingual models’ perfor-
mance is often considered to suffer from the “curse
of multilinguality” (Conneau et al., 2020; Pfeiffer
et al., 2022), i.e. the phenomenon of overall perfor-
mance decrease on monolingual as well as cross-
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Language Model Pre-training Cor-
pus

#Tokens Vocab Params

mBERT Wiki-100 3.3B 106K 167MMulti XLM-R CC-100 167B 250K 278M
BERT Wikipedia, Book-

Corpus
3.3B 30K 109M

English (EN) RoBERTa BookCorpus, CC-
News, OpenWeb-
Text, Stories

40B 50K 125M

BERT Wikipedia 0.4B 21K 103MChinese (ZH) RoBERTa Wikipedia 0.4B 21K 102M
BERT Wikipedia, OPUS 3B 31K 110MSpanish (ES)
RoBERTa Web crawl 135B 50K 125M
BERT Europeana 11B 32K 111M

French (FR) RoBERTa Wikipedia, CC-
100

59B 50K 124M

BERT L3Cube 0.3B 52K 126M
Hindi (HI) RoBERTa mC4, OSCAR, In-

dicNLP
1.5B 52K 83M

Table 1: Overview of models across languages.

lingual tasks beyond a certain number of languages.
To the best of our knowledge, no study has investi-
gated how the curse of multilinguality impacts FAs’
faithfulness.

3 Experiments

Our aim is to compare FA faithfulness between
mono- and multilingual models across tasks and
languages. For this purpose, we experiment with
models of similar architectures and pre-training
objectives following Rust et al. (2021). The main
differences between mono- and multilingual mod-
els are the tokenizers, supported vocabularies and
the pre-training corpora. Using this setting allows
for a realistic comparison between models, given
the fact that in a real world scenario, a practitioner
would choose between off-the-shelf, already pre-
trained mono- or multilingual models without con-
sidering any specific implementation details (e.g.
pre-training data). We compare models in various
downstream tasks across a spectrum of typolog-
ically diverse and widely spoken languages, i.e.
English, Chinese, Spanish, French and Hindi.

3.1 Models

Multilingual models. We use two popular mul-
tilingual models: (1) mBERT, a multilingual ver-
sion of BERT (Devlin et al., 2019) trained on text
from 104 languages in Wikipedia; and (2) XLM-R
(Conneau et al., 2020), a multilingual version of
RoBERTa (Liu et al., 2019) trained on text from
100 languages in the Common Crawl corpus.

Monolingual models. For each language, we in-
clude its corresponding monolingual BERT and
RoBERTa models respectively. Table 1 provides
an overview of all models across languages.

3.2 Datasets
Due to the lack of identical datasets in multiple
languages, we include a variety of tasks that are
similar. We experiment with (1) sentiment analysis;
(2) topic classification; (3) reading comprehension;
(4) paraphrase identification; and natural language
inference. Table 2 summarizes datasets used in this
paper. 3

3.3 Implementation details
We fine-tune each model using the hyperparameters
from the original papers describing the correspond-
ing models and tasks. If these are not available,
we use a batch size of 16 and a learning rate of
1e-5 with an early stopping over five epochs. Full
implementation details are given in Appendix B.

3.4 Feature attribution methods
We experiment with five popular FAs since it has
been shown that there is no single best FA across
models and tasks (Atanasova et al., 2020):4

• Attention (α): Importance is computed using
the corresponding normalized attention score
of the CLS token from the last layer (Jain
et al., 2020).

• Scaled attention (α∇α): Similar to α, but the
attention score is scaled by its corresponding
gradient (Serrano and Smith, 2019).

• InputXGrad (x∇x): It attributes importance
by multiplying the input with its gradient com-
puted with respect to the predicted class (Kin-
dermans et al., 2016; Atanasova et al., 2020).

• Integrated Gradients (IG): This FA ranks
input tokens by computing the integral of the
gradients taken along a straight path from a
baseline input (i.e. zero embedding vector) to
the original input (Sundararajan et al., 2017).

• DeepLift (DL): It computes token importance
according to the difference between the activa-
tion of each neuron and a reference activation,

3Following Su et al. (2022), we use the small version of
ChnSentiCorp data. Following Le et al. (2020), we sample
2,000 examples from the original French CSL dataset as the
training set and another 2,400 examples for development and
testing. We repeat the same for Hindi CSL and Spanish CSL.
Further, for tasks without a published test and development
sets, we split the original dataset using a 80:10:10 ratio for
train, development and test with the same label distribution.

4Our aim is not to exhaustively benchmark various FAs but
to explore their faithfulness between mono- and multilingual
models across different languages and tasks.
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Language Language Family Dataset Task Training set size Avg length Metrics Papers

SST Sentiment analysis 6,920 / 872 / 1,821 17 F1 Socher et al. (2013)
Agnews Topic classification 102,000 / 18,000 / 7,600 36 F1 Del Corso et al. (2005)English Indo-European
MultiRC Reading Comprehension 24,029 / 3,214 / 4,848 290/17 F1 DeYoung et al. (2020); Jain et al. (2020)

Ant Reading Comprehension 30,018 / 4,316 / 4,316 13/13 Accuracy Su et al. (2022)
KR Keyword Recognition 17,000 / 3,000 / 3,000 266/29 Accuracy Su et al. (2022)Chinese Sino-Tibetan
ChnSentiCorp Sentiment analysis 2,000 / 1,200 / 1,200 107 Accuracy Su et al. (2022)

CSL Sentiment analysis 2,000 / 1,200 / 1,200 27 Accuracy Keung et al. (2020)
PAWS-X Paraphrase Identification 49,400 / 2,000 / 2,000 20/20 Accuracy Yang et al. (2019)Spanish Indo-European
XNLI Natural Language Inference 393,000 / 5,010 / 2,490 19/9 Accuracy Conneau et al. (2020)

CSL Sentiment analysis 2,000 / 1,200 / 1,200 28 Accuracy Le et al. (2020); Keung et al. (2020)
PAWS-X Paraphrase Identification 49,400 / 2,000 / 2,000 20/20 Accuracy Yang et al. (2019),Le et al. (2020),Cañete et al. (2022)French Indo-European
XNLI Natural Language Inference 393,000 / 5,010 / 2,490 20/10 Accuracy Le et al. (2020), Conneau et al. (2020),Cañete et al. (2022)

BBC NLI Natural Language Inference 15,552 / 2,580 / 2,592 7/5 Accuracy Uppal et al. (2020)
News Topic Topic classification 15,552 / 2,580 / 2,592 13 F1 Uppal et al. (2020)Hindi Indo-Aryan
XNLI Natural Language Inference 392,702 / 2,490 / 5,010 21/10 Accuracy Conneau et al. (2020)

Table 2: Datasets summary. For tasks requiring two inputs, e.g. paraphrase identification and language inference
tasks, the average text lengths are shown separately for the first and second input as length 1 / length 2.

i.e. a zero embedding vector (Shrikumar et al.,
2017).

We also include a baseline that randomly assigns
importance scores to each token (Random).

3.5 Faithfulness evaluation

Hard Sufficiency & Comprehensiveness. Suffi-
ciency (Suff) and comprehensiveness (Comp) are
two commonly used metrics for evaluating faith-
fulness (DeYoung et al., 2020) using hard input
perturbation.

Suff aims to capture the difference in predic-
tive likelihood between retaining only the rationale
p(ŷ|R) and the full text model p(ŷ|X). We use the
normalized version for a fairer comparison across
models (Carton et al., 2020):

Suff(X, ŷ,R) = 1−max(0, p(ŷ|X)− p(ŷ|R))

Normalized Suff(X, ŷ,R) =
Suff(X, ŷ,R)− Suff(X, ŷ, 0)

1− Suff(X, ŷ, 0)
(1)

where S(x, ŷ, 0) is the sufficiency of a baseline
input (zeroed out sequence) and ŷ is the model
predicted class using the full text x as input.

Comp assesses how much information the ra-
tionale holds by measuring changes in predictive
likelihoods when removing the rationale p(ŷ|X\R).
The normalized version is defined as:

Comp(X, ŷ,R) = max(0, p(ŷ|X)− p(ŷ|X\R))

Normalized Comp(X, ŷ,R) =
Comp(X, ŷ,R)

1− Suff(X, ŷ, 0)

(2)

Following DeYoung et al. (2020), we use the
Area Over the Perturbation Curve (AOPC) for nor-
malized Suff and Comp across different rationale
lengths (10%, 20%, and 50%) by taking the aver-

age, similar to DeYoung et al. (2020) and Chan
et al. (2022).5

Soft Sufficiency & Comprehensiveness. Soft
sufficiency (Soft-Suff) and comprehensiveness
(Soft-Comp) use a soft input perturbation criterion
to measure faithfulness (Zhao and Aletras, 2023).
Each token is perturbed proportionally to its impor-
tance score assigned by a FA instead of being fully
retained or removed. The ‘soft’ version of these
metrics has been found to be more robust compared
to their ‘hard’ counterparts.

The final scores for the four metrics are com-
puted after being divided by their corresponding
random baseline. Therefore, values greater than
one denote higher than random faithfulness (the
higher, the more faithful).

4 Results

Our experiments include two multilingual and ten
monolingual models, five FAs, and 15 tasks. Specif-
ically, we test four models (two multilingual and
two monolingual) on three tasks, using five FAs
in each language. This results in 480 faithfulness
evaluation cases for each language, 2400 cases for
five languages in total. We report accuracy and F1
of all models in Appendix I.

4.1 Predictive Performance

Table 3 shows the predictive performance of mod-
els and faithfulness scores across FAs, averaged on
three tasks for each language. Overall, we observe
that the performance of mono- and multilingual
models is consistently comparable to each other
which demonstrates the importance of comparing

5For tasks of average token length over 200, we evaluate
rationale ratios of 1%, 5%, and 10% instead, to keep the
rationales relatively short.
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BERT & mBERT RoBERTa & XLM-R

Lang Model Acc Suff Comp S-Suff S-Comp Acc Suff Comp S-Suff S-Comp

EN Mono 0.847 1.146 1.525 1.172 1.201 0.852 1.306 1.588 1.207 1.200
Multi 0.837 1.224 1.604 1.180 1.204 0.841 1.163 1.210 1.220 1.195

ZH Mono 0.833 1.101 1.142 1.012 0.995 0.816 1.093 1.156 0.990 1.004
Multi 0.819 1.137 1.271 0.990 1.001 0.825 1.088 1.000 1.041 0.999

ES Mono 0.849 1.024 1.046 1.148 1.150 0.857 1.235 1.176 1.141 1.182
Multi 0.852 1.146 1.214 1.130 1.152 0.849 1.082 1.055 1.129 1.148

FR Mono 0.825 1.047 1.057 1.099 1.100 0.822 1.242 1.510 1.087 1.095
Multi 0.844 1.130 1.259 1.096 1.102 0.851 1.049 1.055 1.083 1.099

HI Mono 0.716 1.162 1.177 0.984 1.001 0.693 1.094 1.097 1.013 1.012
Multi 0.685 1.202 1.157 1.013 1.001 0.718 1.086 1.084 1.040 0.998

Table 3: Predictive performance (Accuracy) and FA faithfulness (Suff, Comp, Soft-Suff, Soft-Comp) of mono-
(BERT, RoBERTa) and multilingual models (mBERT, XLM-R). Full results per task and per FA are in Appendix I.

FA faithfulness between these two types of mod-
els. For instance, the difference between Spanish
BERT and mBERT is 0.003. The largest gap is
found between Hindi BERT (0.716) and mBERT
(0.685), exhibiting a difference of 0.031.

4.2 Faithfulness

We note that FAs demonstrate inconsistent faith-
fulness discrepancies between mono- and multilin-
gual models. In general, FAs obtain lower Suff and
Comp with XLM-R than monolingual RoBERTa
models, and higher with mBERT compared to
monolingual BERT models (except for Comp in
Hindi). These discrepancies do not manifest though
when we use Soft-Suff and Soft-Comp to measure
faithfulness. In fact, the faithfulness of FAs be-
tween mono- and counterpart multilingual models
are comparable to each other, i.e. the majority of
differences are smaller than 0.01. For example,
the greatest difference is only 0.051 (Soft-Comp
between Chinese RoBERTa and XLM-R).

Moreover, the faithfulness disparity in Suff and
Comp of RoBERTa-based models is more notice-
able as half of the cases have a faithfulness differ-
ence greater than 0.1. For example, the Comp in
French is 1.51 for French RoBERTa but only 1.055
for XLM-R. We further investigate these disparities
in faithfulness across metrics in Section 5.

4.3 Comparing FAs

Figure 2 delves deeper into the faithfulness dis-
parity of FAs by looking at each one separately.
Disparity is computed as the faithfulness score on
the multilingual model minus the faithfulness score
on the monolingual counterpart.6

6Tables 11, 10, 13, and 12 in Appendix C show details per
FA and language.

Figure 2: Faithfulness disparity of FAs averaged across
languages. Values above zero indicate that the FAs are
more faithful in the multilingual model.

First, Figure 2 (top) shows contrasting directions
of faithfulness disparities between RoBERTa-based
and BERT-based models. That is, FAs exhibit lower
faithfulness in Suff and Comp for XLM-R than
monolingual RoBERTa (above zero), whereas FAs
exhibit higher Suff and Comp for mBERT than
monolingual BERT. This holds true across FAs
and languages as shown in Tables 10 and 11 in
Appendix C. Second, FAs do not show a consistent
faithful disparity in terms of Soft-Suff and Soft-
Comp (bottom) applied to mono- and multilingual
models.

Moreover, we observe that IG has a larger faith-
fulness disparity than other FAs. For example, this
is evident in Suff and Comp averaged over lan-
guages for both RoBERTa- and BERT-based mod-
els. IG is also the only FA showing significant dif-
ferences in Suff and Comp disparity on both BERT-
and RoBERTa-based models (see Table 10 and Ta-
ble 11 in Appendix). This means, that when IG
selects faithful rationales for a monolingual model,
it might not be able to do so for the counterpart
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multilingual model. We also notice that the dispar-
ities of Attention-based FAs, i.e. α and α∇α, are
consistently on par with each other. However, they
demonstrate larger disparities compared to x∇x
and DL in most cases. Therefore, this indicates
that mono- and multilingual models tend to employ
attention differently for making predictions.

On the other hand, the results of Soft-Suff and
Soft-Comp do not echo any of the above observa-
tions we made for Suff and Comp. Indeed, the
Soft-Suff and Soft-Comp disparities of FAs are not
significantly different between mono- and multi-
lingual models (see p-values in Appendix C). That
is, when evaluating the overall importance distribu-
tion given by a FA, there is no faithfulness discrep-
ancy between using a multilingual or a monolingual
model. One possible reason is that, the pre-defined
rationale lengths introduce bias to the evaluation of
Suff and Comp. To investigate this, we examine the
faithfulness disparity on specific rationale lengths.
We find that the faithfulness disparity varies across
rationale lengths. Table 4 shows the Suff disparity
at different rationale lengths, 10% and 50%, within
BERT-based models. For example, FAs are more
faithful with XLM-R than Spanish RoBERTa at
a 10% rationale length, with a significant average
difference of 0.236 (p-value of 0.03) across tasks.
When looking at the rationale length of 50%, FAs
are comparably faithful for XLM-R and Spanish
RoBERTa (avg of 0.027, p-value of 0.245). This
further inspires us to consider the impact of the to-
kenizers on faithfulness. Soft-Suff and Soft-Comp
evaluate the importance scores over the whole in-
put and this can be less sensitive to the tokenization.
We examine this in Section 5.

5 Analysis

We further investigate if the tokenization and
model size contribute to the contrasting directions
of FA faithfulness disparity between BERT- and
RoBERTa-based models.

5.1 Impact of model size

We posit that the difference between RoBERTa
and BERT-based models in disparity directions of
FAs faithfulness is associated with the differences
in model sizes of mono- and multilingual models.
Specifically, mBERT has at least 1.5 times more
parameters than monolingual BERT models, while
XLM-R has at least 2.2 times more parameters than
monolingual RoBERTa models. The difference in

Sufficiency at 10%

α α∇α x∇x IG DL Avg Diff P value

English 0.225 0.232 -0.021 0.168 0.035 0.128 0.202
Chinese 0.037 0.007 0.079 0.285 0.054 0.093 0.228
Spanish 0.41 0.407 0.084 0.346 -0.067 0.236 0.03
French 0.256 0.236 -0.011 0.21 -0.047 0.129 0.042
Hindi -0.198 -0.185 -0.06 0.244 -0.075 -0.055 0.575

Avg Diff 0.146 0.139 0.014 0.251 -0.02 0.106
P value 0.224 0.255 0.747 0.004 0.666 0.008

Sufficiency at 50%

α α∇α x∇x IG DL Avg Diff P value

English -0.146 -0.15 -0.022 0.05 0.058 -0.042 0.3
Chinese 0.061 0.062 0.045 0.15 -0.042 0.055 0.271
Spanish 0.033 0.035 -0.026 0.075 0.019 0.027 0.245
French 0.096 0.09 -0.021 -0.046 0.059 0.036 0.313
Hindi 0.026 0.031 0.049 0.251 0.02 0.075 0.094

Avg Diff 0.014 0.014 0.005 0.096 0.023 0.03
P value 0.752 0.765 0.831 0.039 0.51 0.082

Table 4: Sufficiency difference between mBERT and
counterpart monolingual BERT on rationale ratio of
10% and 50%. Plum indicates that monolingual models
are more faithful than multilingual models.

model size may account for the opposite directions
of faithfulness disparities between RoBERTa- and
BERT-based models. If this holds true, we an-
ticipate that when the model size gap increases,
XLM-R will still provide less faithful rationales
than monolingual RoBERTa while their disparity
degree will increase.

To further investigate the impact of the model
size, we repeat all experiments using XLM-R large
and compare its faithfulness with monolingual
RoBERTa. Full results are in Table 15 and Table 14
in Appendix. In this case, we examine a RoBERTa-
based model pair with a larger difference in model
size than XLM-R base vs. monolingual RoBERTa.
XLM-R base and XLM-R large use the same pre-
training corpus, pre-training objective, and similar
model architectures, but differ in model parameter
numbers7 (Conneau et al., 2020). XLM-R large
(550M parameters) is at least 4.7 times larger than
the monolingual RoBERTa models.

The results first show that the faithfulness dispar-
ity direction remains the same as the one between
XLM-R base and monolingual RoBERTa. This im-
plies that FAs are more faithful with monolingual
RoBERTa. Second, the overall sufficiency disparity
increases from -0.100 to -0.186. It also increases
for each individual FA and language, with IG being
the only exception by remaining almost the same
(-0.120 and -0.121). For example, the average dis-
parity in English increases from -0.143 to -0.300
and the average disparity for attention increases

7Both are transformer-based, XLM-R base: L = 12, H =
768, A = 12; XLM-R large: L = 24, H = 1024, A = 16)
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from -0.070 to -0.195. The overall comprehen-
siveness disparity of XLM-R large is on par with
XLM-R base (-0.226 v.s. -0.197).

Overall, the results confirm our assumption that
the difference in model size is related to the faithful-
ness disparity. The larger the multilingual model,
the less faithful its rationales are compared to its
monolingual counterpart. One intuitive interpreta-
tion behind this is that when the model gets larger,
it becomes intrinsically complex and therefore, it
is harder to faithfully explain its predictions with
FA. To summarize, the more parameters the mul-
tilingual model has, the less faithful its rationales
are compared to its monolingual counterparts.

We acknowledge that our findings might not
generalize to BERT because mBERT models of
different sizes are not available to experiment
with. To overcome this, we repeat all experiments
with BERT-large and compare its faithfulness with
BERT-base, to investigate the impact of model size
from a different perspective. The results show that
FAs obtain lower Suff and Comp with the larger
BERT model across FAs and tasks. This observa-
tion is in agreement with our assumption above that
model sizes might impact faithfulness disparity. To
keep the focus of the paper on the faithfulness dis-
parity between mono- and multilingual models, we
present the results and analysis in Table 16 in the
Appendix.

5.2 Impact of tokenization

Previous research has shown the impact of tok-
enization on multilingual models (Ruan et al., 2021;
Zhang et al., 2022). Intuitively, multilingual tok-
enizers are less specialized than their counterpart
monolingual tokenizers for the specific language.
For example, the multilingual BERT tokenizer has
a vocabulary size of 105K covering 104 languages,
while the five monolingual BERT tokenizers cover
a vocabulary of 167k tokens (see Table 1). BERT-
based models use WordPiece as their tokenizers
(Wu et al., 2016). Monolingual RoBERTa mod-
els use BytePair-Encoding (BPE) (Sennrich et al.,
2016), and the multilingual XLM-R uses Sentence-
Piece (Kudo and Richardson, 2018).

Therefore, we investigate the impact of tokeniza-
tion on faithfulness disparity. The effectiveness
of a tokenizer in text splitting intuitively reflects
how many unique tokens it knows in a particular
language. Following Rust et al. (2021), we exam-
ine two metrics for assessing tokenization, fertility

and splitting ratio. Fertility indicates how many
subwords a tokenizer splits a word into, while the
splitting ratio shows how often a tokenizer splits
words. Intuitively, low scores are preferable for
both metrics indicating that the tokenizer is well-
suited to the language (Rust et al., 2021).

Table 5 shows the fertility and splitting ratio
difference between monolingual and multilingual
models (i.e. multilingual score minus its counter-
part monolingual).8 Faithfulness disparity values
are taken from Tables 10 and 11.

First, for both RoBERTa and BERT-based mod-
els, the positive values of fertility and splitting ratio
difference indicate that multilingual models tend to
be more aggressive in splitting words than mono-
lingual ones. For example, as shown in Table 17 in
Appendix G, 26.1% English words (underlined in
table) are split by the SentencePiece tokenizer of
XLM-R but only 7.6% (underlined in table) by BPE
which is used in monolingual RoBERTa models.

Second, RoBERTa-based models have larger
gaps in both fertility and splitting ratio than BERT-
based across all three languages. The fertility and
the splitting ratio differences are greater than 0.1
for RoBERTa-based, but less than 0.1 for BERT-
based models. This is because SentencePiece (mul-
tilingual XLM-R’s tokenizer) is generally more
aggressive in splitting words. Taking English as
an example, the fertility gaps among monolingual
RoBERTa (BPE), monolingual BERT (WordPiece)
tokenizers, and multilingual BERT (WordPiece)
are relatively smaller, 1.125, 1.115, and 1.179 re-
spectively, while the fertility of XLM-R (Sentence-
Piece) is 1.319. However, this is counterintuitive
given the much larger vocabulary size of XLM-R,
over two times bigger than multilingual BERT (see
Figure 1). One potential explanation is that XLM-
R saves capacity for representing the vocabulary
for other low-resource languages. On the other
hand, the greater aggressiveness in tokenization of
XLM-R potentially explains the different disparity
direction in Suff and Comp to BERT models. That
is, only when the fertility difference is greater than
0.1, FAs are more faithful with multilingual models
than with monolingual counterparts.9

8Hindi and Chinese are excluded from this analysis. For
Hindi, we do not observe a substantial difference between
mono- and multilingual models in Suff or Comp. Chinese is a
logographic language without white spaces. For reference, we
present the fertility and splitting ratios for Hindi in Table 18
in the Appendix.

9We further demonstrate this pattern in Figure 4 in Ap-
pendix H.
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RoBERTa
Multi Fertility Mono Fertility Fertility Diff Multi Splitting Mono Splitting Split ratio Diff Suff Diff Comp Diff

English 1.179 1.115 0.064 0.111 0.059 0.052 0.078 0.079
Spanish 1.369 1.283 0.086 0.152 0.090 0.062 0.123 0.168
French 1.461 1.456 0.005 0.139 0.134 0.005 0.083 0.202
Avg 1.336 1.285 0.052 0.134 0.094 0.040 0.095 0.150

BERT
Multi Fertility Mono Fertility Fertility Diff Multi Splitting Mono Splitting Splitting Diff Suff Diff Comp Diff

English 1.319 1.125 0.195 0.261 0.076 0.185 -0.300 -0.250
Spanish 1.409 1.290 0.119 0.299 0.195 0.104 -0.240 -0.099
French 1.531 1.345 0.186 0.325 0.211 0.114 -0.236 -0.434
Avg 1.420 1.253 0.167 0.312 0.203 0.134 -0.259 -0.261

Table 5: Fertility, splitting ratio, sufficiency, and comprehensiveness difference between multilingual (“Multi
Fertility”, “Multi Splitting”) and monolingual models (“Mono Fertility”, “Mono Splitting”). For “Suff Diff” and
“Comp Diff”, positive values indicate that the FA is more faithful to the multilingual model. Full results of fertility
and splitting ratio for each dataset can be found in Table 17 in Appendix G.

ρ Suff Diff Comp Diff

Splitting Diff -0.86 -0.79
Fertility Diff -0.86 -0.91

Table 6: Pearson correlation coefficient between fertility,
splitting ratio, and faithfulness disparity.

Last, as shown in Table 6, the differences in Suff
and Comp demonstrate a highly negative relation-
ship to the fertility difference. That is, the larger the
fertility difference between mono- and multilingual
models, the smaller the faithfulness disparity. Par-
ticularly, the fertility and the comprehensiveness
difference show a very high negative correlation
(-0.91).

To sum up, multilingual tokenizers split words
into subwords more aggressively than monolin-
gual tokenizers, which potentially contributes to
the faithfulness disparity between models. The ag-
gressive tokenization of multilingual models might
result in lower faithfulness.

5.3 Disentangling the impact of the model

To further investigate how tokenization and model
selection affects faithfulness, we experiment with
(1) adapting a monolingual model to a different
language (i.e. EN to FR); and (2) adapting a multi-
lingual model to FR. This allows us to disentangle
the impact of the model itself while observing the
faithfulness changes of FAs across tokenization
strategies. We experiment with RoBERTa-based
models (RoBERTa and XLM-R) in French because
this was the case where we observed the greatest
faithfulness discrepancy between a mono- and mul-
tilingual model (see Table 11).

We use WECHSEL (Minixhofer et al., 2022) to
adapt an English RoBERTa to French. We replace
the tokenizer of the English RoBERTa with the

tokenizer of the French RoBERTa. French token
embeddings are initialized such that they are seman-
tically similar to the English tokens by using multi-
lingual static word embeddings covering English
and French. We refer to this model as RoBERTa
(EN → FR). For monolingual specialization (i.e.
French) of XLM-R, we use FOCUS (Dobler and
de Melo, 2023) to replace the tokenizer of XLM-R
with the tokenizer of French RoBERTa. FOCUS
first finds the shared tokens between the French
RoBERTa and XLM-R vocabularies which XLM-
R can use directly. New tokens (French tokens
not in XLM-R) are represented as combinations
of overlapping tokens in the French RoBERTa and
XLM-R vocabularies. We refer to this model as
XLM-R (Multi → FR).10

The first three models in Table 7, namely French
RoBERTa (FR), RoBERTa (EN → FR) and XLM-
R (Multi → FR), use the same tokenizer, i.e. the
same tokenization aggressiveness, while the em-
bedding initialization is either identical or semanti-
cally similar (Minixhofer et al., 2022; Dobler and
de Melo, 2023). Notably, all FAs obtain more simi-
lar Suff and Comp between RoBERTa (FR) and the
two hybrid RoBERTa, rather than between XLM-R
and the two hybrid RoBERTa. For example, each
FA on XLM-R (Multi → FR) almost mirrors the
sufficiency of RoBERTa (FR) with the greatest dif-
ference of 0.232 and the smallest of 0, even though
XLM-R (Multi → FR) shares the same model pa-
rameters (non-embedding weights) with XLM-R
(their greatest and smallest differences are 0.366
and 0.001, respectively). Therefore, we summarize
that FAs tend to be of similar faithfulness on models
with the same tokenizer or the similar tokenizers re-
garding the splitting aggressiveness level. Further,

10See Appendix H.1 for the implementation details of these
two models.

3233



Sufficiency Soft Sufficiency
α α∇α x∇x IG DL α α∇α x∇x IG DL

RoBERTa (FR) 1.287 1.289 1.198 1.232 1.201 1.091 1.033 1.106 1.087 1.120
RoBERTa (EN → FR) 1.241 1.243 1.193 1.225 1.197 1.090 1.029 1.098 1.083 1.122
XLM-R (Multi → FR) 1.230 1.200 1.242 1.246 1.032 1.088 1.032 1.102 1.086 1.120
XLM-R 1.081 1.071 1.065 1.015 1.013 1.046 1.144 1.012 1.100 1.114

Comprehensiveness Soft Comprehensiveness
α α∇α x∇x IG DL α α∇α x∇x IG DL

RoBERTa (FR) 1.573 1.567 1.267 1.667 1.476 1.097 1.093 1.090 1.102 1.092
RoBERTa (EN → FR) 1.305 1.317 1.321 1.474 1.309 1.099 1.09 1.087 1.099 1.091
XLM-R (Multi → FR) 1.394 1.401 1.266 1.435 1.353 1.097 1.090 1.089 1.100 1.091
XLM-R 1.087 1.085 1.035 1.069 1.001 1.100 1.097 1.099 1.101 1.097

Table 7: Faithfulness of French RoBERTa, XLM-R and two adapted models to French averaged over French tasks.

this leads to promising future research questions.
First, do FAs really reflect the inner reasoning pro-
cess of models? Second, when token units and
their embeddings are identical or similar, different
models tend to converge to a point after fine-tuning
where they process these inputs in a similar way?

5.4 Qualitative analysis

For a qualitative evaluation, we examine the ratio-
nales extracted by the same FAs for both types of
models. We observe that rationales of multilingual
models more often contain pronouns, prepositions,
postpositions, conjunction, and article words, while
monolingual models’ prefer nouns and adjectives.
We suspect the different preferences in parts of
speech are due to monolingual models being more
specialized for the language so that its rationales
contain more specific nouns and adjectives rather
than general functional words such as pronouns,
prepositions, postpositions, and conjunctions.

We also observe examples where multilingual to-
kenizers split text more aggressively than monolin-
gual tokenizers, e.g. the word “defectos” in Span-
ish (“defects” in English) is not split into subwords
by Spanish BERT, but split into ‘def’, ‘##ecto’,
‘##s’ by mBERT; “desagradable” in Spanish (“un-
pleasant” in English) is not split by Spanish BERT
but split into ‘desa’, ‘##grada’, ‘##ble’ by mBERT,
echoing the observations in Section 5.2.

6 Conclusion

To the best of our knowledge, our study is the first
to investigate the faithfulness disparity between
monolingual and multilingual models. We have
conducted a comprehensive empirical study and
found that faithfulness gaps exist across languages,
models, and FAs. Our study further reveals that
the larger the multilingual model, the less faith-
ful its rationales are compared to its monolingual

counterpart models. Finally, we found that the dis-
parity is highly correlated to the gap between mono-
and multilingual tokenizers on how aggressively
they split words. Further experiments support the
assumption on the impact of tokenization: the dis-
crepancies in faithfulness are primarily driven by
differences in tokenization rather than underlying
differences in how mono- and multilingual models
semantically process the input.

Limitations

A significant challenge we encountered during our
research was the absence of monolingual models in
various languages. First, monolingual models are
only available in a few languages, such as mono-
lingual BERT and RoBERTa models used in this
paper. Second, more recent decoder-based models,
such as Llama (Touvron et al., 2023), Mistral (Jiang
et al., 2023), and Gemma (Team et al., 2024), are
multilingual by default. Furthermore, it would be
intriguing to explore the faithfulness disparity and
behavior of feature attributions for low-resource
languages, particularly given their limited presence
in the pre-training corpora.

Finally, it is important to acknowledge that mul-
tilingual studies focusing on Indo-European and
Sino-Tibetan languages may not necessarily apply
to languages outside these language families. We
hope future work can contribute resources to facil-
itate the development of a more diverse range of
monolingual language models.

Acknowledgements

ZZ and NA are supported by EPSRC grant
EP/V055712/1, part of the European Commis-
sion CHIST-ERA programme, call 2019 XAI: Ex-
plainable Machine Learning-based Artificial Intel-
ligence. We thank George Chrysostomou for his
invaluable feedback.

3234



References
Wissam Antoun, Fady Baly, and Hazem Hajj.

2020. Arabert: Transformer-based model for
arabic language understanding. arXiv preprint
arXiv:2003.00104.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256–3274, Online. Association for
Computational Linguistics.

Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia,
Anders Sandholm, and Katja Filippova. 2022. “will
you find these shortcuts?” a protocol for evaluating
the faithfulness of input salience methods for text
classification. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 976–991, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149–155, Online. Association for Com-
putational Linguistics.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Spanish
pre-trained bert model and evaluation data. Pml4dc
at iclr, 2020(2020):1–10.

José Cañete, Sebastian Donoso, Felipe Bravo-Marquez,
Andrés Carvallo, and Vladimir Araujo. 2022. AL-
BETO and DistilBETO: Lightweight Spanish lan-
guage models. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
4291–4298, Marseille, France. European Language
Resources Association.

Samuel Carton, Anirudh Rathore, and Chenhao Tan.
2020. Evaluating and characterizing human ratio-
nales. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 9294–9307, Online. Association for
Computational Linguistics.
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A Comparison of predictive performance

NER SA QA UDP POSLg Model
Test F1 Test Acc Dev EM / F1 Test UAS/LAS Test Acc

Arabic Monolingual 91.1 95.9 68.3/82.4 90.1/85.6 96.8
AR mBERT 90 95.4 66.1/80.6 88.8/83.8 96.8

Monolingual 91.5 91.6 80.5/88.0 92.1/89.7 97
English

mBERT 91.2 89.8 80.9/88.4 91.6/89.1 96.9

Monolingual 92 - 69.9/81.6 95.9/94.4 98.4
Finnish

mBERT 88.2 - 66.6/77.6 91.9/88.7 96.2

Monolingual 91 96 66.8/78.1 85.3/78.1 92.1
Indonesian

mBERT 93.5 91.4 71.2/82.1 85.9/79.3 93.5

Monolingual 72.4 88 - 94.7/93.0 98.1
Japanese

mBERT 73.4 87.8 - 94.0/92.3 97.8

Monolingual 88.8 89.7 74.2/91.1 90.3/87.2 97
Korean

mBERT 86.6 86.7 69.7/89.5 89.2/85.7 96

Monolingual 91 95.2 64.3/83.7 93.1/89.9 98.4
Russian

mBERT 90 95 63.3/82.6 91.9/88.5 98.2

Monolingual 92.8 88.8 60.6/78.1 79.8/73.2 96.9
Turkish

mBERT 93.8 86.4 57.9/76.4 74.5/67.4 95.7

Monolingual 76.5 95.3 82.3/89.3 88.6/85.6 97.2
Chinese

mBERT 76.1 93.8 82.0/89.3 88.1/85.0 96.7

Monolingual 87.4 92.4 70.8/84.0 90.0/86.3 96.9
AVG

mBERT 87 91 69.7/83.3 88.4/84.4 96.4

Table 8: Comparison of predictive performance between
mBERT and monolingual BERT across languages and
tasks. Results are drawn from Rust et al. (2021)

As shown in Table 8, the predictive performance
of mBERT is comparable to monolingual BERT
in most cases. Particularly, the difference between
monolingual and multilingual models is not greater
than 1.2 and 1.5 across each task in Russian and
Chinese respectively.

B Model Implementation Details

Language Models Huggingface ID

Multilingual mBERT bert-base-multilingual-uncased Devlin et al. (2019)
XLM-R xlm-roberta-base Conneau et al. (2020)
XLM-R large xlm-roberta-large Conneau et al. (2020)

English BERT bert-base-uncased Devlin et al. (2019)
RoBERTa roberta-base Liu et al. (2019)

Chinese BERT bert-base-chinese Devlin et al. (2019)
RoBERTa hfl/chinese-roberta-wwm-ext Cui et al. (2021)

Spanish BERT dccuchile/bert-base-spanish-wwm-uncased Cañete et al. (2020)
RoBERTa PlanTL-GOB-ES/roberta-base-bne Fandiño et al. (2022)

French BERT dbmdz/bert-base-french-europeana-cased Schweter (2020)
RoBERTa ClassCat/roberta-base-french n/a

Hindi BERT l3cube-pune/hindi-bert-scratch Joshi (2022)
RoBERTa flax-community/roberta-hindi n/a

Table 9: Model references

We use pre-trained models from the Hugging-
face library (Wolf et al., 2020). We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 1e−5 for fine-tuning ( 1e−4 for the
linear output layer). We fine-tune all models for
five epochs using a linear scheduler, with 10% of
the data in the first epoch as warming up. We also
use a grad-norm of 1.0. The model with the lowest
loss on the development set is selected. All models
are trained across three random seeds, and we re-
port the average prediction performance. The best

model among the three runs is used to extract ra-
tionales. Experiments are run on a single NVIDIA
A100 GPU.

C Faithfulness disparity on FAs and
languages

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English 0.086 0.093 -0.024 0.187 0.048 0.078 0.292
Chinese -0.018 -0.037 0.043 0.176 0.016 0.036 0.454
Spanish 0.200 0.202 0.006 0.190 0.015 0.123 0.049
French 0.184 0.173 -0.028 0.063 0.025 0.083 0.066
Hindi -0.041 -0.035 0.010 0.266 -0.003 0.039 0.510

Avg Diff 0.082 0.079 0.001 0.176 0.020 0.072 -
P value 0.264 0.298 0.966 0.003 0.527 - 0.005

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English 0.122 0.106 0.075 0.078 0.015 0.079 0.323
Chinese 0.211 0.213 0.028 0.176 0.016 0.129 0.053
Spanish 0.268 0.268 0.040 0.160 0.105 0.168 0.048
French 0.294 0.299 0.046 0.217 0.156 0.202 0.049
Hindi -0.232 -0.234 -0.128 0.138 0.057 -0.080 0.307

Avg Diff 0.133 0.130 0.012 0.154 0.070 0.100 -
P value 0.258 0.263 0.758 0.040 0.081 - 0.007

Table 10: Suff and Comp difference between multilin-
gual BERT (mBERT) and monolingual BERT. (plum
indicates monolingual models are more faithful than multilin-
gual models.

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English -0.082 -0.086 -0.097 -0.131 -0.319 -0.143 0.258
Chinese 0.065 0.056 -0.085 -0.040 -0.018 -0.005 0.946
Spanish -0.070 -0.138 -0.336 -0.107 -0.111 -0.153 0.053
French -0.206 -0.218 -0.133 -0.217 -0.188 -0.193 0.007
Hindi -0.054 -0.047 0.045 -0.068 0.081 -0.009 0.888

Avg Diff -0.070 -0.086 -0.121 -0.113 -0.111 -0.100 -
P value 0.535 0.462 0.041 0.033 0.076 - 0.006

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English -0.465 -0.436 -0.327 -0.333 -0.330 -0.378 0.000
Chinese -0.230 -0.224 -0.111 -0.156 -0.062 -0.157 0.010
Spanish -0.197 -0.116 -0.105 0.032 -0.218 -0.121 0.076
French -0.486 -0.482 -0.232 -0.598 -0.475 -0.455 0.004
Hindi 0.071 0.062 -0.036 -0.268 0.082 -0.018 0.831

Avg Diff -0.261 -0.239 -0.162 -0.265 -0.201 -0.226 -
P value 0.027 0.034 0.004 0.015 0.070 - 0.000

Table 11: Suff and Comp difference between XLM-R
(multilingual RoBERTa) and monolingual RoBERTa
(plum indicates monolingual models are more faithful than
multilingual models.)

D RoBERTa vs. BERT

D.1 Language distribution of mBERT and
XLM-R pre-training corpora

Figure 3 compares the amount of data and its dis-
tribution in different languages between mBERT
and XLM-R. As shown in Figure 3, XLM-R pre-
training data is several orders of magnitude larger
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Figure 3: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus (used
for mBERT) and the CC-100 (XLM-R). CC-100 increases the amount of data by several orders of magnitude, in
particular for low-resource languages (Conneau et al., 2020).

Soft-Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English -0.018 0.048 0.015 0.033 -0.038 0.008 0.821
Chinese 0.024 0.021 -0.073 -0.036 -0.046 -0.022 0.45
Spanish -0.105 0.027 0.045 -0.028 -0.032 -0.019 0.539
French 0.06 -0.039 -0.011 0.043 -0.069 -0.003 0.915
Hindi 0.05 -0.085 0.035 0.058 0.088 0.029 0.284

Avg Diff 0.002 -0.006 0.002 0.014 -0.019 -0.001 -
P value 0.931 0.869 0.942 0.635 0.499 - 0.92

Soft-Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English 0.003 0.003 0 0 0.004 0.002 0.273
Chinese -0.001 0.034 0.001 -0.006 0.001 0.006 0.408
Spanish 0.003 0.002 0.001 0.002 0.004 0.002 0.036
French 0 0.004 0.001 0.004 0.003 0.002 0.041
Hindi -0.001 -0.003 0.002 0 0 0 0.711

Avg Diff 0.001 0.008 0.001 0 0.002 0.002 -
P value 0.482 0.254 0.406 0.979 0.081 - 0.094

Table 12: Soft-Suff and Soft-Comp difference between
mBERT and monolingual BERT (plum indicates monolin-
gual models are more faithful than multilingual models.)

Soft-Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English 0.07 0.112 0.006 -0.16 0.035 0.013 0.699
Chinese -0.022 0.115 -0.019 0.033 0.15 0.052 0.245
Spanish -0.026 0.08 0.061 -0.154 -0.021 -0.012 0.692
French -0.045 0.111 -0.094 0.014 -0.006 -0.004 0.893
Hindi 0.044 -0.051 0.082 0 0.064 0.028 0.356

Avg Diff 0.004 0.073 0.007 -0.053 0.044 0.015 -
P value 0.901 0.053 0.787 0.165 0.075 - 0.3

Soft-Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English -0.006 -0.006 -0.008 -0.007 0.001 -0.005 0.105
Chinese -0.012 -0.002 -0.005 -0.004 -0.004 -0.005 0.011
Spanish -0.027 -0.007 0.011 -0.064 -0.086 -0.035 0.102
French 0.003 0.004 0.009 0 0.005 0.004 0.19
Hindi 0.002 0 -0.028 -0.006 -0.035 -0.013 0.112

Avg Diff -0.008 -0.002 -0.004 -0.016 -0.024 -0.011 -
P value 0.143 0.346 0.564 0.203 0.181 - 0.018

Table 13: Soft-Suff and Soft-Comp difference between
XLM-R and monolingual RoBERTa.)

in all languages and includes a relatively higher
percentage of non-English data than mBERT pre-
training data.

D.2 Full faithfulness results of XLM-R large

Table 14 presents the original Suff and Comp re-
sults of each feature attribution on each task for
XLM-R large.

E Impact of model size

The results indicate a lower faithfulness of the
larger BERT model across FAs and tasks. Specif-
ically, Suff and Comp scores of the monolingual
English BERT-large are higher than its counter-
part BERT-base (13 out of 16 comparison pairs as
shown in Table 16), except for cases of Suff and
Comp on IG and the comprehensiveness on Mul-
tiRC (where the faithfulness of both BERT-base
and large are on par with the random baseline, i.e.
values close to one). This observation agrees with
our assumption above that model sizes might im-
pact faithfulness disparity. Given that our focus
is on faithfulness disparity, we leave a more com-
prehensive study on the impact of model size on
faithfulness for future work.

F The tokenization for different
languages

All monolingual and multilingual BERT tokenizers
in this paper use “##” to indicate the second and
the rest subwords of a split word, i.e. non-first
subword of a split word. For example, “sdfnsksi
cklx” will be tokenize to ‘sd’, ‘##fn’, ‘##sk’, ‘##si’,
‘ck’, ‘##l’, ‘##x’.

Monolingual RoBERTa indicates a space and
its following word with ’G’. Therefore, except for
the first token, tokens without ’G’ are subwords.
XLM-R uses “_” to indicate the start of a whole
word.
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Dataset Model α Suff α∇α Suff x∇x Suff IG Suff DL Suff α Comp α∇α Comp x∇x Comp IG Comp DL Comp

SST XLM-R large 0.9555 0.9547 1.0189 0.7746 1.0062 0.9437 0.9382 1.1265 0.6697 1.0576
Agnews XLM-R large 1.1866 1.2698 0.7601 0.8642 0.9089 2.8766 2.6539 1.3965 1.3442 1.0955
MultiRC XLM-R large 1.0007 1.0004 1.0007 0.9967 1.4006 0.8311 0.6314 0.6188 3.2761 0.6126
KR XLM-R large 1.1857 1.1985 1.0159 0.9569 0.9741 1.0487 1.0408 1.0543 1.1403 1.0179
ANT XLM-R large 1.0355 1.0395 0.9159 0.7393 1.0027 1.0278 1.0178 0.887 0.6333 1.0025
ChnSentiCorp XLM-R large 0.8405 0.8372 1.044 0.918 0.9405 0.7424 0.7871 1.1985 0.9229 1.0699
Spanish CSL XLM-R large 1.2667 1.2688 0.9961 0.9862 1.0137 1.2989 1.304 1.0417 1.0722 1.0519
Spanish XNLI XLM-R large 0.8986 0.8959 1.0609 0.9614 0.9873 0.8655 0.8668 1.1609 1.0007 1.0213
Spanish Paws XLM-R large 0.8478 0.8579 1.0342 0.9004 0.9432 1.1443 1.1448 1.1444 1.0152 1.0204
French CSL XLM-R large 1.0388 1.0278 1.1031 1.0849 1.0313 1.0364 1.0361 1.0631 1.1244 1.0435
French XNLI XLM-R large 1.0388 1.0403 1.079 0.9644 0.9943 1.0899 1.085 1.1397 1.0307 1.0227
French Paws XLM-R large 0.8575 0.8583 1.051 0.9031 1.0132 1.1394 1.1289 1.2237 0.9642 1.0129
Hindi BBC Nli XLM-R large 0.8731 0.8478 1.0379 1.0646 0.9734 0.7646 0.7796 1.0062 1.0786 1.0222
Hindi BBC Topic XLM-R large 1.6458 1.6491 0.9722 0.8833 1.0009 1.7309 1.7246 0.9697 0.9469 1.0661
Hindi XNLI XLM-R large 0.9875 0.995 1.0806 0.9227 0.947 1.0358 1.0309 1.1539 0.9326 0.9913

Table 14: Full results of faithfulness for XLM-R large. All faithfulness scores are divided by the random baseline.

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English -0.360 -0.354 -0.124 -0.445 -0.214 -0.300 0.001
Chinese -0.143 -0.133 -0.042 -0.220 -0.044 -0.116 0.157
Spanish -0.172 -0.240 -0.352 -0.278 -0.160 -0.240 0.001
French -0.309 -0.314 -0.120 -0.248 -0.188 -0.236 0.000
Hindi 0.010 0.012 0.039 -0.239 0.001 -0.035 0.711

Avg Diff -0.195 -0.206 -0.120 -0.286 -0.121 -0.186 -
P value 0.057 0.050 0.045 0.000 0.035 - 0.000

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English -0.201 -0.314 -0.366 0.078 -0.448 -0.250 0.204
Chinese -0.266 -0.254 -0.047 -0.303 -0.048 -0.183 0.055
Spanish -0.184 -0.102 -0.003 -0.029 -0.177 -0.099 0.060
French -0.484 -0.484 -0.124 -0.627 -0.449 -0.434 0.005
Hindi 0.103 0.091 -0.022 -0.364 0.101 -0.018 0.868

Avg Diff -0.206 -0.212 -0.112 -0.249 -0.204 -0.197 -
P value 0.147 0.119 0.088 0.169 0.088 - 0.001

Table 15: Suff and Comp difference between XLM-R
Large and monolingual RoBERTa.

Sufficiency

α α∇α x∇x IG DL SST Agnews MultiRC

BERT base (109M) 1.279 1.272 1.005 1.127 1.044 1.122 1.061 1.253
BERT large (340M) 1.045 1.037 1.005 1.158 1.025 1.017 1.041 1.105

Comprehensiveness

α α∇α x∇x IG DL SST Agnews MultiRC

BERT base (109M) 1.699 1.717 1.233 1.694 1.281 1.431 2.146 0.997
BERT large (340M) 1.564 1.581 1.134 1.731 1.053 1.270 1.963 1.005

Table 16: Suff and Comp of BERT-base and BERT-large
models averaged across each FA and each task.

G Fertility and splitting ratio

G.1 Full results

Table 17 includes the full results of fertility and
splitting ratio for each model. These are used for
calculating the average values in Table 5.

G.2 Results on Hindi

Table 18 shows the splitting ratio and fertility rate
for Hindi, where lower scores indicate that the to-
kenizer is less aggressive and better suited to the
language. Hindi does not show a consistent pat-
tern between multi- and monolingual settings in
terms of tokenization aggressiveness. For exam-
ple, the splitting ratio of XLM-R (avg. 0.331) is
less aggressive than Hindi RoBERTa (avg. 0.869),
while mBERT (0.394) is slightly more aggressive
than Hindi BERT (0.267). This observation on
Hindi is different from the three languages in Ta-
ble 5 (multilingual tokenizers are more aggressive),
which indicates a potential opportunity for future
research, e.g. exploring whether or how the aggres-
siveness of tokenization impacts faithfulness for
different languages.

H Disparity in tokenization
aggressiveness

Figure 4 shows the difference between multi- and
monolingual models in terms of tokenization ag-
gressiveness and faithfulness. Both are calculated
as the score of the multilingual model minus the
corresponding score of the monolingual counter-
part model. We observe that multilingual models
consistently tokenize more aggressively than their
monolingual counterparts. When the fertility of the
multilingual model is higher than its monolingual
counterpart (i.e. by more than 0.1), the multilingual
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RoBERTa BERT RoBERTa BERT

Dataset Multi Fertility Mono Fertility Fertility Diff Multi Fertility Mono Fertility Fertility Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff

SST 1.2941 1.1327 0.1615 1.2229 1.1237 0.0992 0.2358 0.0893 0.1466 0.1674 0.0863 0.0811
Agnews 1.3392 1.1519 0.1873 1.1780 1.1325 0.0455 0.2724 0.0765 0.1959 0.0884 0.0504 0.0380
MultiRC 1.3250 1.0901 0.2350 1.1365 1.0890 0.0475 0.2734 0.0618 0.2116 0.0768 0.0397 0.0371
Spanish CSL 1.3418 1.2018 0.1399 1.3796 1.2138 0.1658 0.2587 0.1596 0.0991 0.1716 0.0618 0.1098
Spanish PAWS-X 1.4706 1.4286 0.0419 1.3605 1.4034 -0.0429 0.3203 0.2441 0.0762 0.1303 0.1406 -0.0103
Spanish XNLI 1.4134 1.2387 0.1747 1.3679 1.2317 0.1362 0.3173 0.1819 0.1355 0.1543 0.0675 0.0868
French CSL 1.4511 1.3134 0.1377 1.4668 1.3768 0.0900 0.2921 0.1904 0.1016 0.1553 0.1091 0.0462
French PAWS-X 1.5818 1.3652 0.2166 1.4257 1.5555 -0.1298 0.3511 0.2195 0.1316 0.1257 0.1921 -0.0664
French XNLI 1.5598 1.3557 0.2041 1.4912 1.4353 0.0558 0.3307 0.2233 0.1074 0.1358 0.1011 0.0347

Table 17: Fertility and splitting ratio of multilingual and monolingual RoBERTa and BERT on various tasks.

RoBERTa BERT RoBERTa BERT

Dataset Multi Fertility Mono Fertility Fertility Diff Multi Fertility Mono Fertility Fertility Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff
Hindi BBC Nli 1.677 3.837 -2.160 2.129 1.570 0.560 0.400 0.828 -0.428 0.488 0.290 0.198
Hindi BBC Topic 1.467 3.560 -2.093 1.844 1.572 0.272 0.303 0.813 -0.510 0.359 0.261 0.098
Hindi XNLI 1.429 3.621 -2.192 1.749 1.506 0.243 0.291 0.968 -0.677 0.335 0.250 0.085
Avg 1.524 3.673 -2.148 1.908 1.549 0.358 0.331 0.869 -0.538 0.394 0.267 0.127

Table 18: The splitting ratio and fertility rate for Hindi on the three Hindi datasets.

Figure 4: The impact of tokenization aggressiveness
("Fertility Diff" and "Splitting Diff") on faithfulness
disparity (“Suff Diff” and “Comp Diff”).

model gains lower faithfulness.

H.1 Implementation of WECHSEL and
FOCUS

WECHSEL first copies all non-embedding parame-
ters from the English RoBERTa, and replaces the to-
kenizer with the tokenizer of French RoBERTa. In
this paper, we use the WECHSEL model in French
published by Minixhofer et al. (2022).11.

FOCUS extends the embedding matrix of XLM-
R with non-overlapping tokens from the French
RoBERTa tokenizer. These new tokens are repre-
sented as the weighted mean of overlapping tokens’
embeddings. The overlapping tokens between both
tokenizers are the anchor points to find the simi-
lar tokens for calculating the weighted mean. For
FOCUS, we use FastText embeddings in French to
obtain the static token embeddings and find simi-
lar tokens following (Dobler and de Melo, 2023).
We use the default hyperparameter settings in FO-

11https://github.com/CPJKU/wechsel

CUS.12

I Full Results of Faithfulness

Table 19 shows the Suff and Comp of each fea-
ture attribution on each dataset. Table 20 shows
the Soft-Suff and Soft-Comp of each feature at-
tribution on each dataset. All faithfulness scores
are presented as ratios after being divided by the
random baseline. The predictive results, F1 and
accuracy, are the average over three runs. The best
model from the three runs is taken to extract and
evaluate the rationales with each feature attribution
method separately.

12https://github.com/konstantinjdobler
/focus
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Dataset Model α Suff α∇α Suff x∇x Suff IG Suff DL Suff α Comp α∇α Comp x∇x Comp IG Comp DL Comp F1 Accuracy

SST mBERT 1.2063 1.205 0.9991 1.3995 1.2594 1.2576 1.2643 1.0433 1.4835 1.3135 0.8627 0.8627
SST XLM-R 1.0914 1.0976 1.0329 1.1125 1.0558 0.9242 0.9244 0.9537 1.0787 0.9878 0.8718 0.8719
SST BERT 1.174 1.1771 1.0207 1.1636 1.0726 1.5571 1.5597 1.1582 1.6837 1.1955 0.9156 0.9156
SST RoBERTa 1.2623 1.2693 1.3215 1.4922 1.1866 1.6021 1.6144 1.2723 1.438 1.3409 0.8893 0.8898
Agnews mBERT 1.7087 1.712 0.9817 1.4523 1.0573 3.2063 3.203 1.8811 2.8304 1.5659 0.9303 0.9304
Agnews XLM-R 2.0947 2.105 0.9287 1.4987 0.8806 2.0106 2.0107 1.2924 1.9369 1.1211 0.9261 0.9264
Agnews BERT 1.1553 1.1266 0.9105 1.0425 1.0719 2.5436 2.5968 1.5426 2.4037 1.6445 0.9357 0.9357
Agnews RoBERTa 1.3137 1.3242 0.8989 1.452 1.4351 2.1323 2.1408 1.66 1.9998 1.0854 0.9347 0.9346
MultiRC mBERT 1.1821 1.177 0.9611 1.0904 0.9612 1.0 1.0011 1.0004 1.0031 1.0065 0.7081 0.7186
MultiRC XLM-R 0.7907 0.829 0.9001 0.9677 1.0648 0.9247 0.9204 1.0124 1.0424 1.0109 0.718 0.7245
MultiRC BERT 1.5089 1.512 1.0829 1.1752 0.9888 0.9959 0.9948 0.9978 0.9942 1.0022 0.6815 0.6896
MultiRC RoBERTa 1.648 1.6946 0.9313 1.0268 1.3368 1.5195 1.4091 1.3068 1.6189 1.6841 0.7295 0.7317
KR mBERT 1.1229 1.0541 1.1878 1.3514 1.1128 1.0077 1.0082 0.9979 0.9989 0.9966 0.842 0.8424
KR XLM-R 1.4342 1.4154 0.8885 1.0773 0.938 0.9022 0.9014 1.0259 1.0089 1.0307 0.8401 0.8403
KR BERT (zh) 1.239 1.2241 1.0296 1.0242 0.9226 1.0105 1.0157 0.996 0.9907 1.0165 0.8399 0.84
KR RoBERTa (zh) 0.8657 0.8376 1.0082 0.9963 0.9782 0.9912 0.9932 0.9882 0.9901 0.9989 0.8443 0.8446
ANT mBERT 1.0425 1.0471 0.9258 0.9767 0.8555 1.049 1.0455 1.0228 1.0208 1.0915 0.6282 0.703
ANT XLM-R 1.0033 0.991 0.948 1.0205 1.0631 0.953 0.9601 0.9287 0.9879 1.0229 0.6588 0.7139
ANT BERT (zh) 1.2248 1.2319 0.9675 1.0107 0.9884 1.0216 1.0212 1.0032 1.0105 1.0051 0.6738 0.7237
ANT RoBERTa (zh) 1.0773 1.0945 1.0446 1.1371 1.1157 1.0063 1.0033 1.0057 1.0261 1.0252 0.5241 0.6601
ChnSentiCorp mBERT 1.4906 1.4942 1.0566 1.325 1.0146 2.1555 2.1608 1.324 2.0856 1.0983 0.9119 0.9119
ChnSentiCorp XLM-R 1.2483 1.2368 1.0077 1.055 0.9944 1.0723 1.0738 0.9931 1.1389 0.9942 0.9217 0.9217
ChnSentiCorp BERT (zh) 1.2466 1.2516 1.0455 1.09 1.0243 1.548 1.5388 1.2609 1.5762 1.1181 0.9355 0.9356
ChnSentiCorp RoBERTa (zh) 1.5482 1.5435 1.0476 1.1406 0.9543 1.6196 1.6116 1.2854 1.5884 1.2097 0.9428 0.9428
Spanish CSL mBERT 1.5244 1.5274 1.0999 1.6256 1.1076 1.898 1.8972 1.2135 1.9047 1.2905 0.886 0.8862
Spanish CSL XLM-R 1.1065 1.0896 0.9543 1.1994 1.0514 0.986 0.9887 0.9715 1.1801 0.9913 0.878 0.8782
Spanish CSL BERT (es) 0.9975 0.976 0.9957 1.1277 1.0645 1.0698 1.0788 1.0955 1.4271 1.0004 0.9062 0.9063
Spanish CSL RoBERTa (es) 1.2901 1.4932 1.5522 1.5633 1.5125 1.5761 1.3826 1.3995 1.0484 1.5366 0.8914 0.8917
Spanish XNLI mBERT 1.0031 1.0043 1.0258 1.0382 1.0331 1.0165 1.0164 0.9964 1.0028 0.9872 0.7877 0.7875
Spanish XNLI XLM-R 1.0314 1.0457 1.0887 1.0738 1.0521 1.0485 1.0479 1.0285 1.0469 0.9918 0.7958 0.7956
Spanish XNLI BERT (es) 1.0791 1.0922 1.037 1.0228 1.0331 1.0327 1.03 0.9938 1.0017 0.9721 0.7847 0.7842
Spanish XNLI RoBERTa (es) 1.3083 1.3127 1.5799 1.1294 0.9508 1.102 1.1 1.0525 1.0146 1.0096 0.7958 0.7956
Spanish Paws mBERT 1.1325 1.1348 0.9959 0.9616 0.9826 0.994 0.9952 0.9968 0.9999 1.0062 0.8811 0.8823
Spanish Paws XLM-R 1.1797 1.1944 1.0948 1.0857 0.9884 1.2369 1.2376 1.0415 1.0452 0.987 0.8703 0.872
Spanish Paws BERT (es) 0.9825 0.9919 1.0713 0.9047 0.9792 1.0016 0.997 0.9985 0.9988 0.9965 0.8555 0.8565
Spanish Paws RoBERTa (es) 0.9294 0.9379 1.0151 0.9883 0.9621 1.1832 1.1391 0.9047 1.1132 1.0781 0.8823 0.883
French CSL mBERT 1.4165 1.413 0.9956 1.4875 1.1035 2.1526 2.1624 1.1415 2.0983 1.3063 0.8772 0.8773
French CSL XLM-R 1.1488 1.16 0.9952 1.0022 1.0042 0.9769 0.9721 1.0087 1.1822 0.9862 0.8863 0.8865
French CSL BERT (fr) 1.0753 1.0857 0.9524 1.2311 0.8271 1.2186 1.211 0.9881 1.4274 0.852 0.8824 0.8825
French CSL RoBERTa (fr) 1.3471 1.3482 1.1526 1.4631 1.4639 2.0347 2.0311 1.4313 2.5163 2.3467 0.8663 0.8668
French XNLI mBERT 1.0997 1.0732 1.0201 1.1127 1.0719 1.0147 1.0175 0.9985 1.0194 1.0179 0.7748 0.7746
French XNLI XLM-R 1.0058 0.9517 1.1456 1.0234 1.0441 1.0544 1.0577 1.0324 1.027 0.9889 0.789 0.7885
French XNLI BERT (fr) 0.9795 0.9862 1.0337 1.0762 1.0819 1.0503 1.0484 1.0077 1.0389 0.9974 0.7643 0.7638
French XNLI RoBERTa (fr) 1.5508 1.5543 1.4092 1.183 1.1098 1.527 1.5246 1.2518 1.0796 0.9975 0.7326 0.7323
French Paws mBERT 1.1789 1.1849 0.9801 0.9469 0.8695 0.9808 0.9798 0.9963 0.998 1.0062 0.8781 0.8788
French Paws XLM-R 1.087 1.1021 1.0529 1.0192 0.9929 1.2295 1.2255 1.0622 0.997 1.0263 0.8774 0.8778
French Paws BERT (fr) 1.0875 1.0796 1.0948 1.0518 1.0596 0.9987 1.0022 1.0028 0.9994 1.0144 0.8274 0.8297
French Paws RoBERTa (fr) 0.9629 0.9655 1.0318 1.0507 1.0304 1.1575 1.1452 1.1168 1.4052 1.0831 0.7729 0.8678
Hindi BBC Nli mBERT 1.1255 1.1278 1.1362 1.175 1.0102 1.0044 1.0039 1.003 0.998 1.005 0.7862 0.7864
Hindi BBC Nli XLM-R 1.1809 1.1789 1.0289 1.0762 1.0578 1.18 1.19 1.0317 1.0842 1.0125 0.7887 0.7888
Hindi BBC Nli BERT (hi) 0.9799 0.9779 1.0385 1.0574 1.0385 1.0122 1.016 0.9989 1.0046 1.0045 0.8124 0.8128
Hindi BBC Nli RoBERTa (hi) 1.0349 1.0225 0.9337 0.9863 0.9436 0.6561 0.6876 1.1159 1.0714 0.9546 0.7953 0.8094
Hindi BBC Topic mBERT 1.4883 1.4913 1.2533 1.3573 0.984 1.4896 1.4907 1.2431 1.2887 1.0935 0.5123 0.5918
Hindi BBC Topic XLM-R 1.1243 1.1513 1.0942 1.2419 1.1083 1.1409 1.1413 1.0351 1.1042 1.0049 0.5606 0.6425
Hindi BBC Topic BERT (hi) 1.8746 1.8729 1.498 0.9446 1.0336 2.1692 2.1703 1.6329 0.8877 0.8943 0.617 0.6753
Hindi BBC Topic RoBERTa (hi) 0.9569 0.9527 0.9921 1.2189 0.9464 0.9823 0.9841 1.04 1.4999 0.9481 0.5268 0.6395
Hindi XNLI mBERT 1.1363 1.1501 1.2088 1.3084 1.071 1.0187 1.0159 1.0147 1.0359 0.9775 0.6754 0.676
Hindi XNLI XLM-R 1.0099 0.9844 0.985 1.0652 0.9954 1.1142 1.1161 1.0214 1.0578 1.0056 0.7235 0.7237
Hindi XNLI BERT (hi) 1.0199 1.0234 1.0304 1.0419 1.0032 1.0266 1.0248 1.0126 1.0165 1.0048 0.6607 0.6607
Hindi XNLI RoBERTa (hi) 1.4853 1.4795 1.0466 1.3833 1.0287 1.5834 1.589 1.0399 1.4781 0.8741 0.6316 0.6314

Table 19: Full results of Suff and Comp, and predictive performance. All faithfulness scores are divided by the
random baseline.
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Dataset Model α Suff α∇α Suff x∇x Suff IG Suff DL Suff α Comp α∇α Comp x∇x Comp IG Comp DL Comp

SST BERT 1.1174 1.1115 1.0811 1.3015 1.1817 1.2007 1.2005 1.2002 1.1995 1.1998
SST mBERT 1.2650 1.3227 1.0719 1.1442 1.1330 1.2095 1.2131 1.2053 1.1965 1.2158
SST RoBERTa 1.1197 1.0435 1.1384 1.2683 1.1531 1.1977 1.1985 1.2008 1.1992 1.1970
SST XLM-R 1.2423 1.1081 1.1750 1.1196 1.2824 1.2054 1.2038 1.2006 1.2022 1.2069
Agnews BERT 1.2185 1.2676 1.0728 1.0625 1.0420 1.2064 1.2095 1.2079 1.2023 1.2045
Agnews mBERT 1.1117 1.3246 1.2289 1.0848 1.0826 1.2014 1.2007 1.2003 1.2000 1.1996
Agnews RoBERTa 1.0688 1.0713 1.3344 1.3121 1.2398 1.2016 1.1992 1.2008 1.1983 1.2024
Agnews XLM-R 1.2147 1.3088 1.3372 1.0413 1.1902 1.1984 1.1972 1.1978 1.1996 1.2001
MultiRC BERT 1.2937 1.2236 1.2478 1.0459 1.3163 1.1974 1.1963 1.1986 1.1952 1.2012
MultiRC mBERT 1.1990 1.0981 1.1447 1.2792 1.2093 1.2023 1.2028 1.2003 1.2017 1.2033
MultiRC RoBERTa 1.2802 1.1747 1.3438 1.2485 1.3111 1.2059 1.1938 1.2087 1.2030 1.1969
MultiRC XLM-R 1.2223 1.2089 1.3215 1.1894 1.3373 1.1825 1.1719 1.1878 1.1771 1.1932
ChnSentiCorp BERT(zh) 1.1092 1.0514 1.1237 0.9149 0.8834 1.0038 0.9987 1.0025 0.9975 1.0013
ChnSentiCorp mBERT 1.0982 1.1434 1.1168 0.9094 0.9811 0.9983 0.9997 0.9990 0.9977 1.0003
ChnSentiCorp RoBERTa(zh) 1.1400 0.8794 0.9780 1.1358 0.9518 1.0042 1.0052 1.0011 1.0032 1.0022
ChnSentiCorp XLM-R 0.8697 1.1414 1.0343 1.1033 1.0253 0.9964 0.9999 0.9981 0.9973 1.0007
KR BERT(zh) 0.8564 0.9301 1.0576 0.9246 1.0910 1.0001 1.0002 0.9999 0.9998 1.0003
KR mBERT 0.9053 0.9865 1.1194 0.9745 0.9071 0.9990 1.0001 0.9997 1.0006 0.9993
KR RoBERTa(zh) 0.9594 0.9000 1.0735 1.1351 0.9105 0.9991 1.0013 0.9996 1.0009 1.0004
KR XLM-R 0.9091 1.1106 0.9407 1.0584 1.1169 0.9911 0.9938 1.0038 1.0016 0.9964
ANT BERT(zh) 0.8968 1.0331 1.1381 1.0937 1.0724 1.0001 0.9014 1.0001 1.0213 1.0002
ANT mBERT 0.9319 0.9484 0.8653 0.9424 1.0193 1.0048 1.0034 1.0071 1.0022 1.0059
ANT RoBERTa(zh) 0.8758 1.0080 1.0925 0.9138 0.8952 1.0154 1.0031 1.0062 1.0125 1.0093
ANT XLM-R 1.1315 0.8814 1.1122 1.1218 1.0655 0.9949 1.0105 0.9905 1.0069 1.0030
Hindi XNLI BERT(hi) 0.9956 0.9982 0.9964 0.9973 0.9991 1.0038 1.0017 1.0030 1.0024 1.0009
Hindi XNLI mBERT 0.9927 1.0037 0.9899 0.9955 0.9983 1.0039 1.0000 1.0049 1.0030 1.0020
Hindi XNLI RoBERTa(hi) 0.9973 0.9991 1.0009 0.9982 0.9964 1.0051 1.0017 0.9984 1.0034 1.0069
Hindi XNLI XLM-R 1.0002 0.9985 0.9996 1.0007 0.9979 0.9973 0.9999 0.9981 0.9963 1.0008
Hindi BBC Nli BERT(hi) 0.8755 1.1450 1.1292 0.9658 0.9224 1.0033 1.0065 0.9986 1.0015 1.0050
Hindi BBC Nli mBERT 0.9492 0.8837 1.1009 1.0972 1.0853 1.0001 0.9993 1.0018 1.0024 1.0030
Hindi BBC Nli RoBERTa(hi) 0.8649 1.1123 0.9938 1.1217 0.9366 0.9789 0.9914 1.0917 1.0068 1.0853
Hindi BBC Nli XLM-R 1.0760 0.9141 1.1469 1.0084 1.1297 0.9916 0.9960 1.0112 0.9975 0.9911
Hindi BBC Topic BERT(hi) 0.9914 0.8890 0.9382 0.8912 1.0277 0.9976 0.9992 0.9969 1.0008 0.9984
Hindi BBC Topic mBERT 1.0715 0.8891 1.0780 0.9357 1.1289 0.9984 0.9977 0.9991 1.0004 0.9998
Hindi BBC Topic RoBERTa(hi) 1.0792 0.9567 1.0483 1.0080 1.0797 0.9978 1.0011 0.9989 1.0032 1.0022
Hindi BBC Topic XLM-R 0.9972 1.0010 1.1432 1.1174 1.0763 0.9999 0.9981 0.9961 1.0007 0.9972
French CSL BERT(fr) 0.9700 1.1767 1.1052 1.2127 1.1523 1.1056 1.0937 1.1078 1.0968 1.1029
French CSL mBERT 1.1124 1.0003 1.0063 1.1548 1.1742 1.1014 1.1023 1.1019 1.1006 1.1028
French CSL RoBERTa(fr) 1.0482 0.9482 1.1602 1.1290 1.0932 1.1006 1.0994 1.0987 1.0975 1.0981
French CSL XLM-R 0.9456 1.1939 0.9480 1.0073 1.1293 1.1014 1.0941 1.1039 1.1064 1.0966
French Paws BERT(fr) 1.0163 1.0772 1.0279 1.0206 1.2284 1.0972 1.1007 1.0986 1.0979 1.0993
French Paws mBERT 1.0518 1.1542 1.1038 1.2155 1.0163 1.1018 1.1006 1.1022 1.1026 1.1014
French Paws RoBERTa(fr) 1.1262 1.0503 1.0594 1.0303 1.1667 1.0894 1.0819 1.0678 1.1084 1.0764
French Paws XLM-R 1.0932 1.1402 0.9883 1.1941 1.1115 1.1021 1.0968 1.0991 1.1000 1.0975
French XNLI BERT(fr) 1.0956 1.0985 1.1030 1.0971 1.1015 1.1026 1.1009 1.0982 1.1017 1.0991
French XNLI mBERT 1.0972 1.0822 1.0934 1.0897 1.0859 1.1019 1.1056 1.1028 1.1038 1.1047
French XNLI RoBERTa(fr) 1.0994 1.1012 1.0981 1.1006 1.0987 1.1012 1.0975 1.1035 1.0988 1.1024
French XNLI XLM-R 1.1003 1.0986 1.1007 1.0994 1.0999 1.0959 1.1000 1.0949 1.0980 1.0970
Spanish CSL BERT(es) 1.2813 0.9915 1.2320 1.1154 1.1478 1.1456 1.1568 1.1545 1.1522 1.1478
Spanish CSL mBERT 1.0206 1.1762 1.1969 1.0003 0.9930 1.1537 1.1550 1.1524 1.1564 1.1576
Spanish CSL RoBERTa(es) 0.9958 1.0382 1.0512 1.2614 1.2268 1.1541 1.1562 1.1602 1.1520 1.1583
Spanish CSL XLM-R 1.0035 1.2053 1.2477 1.0237 1.2107 1.1447 1.1465 1.1483 1.1474 1.1456
Spanish Paws BERT(es) 1.2447 1.2738 1.0227 0.9928 1.1452 1.1539 1.1487 1.1526 1.1513 1.1474
Spanish Paws mBERT 1.2031 1.1840 1.2014 1.0241 1.2006 1.1504 1.1516 1.1522 1.1498 1.1492
Spanish Paws RoBERTa(es) 1.1039 1.0871 1.1247 1.2679 1.2201 1.2160 1.1559 1.0993 1.3304 1.3864
Spanish Paws XLM-R 1.0206 1.1617 1.1097 1.0455 1.1732 1.1466 1.1431 1.1478 1.1458 1.1448
Spanish XNLI BERT(es) 1.1556 1.1593 1.1575 1.1537 1.1519 1.1479 1.1465 1.1472 1.1486 1.1493
Spanish XNLI mBERT 1.1435 1.1459 1.1485 1.1534 1.1558 1.1524 1.1519 1.1515 1.1505 1.1501
Spanish XNLI RoBERTa(es) 1.1491 1.1497 1.1484 1.1487 1.1494 1.1534 1.1511 1.1556 1.1545 1.1523
Spanish XNLI XLM-R 1.1475 1.1478 1.1484 1.1481 1.1487 1.1526 1.1519 1.1505 1.1512 1.1497

Table 20: Full results of Soft-Suff and Soft-Comp. All faithfulness results are divided by the random baseline.
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