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Abstract

Prompt-based methods have achieved promis-
ing results in most few-shot text classifica-
tion tasks. However, for readability assess-
ment tasks, traditional prompt methods lack
crucial linguistic knowledge, which has already
been proven to be essential. Moreover, previ-
ous studies on utilizing linguistic features have
shown non-robust performance in few-shot set-
tings and may even impair model performance.
To address these issues, we propose a novel
prompt-based tuning framework that incorpo-
rates rich linguistic knowledge, called Feature
Prompt Tuning (FPT). Specifically, we extract
linguistic features from the text and embed
them into trainable soft prompts. Further, we
devise a new loss function to calibrate the simi-
larity ranking order between categories. Exper-
imental results demonstrate that our proposed
method FTP not only exhibits a significant
performance improvement over the prior best
prompt-based tuning approaches, but also sur-
passes the previous leading methods that incor-
porate linguistic features. Also, our proposed
model significantly outperforms the large lan-
guage model gpt-3.5-turbo-16k in most cases.
Our proposed method establishes a new archi-
tecture for prompt tuning that sheds light on
how linguistic features can be easily adapted to
linguistic-related tasks.

1 Introduction

Readability assessment (RA) is the task of eval-
uating the reading difficulty of a given piece of
text (Vajjala, 2022). It has wide applications, such
as choosing appropriate reading materials for lan-
guage teaching (Collins-Thompson and Callan,
2004), supporting readers with learning disabili-
ties (Rello et al., 2012), and ranking search results
by their reading levels (Kim et al., 2012).

Early works in RA mainly focused on designing
handcrafted linguistic features such as word length

∗Corresponding author.

Figure 1: Comparison of previous prompt tuning frame-
works and our proposed Feature Prompt Tuning (FPT).
T (·) and verbalizer(·) denote the template and verbal-
izer function, respectively. FPT utilizes both hard and
soft tokens which are projected from the linguistic fea-
tures extracted from the input x.

(in characters/syllables), sentence length, and usage
of different difficulty-level words. In recent years,
RA has been dominated by neural network-based
architectures (Meng et al., 2021; Azpiazu and Pera,
2019). The key challenge of these methods is to
learn a better text representation that can capture
deep semantic features. Current research has also
explored different ways of combining linguistic
features with pretrained language models (PLMs),
achieving state-of-the-art results on numerous RA
datasets (Li et al., 2022; Lee et al., 2021). However,
these studies have mainly focused on fine-tuning
with a large amount of labelled data, while only a
few studies have explored few-shot settings.

Prompt-based tuning, shown to be a powerful
method for the classification task in the few-shot
setting, makes full use of the information in PLMs
by reformulating classification tasks as cloze ques-
tions. Different prompt-based tuning strategies are
illustrated in Figure 1. The hard prompt tuning
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applies a template with [MASK] token to the origi-
nal input and maps the predicted label word to the
corresponding class (Han et al., 2022; Shin et al.,
2020). The performance is sensitive to the qual-
ity of template, which introduces time-consuming
and labor-intensive prompt design and optimiza-
tion. To address this problem, researchers propose
soft prompt strategies, where continuous embed-
dings of trainable tokens replace the hard template
and are optimized by training (Liu et al., 2021;
Lester et al., 2021).

Despite the success in a range of text classifica-
tion tasks, existing prompt-based tuning methods
still suffer from inferior performance in RA. This
might be attributed to the lack of linguistic knowl-
edge which has been demonstrated to play a crucial
role in RA (Vajjala, 2022; Qiu et al., 2021; Li et al.,
2022). Meanwhile, RA differs from general classi-
fication tasks in that there exists a notion of ranking
order between classes. Our intuition behind the uti-
lization of linguistic knowledge is that the learned
representations of different levels should preserve
the similarity relationship analogous to that of orig-
inal linguistic features of different levels.

Motivated by the above insights, in this paper,
we propose a novel prompt-based tuning method
that incorporates rich linguistic knowledge, called
Feature Prompt Tuning (FPT), as shown in the
bottom of Figure 1. Specifically, our methodology
begins with extracting linguistic features from the
text. These extracted features are subsequently em-
bedded into feature prompts, functioning as train-
able soft prompts. Contrary to the conventional
prompt tuning frameworks, our model can explic-
itly benefit from linguistic knowledge. Further-
more, we devise a new loss function to calibrate
the similarity relationships between the embedded
features across different categories. Our approach
is straightforward and effective, offering wide ap-
plicability to other tasks where the importance of
handcrafted features is emphasized.

To verify the effectiveness of our proposed meth-
ods, we conduct extensive experiments on three
RA datasets, including one Chinese data (Li et al.,
2022) and two English datasets, WeeBit (Vajjala
and Meurers, 2012) and Cambridge (Xia et al.,
2019). By incorporating linguistic knowledge, our
proposed model FPT improves significantly over
other prompt-based methods. For instance, in the
2-shot setting, FPT brings a relative performance
gain of 43.9% over the traditional soft prompt
method on the Chinese dataset and 5.50% on En-

glish Weebit. Moreover, compared to other feature
fusion methods, FPT outperforms the previous best
method Projecting Feature (PF) (Li et al., 2022) by
43.19% on Chinese data and 11.55% on English
Weebit data. Also, we experiment on the Large
Language Model (LLM), demonstrating the supe-
riority of our approach on RA. We will make our
code public available 1. We summarize our contri-
butions as follows:

• We propose a novel prompt-based tuning
framework, Feature Prompt Tuning (FPT),
which incorporates rich linguistic knowledge
for RA.

• We design a new calibration loss to ensure the
linguistic features retain their original similar-
ity information during optimization.

• Our experimental results show that our
method outperforms other prompt-based tun-
ing methods and effectively leverages linguis-
tic features, leading to better and more stable
performance improvements than previous ap-
proaches.

2 Related Works

2.1 Readability Assessment
Early works have explored a wide range of lin-
guistic features as measurements for readability.
Flesch (1948) performed regression over features
such as average word length in syllable; Schwarm
and Ostendorf (2005) trained an SVM over features
including LM perplexity and syntactic tree height;
Pitler and Nenkova (2008) illustrated that discourse
relations can be a good predictor of readability.

Recent works largely employ deep learning ap-
proaches for RA. Several deep architectures, in-
cluding BERT (Devlin et al., 2018), HAN (Yang
et al., 2016), and multi-attentive RNN were applied
to achieve strong performance without feature en-
gineering (Martinc et al., 2021; Azpiazu and Pera,
2019). However, the performance of neural models
tends to fluctuate a lot across different RA datasets
(Deutsch et al., 2020), suggesting that relying only
on neural networks might not be a robust solution
for RA. Meanwhile, later works have shown that
a hybrid approach combining transformer-based
encoders with linguistic features can achieve even
higher performance (Lee et al., 2021; Lee and Va-
jjala, 2022; Li et al., 2022). Lee and Lee (2023)

1https://github.com/Wzy232303/FPT
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applied a prompt-based learning based on seq2seq
model such as T5 and BART, treating RA as a
text-to-text generative task. Despite the novelty of
their method, it was not included in our baselines
since it is hard for this method to draw a meaning-
ful comparison against our approach. In addition
to the fundamental discrepancy in the task defi-
nition, their method focuses on optimizing hard
prompts and combining multiple datasets during
training, whereas our method focuses on incorpo-
rating linguistic knowledge without leveraging mul-
tiple datasets.

2.2 Prompt-based Tuning

Fine-tuning PLMs have shown their prevalence in
various NLP tasks. PLMs, such as BERT (Devlin
et al., 2018), GPT (Radford et al., 2018), XLNet
(Xia et al., 2019), RoBERTa (Liu et al., 2019) and
T5 (Raffel et al., 2020), have been proposed with
varied self-supervised learning architectures. It
has been demonstrated that larger models tend to
perform better in many learning scenarios (Brown
et al., 2020), which stimulated PLMs with billions
of parameters to emerge.

Fine-tuning large PLMs may be prohibitive,
and there exist a significant gap between pretrain-
ing tasks and downstream tasks. Prompt tuning
addresses this challenge by reformulating down-
stream tasks as a language modeling problem and
optimizing the prompt. Prompts are used to probe
PLM’s intrinsic knowledge to perform a task (Min
et al., 2022), and various techniques of prompting
have been explored to aid PLM better: hard prompt
(Shin et al., 2020; Schick and Schütze, 2021), soft
prompt (Lester et al., 2021; Li and Liang, 2021),
verbalizer (Cui et al., 2022) and pretrained prompt
tuning (Gu et al., 2021).

The effectiveness of prompt tuning has been val-
idated in various NLP tasks, including sentiment
analysis (Wu and Shi, 2022), named entity recog-
nition (Ma et al., 2022), relation extraction (Chen
et al., 2022) and semantic parsing (Schucher et al.,
2021). However, the potential of prompt tuning
is less explored in RA. In this work, we focus on
the effectiveness of linguistic features for modeling
readability, and utilize linguistic features to guide
prompt tuning.

3 Background

We model RA as a text classification task. For-
mally, a RA dataset can be denoted as D = {X ,Y},

where X is the text set and Y is the class set.
Each instance x ∈ X consists of several tokens,
x = {w1, w2, ..., w|x|}, and is annotated with a
label y ∈ Y , indicating the reading difficulty.

3.1 Fine-tuning PLMs for RA
Given a PLM M for RA, fine-tuning methods first
convert a text x = (w1, w2, ..., w|x|) into an in-
put sequence ([CLS], w1, w2, ..., w|x|, [SEP]). The
PLM encodes this sequence into the hidden vectors
h = (h[CLS], h1, h2, ..., h|x|, h[SEP]).

In the conventional fine-tuning, an additional
classifier FC is trained on top of the [CLS] embed-
ding h[CLS]. This classifier produces a probability
distribution over the class set Y through a softmax
function, which can be formulated as:

P (·|x) = Softmax(FC(h[CLS])),

The objective of fine-tuning is to minimize the
cross-entropy loss between the predicted probabil-
ity distribution P (·|x) and the ground-truth label
y:

Lclassfication = − 1

|X |
∑

x∈X
logP (y|x).

3.2 Prompt-based Tuning
Prompt-based tuning aims to bridge the gap be-
tween pretraining tasks and downstream tasks, as
illustrated in Figure 1.

Hard Prompt. It typically consists of a template
T (·), which transforms the input x into a prompt in-
put xprompt, and a set of label words V that are con-
nected to the label space through a mapping func-
tion Φ : V → Y , often referred to as the verbalizer.
The prompt input contains at least one [MASK]
token for the model to fill with label words.

Taking an example in RA, xprompt could take
the form of

xprompt = T (x) = "It is [MASK] to read: x".

In this case, the input embedding sequence of
xprompt is denoted as

(e("It is"), e([MASK]), e("to read: "), e(x)).

Soft Prompt. It replaces hard tokens in the tem-
plate with trainable soft tokens [h1, ..., hl], yielding
an input embedding sequence of

(h1, ..., hl, e([MASK]), e(x)).
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Figure 2: The architecture of the proposed Feature Prompt Tuning. Column-wise ranking orders of similarity
matrices are denoted with numbers.

Hybrid Prompt. It combines soft tokens with
hard prompt tokens T to form the input embedding
sequence:

(h1, ..., hl, e(T ), e([MASK]), e(x)).

By feeding the input embedding sequence of
xprompt into M, the probability distribution over
the class set Y is modeled by:

PM(y|x) = PM([MASK] = Φ(y)|xprompt)

The learning objective of prompt-based tuning is
to minimize the cross entropy loss:

Lclassification = − 1

|X |
∑

x∈X
logPM(y|x)

4 Feature Prompt Tuning

In this section, we propose a novel method for RA
with prompt-based tuning, named Feature Prompt
Tuning (FPT). The architecture of our model is
illustrated in Figure 2. Specifically, we extract lin-
guistic features from the texts and embed them into
soft prompts. Then, we employ a loss function to
calibrate the similarity relationship between em-
bedded features of different classes. We adopt an
alternating procedure to optimize the model with
respect to the classification loss and calibration
loss.

4.1 Feature Prompt Construction
Feature Extraction Our approach for extract-
ing linguistic features from text is consistent with

previous works (Li et al., 2022; Lee et al., 2021).
For English texts, the linguistic features are ex-
tracted using the lingfeat toolkit (Lee et al., 2021),
which includes discourse, syntactic, lexical, and
shallow features. In terms of Chinese linguistic
features, we directly utilize the zhfeat toolkit (Li
et al., 2022) to extract character, word, sentence,
and paragraph-level features. Specific details are
provided in Appendix A. For an input text x, we
denote the extracted features as fx, which is a α-
dimensional vector with α representing the number
of extracted features.

Feature Embedding To incorporate linguistic
knowledge into prompt-based tuning, we trans-
form linguistic feature fx into l distinct vectors
{v1, ..., vl} which function as the embeddings of
soft tokens, as follows:

{v1, ..., vl} = MultiHeadMLP(fx).

Here, MultiHeadMLP is a multi-head MLP with l
output heads. Each head consists of a series of fully
connected layers followed by non-linear activation
functions.

The purpose of using a multi-head MLP is to
allow the model to map fx into separate vector
spaces and learn multiple aspects of the linguistic
features. This enables the model to better capture
the relationships between different features and
their contribution to RA.

Ultimately, we formulate the input embedding
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sequence of xprompt as follows:

(v1, ..., vl, e(T ), e([MASK]), e(x)).

This input sequence is passed through the PLM
M to calculate Lclassification loss as described in
Section 3.2.

4.2 Inter-class Similarity Calibration

We denote F = {Fc1 , · · · , Fcn} as the collection
of linguistic features for the dataset D, which con-
sists of n classes. Here, Fci = {fxi1 , · · · , fxik

}
signifies the extracted features of k samples which
belong to i-th class. We apply average pooling
to the feature embeddings of each sample in F ,
resulting in a set of embedded linguistic features,
denoted as F ′ = {F ′

c1 , · · · , F ′
cn}. To gauge the

similarity between any two classes Fcm and Fcn ,
we employ a pairwise approach based on cosine
similarity, expressed as:

smn =
1

k2

k∑

i=1

k∑

j=1

cos(fxmi , fxnj )

With the feature representation and similarity
function in place, we can define our calibration
objective. The fundamental intuition is that the
distribution of extracted linguistic features should
be preserved as much as possible. Namely, if the
similarity between Fcm and Fcn is relatively low,
the similarity between F ′

cm and F ′
cn should also

be proportionately low, and vice versa. Therefore,
during the training process, we devise an objective
function based on a list-wise ranking loss function
ListMLE (Xia et al., 2008), to maintain this initial
ranking relationship.

More specifically, we compute the similarity be-
tween each pair of classes within F to generate the
similarity matrix:

M =




s11 s12 · · · s1n
s21 s22 · · · s2n

...
...

. . .
...

sn1 sn2 · · · snn




Likewise, we can derive the similarity matrix M ′

for F ′.
We then use Π = {π1, π2, · · · , πn} to denote

the ranking order of the columns in M , where πi
represents the ranking order of the i-th column.
We obtain M̂ ′ by rearranging the columns of M ′

according to Π:

M̂ ′ =




s′π11
s′π12

· · · s′π1n

s′π21
s′π22

· · · s′π2n
...

...
. . .

...
s′πn1

s′πn2
· · · s′πnn




Finally, we aim to minimize the following loss
function for similarity calibration:

Lcalibration = −
n∑

k=1

log
n∏

i=1

exp(s′πik
)∑n

j=i exp(s
′
πjk

)

4.3 Training Procedure

Training Objectives Given the dataset D and
the linguistic feature set F , we establish two train-
ing objectives. The primary objective is to mini-
mize the classification loss Lclassification, which
is computed based on the difference between the
predicted and actual class labels. The secondary ob-
jective is to calibrate the inter-class similarity of the
mapped features by minimizing the loss function
Lcalibration defined in Section 4.2.

Algorithm 1 Alternating Training Procedure for
Feature Prompt Learning

1: Initialize model parameters M and feature em-
beddings f

2: for each epoch do
3: Shuffle dataset D
4: for each batch b in D do
5: Compute Lclassification for b using M

and f
6: Update M and f by minimizing

Lclassification

7: end for
8: Compute Lcalibration for D using f
9: Update f by minimizing Lcalibration

10: end for

Alternating Training Procedure For training
both loss functions, we adopt an alternating training
procedure, as encapsulated in Algorithm 1. This
procedure iteratively updates the model parame-
ters and feature embeddings by minimizing the
classification loss Lclassification and the similarity
calibration loss Lcalibration, respectively.

In each epoch, the dataset D is shuffled to en-
sure the model is not biased towards any particular
ordering of the data. For each batch b in D, the
classification loss Lclassification is computed using
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the current model parameters M and feature em-
beddings f . The model parameters M and feature
embeddings f are then updated by minimizing this
loss. Subsequently, the similarity calibration loss
Lcalibration is computed using the updated feature
embeddings f for the epoch, and the feature em-
beddings are updated by minimizing this loss . This
process is repeated for each epoch. The alternating
training procedure ensures that the model learns to
classify the data accurately while maintaining the
inter-class similarity structure of the feature space.

5 Experimental Setting

5.1 Datasets

To evaluate the effectiveness of our proposed
method, we conduct experiments on one Chinese
dataset and two English datasets, following the
same data split as Li et al. (2022). The statistics of
the datasets can be found in Table 1.

ChineseLR (Li et al., 2022) is a Chinese dataset
collected from textbooks of the middle and primary
schools of more than ten publishers. Following
the standards specified in the Chinese Curriculum
Standards for Compulsory Education, all texts are
divided into five difficulty levels.

WeeBit (Vajjala and Meurers, 2012) is often
considered as the benchmark data for English RA.
It was initially created as an extension of the well-
known Weekly Reader corpus.

Cambridge (Xia et al., 2019) consists of read-
ing passages from the five main suite Cambridge
English Exams (KET, PET, FCE, CAE, CPE).

5.2 Baselines 1: Prompt-based Methods

For prompt-based methods, we compare with hard,
soft, and hybrid prompts. To avoid the influence
of verbalizers on experimental results, we adopt a
soft verbalizer (Hambardzumyan et al., 2021) that
employs a linear layer classifier across all prompt-
based methods.

Hard Prompt (HP): We implement four manu-
ally defined templates for prompt tuning and select
a template with the best performance on the devel-
opment set. As for FPT in Table 2, we report the
test set performance averaged over the four tem-
plates. This setting poses a challenge to FPT, as the
averaged performance of FPT should outperform
the best performance of HP to demonstrate its ef-
fectiveness. Details of the templates can be found
in Appendix B.

Dataset WeeBit Cambridge ChineseLR
Level # Avg Len # Avg Len # Avg Len

1 625 152 60 141 814 266
2 625 189 60 271 1063 679
3 625 295 60 617 1104 1140
4 625 242 60 763 762 2165
5 625 347 60 751 417 3299

All 3125 245 300 509 4160 1255

Table 1: Statistics of RA datasets. #: number of the pas-
sages. Avg Len: average tokens numbers per passage.

Soft Prompt (SP): It replaces manually defined
prompts with trainable continuous prompts. We
follow the same implementation as Lester et al.
(2021) and use randomly sampled vocabulary to
initialize the prompts.

Hybrid Prompt (HBP): It concatenates train-
able continuous prompts to the wrapped input em-
beddings. We adopt the implementation from Gu
et al. (2022).

P-tuning: A hybrid prompt method, which re-
places some tokens in manually designed prompts
with soft prompts and only retains task-relevant an-
chor words. The soft prompts are embedded with a
bidirectional LSTM and a MLP (Liu et al., 2021).

5.3 Baselines 2: Fusion Methods
We also compare with the methods fusing linguistic
features and PLMs from previous studies.

SVM: Use the single numerical output of a neu-
ral model (BERT) as a feature itself, joined with
linguistic features, and then fed them into SVM
(Lee et al., 2021; Deutsch et al., 2020).

FT: Standard fine-tuning method without lin-
guistic features, where the hidden representation of
[CLS] token is used for classification. This base-
line validates whether the linguistic features indeed
have a positive effect.

Concatenation (Con): Fine-tune with linguistic
features, in which the linguistic features are directly
concatenated to the hidden representation of the
[CLS] token (Meng et al., 2021; Qiu et al., 2021).

PF: Fuse linguistic features with hidden repre-
sentations of [CLS] through projection filtering (Li
et al., 2022).

5.4 Implementation Details
Under the few-shot setting, we randomly sample
k = 1, 2, 4, 8, 16 instances in each class from the
training and development set. For each k-shot ex-
periment, we sample 4 different training and dev
sets and repeat experiments on each training set
for 4 times. We select the best model checkpoint
based on the performance of the development set
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and evaluate the models on the entire test set. As
for the evaluation metric, we use accuracy in all
experiments and take the mean values as the final
results.

All our models and baselines are implemented
with the PyTorch (Paszke et al., 2019) framework
and Huggingface transformers (Wolf et al., 2020).
We use BERT (Devlin et al., 2018) as our Pre-
trained Language Model (PLM) backbone. We use
"bert-base-uncased" for English datasets and "bert-
base-chinese" for the Chinese dataset. During train-
ing, we employ the AdamW optimizer (Loshchilov
and Hutter, 2019) with a weight decay of 0.01 and
a warm-up ratio of 0.05. We tune the model with
the batch size of 8 for 30 epochs, and the learning
rate is 1e-5. All experiments are conducted with
four NVIDIA GeForce RTX 3090s.

6 Results and Analysis

k Methods ChineseLR Weebit Cambridge

1

HP 29.49(5.21) 41.83(4.72) 36.25(8.49)
SP 31.22(4.70) 46.61(3.63) 41.73(8.45)
HBP 33.51(5.19) 44.46(5.02) 42.04(9.12)
P-tuning 33.36(4.12) 41.23(4.11) 40.36(7.15)

FPT(ours) 39.63(6.38) 43.61(4.50) 44.17(7.12)

2

HP 28.38(8.14) 49.23(2.85) 46.88(9.31)
SP 32.14(5.54) 52.22(4.35) 49.13(8.38)
HBP 33.38(7.02) 52.52(2.66) 49.56(7.12)
P-tuning 35.12(4.20) 50.71(3.87) 48.97(8.47)

FPT(ours) 46.24(5.62) 55.10(4.04) 59.79(10.2)

4

HP 36.56(5.18) 53.41(4.50) 48.75(8.49)
SP 38.78(2.83) 54.96(3.89) 49.36(9.14)
HBP 39.81(2.67) 56.88(3.52) 50.13(8.77)
P-tuning 38.45(3.09) 54.35(3.21) 48.85(9.64)

FPT(ours) 48.93(3.21) 57.70(4.63) 53.54(7.21)

8

HP 41.21(4.83) 61.31(3.13) 55.42(6.86)
SP 42.72(2.82) 62.02(2.67) 56.75(6.89)
HBP 41.93(4.12) 63.37(2.02) 57.34(9.28)
P-tuning 42.81(4.04) 61.81(3.28) 56.90(7.23)

FPT(ours) 52.66(5.00) 64.92(2.75) 59.38(6.58)

16

HP 47.35(3.69) 63.75(5.41) 61.67(8.98)
SP 47.44(2.09) 67.54(4.56) 63.77(7.43)
HBP 47.08(3.11) 67.30(4.69) 63.98(7.34)
P-tuning 46.26(3.19) 65.52(3.84) 62.03(9.62)

FPT(ours) 55.25(2.93) 68.19(4.21) 65.00(4.25)

Table 2: Experimental results comparing with prompt-
based methods. We report the mean performance and
the standard deviation in brackets. The best results are
in bold, and the best results of previous prompt-based
methods are underlined.

6.1 Comparison with Prompt-based Methods
Table 2 shows the results of our proposed method
FPT and prompt-based baselines under the few-

k Methods ChineseLR Weebit Cambridge

1

FT 28.59(4.88) 45.99(2.94) 34.17(4.33)
SVM 25.34(3.87) 44.82(3.14) 35.31(5.23)
Con 28.53(4.68) 43.81(3.88) 33.33(10.1)
PF 30.13(3.99) 44.01(2.91) 35.11(9.12)

FPT(ours) 33.29(4.80) 46.67(3.50) 43.96(7.09)

2

FT 22.87(7.19) 48.79(3.49) 44.17(10.4)
SVM 23.95(9.28) 49.55(3.78) 43.99(11.0)
Con 25.61(8.21) 49.29(2.88) 41.67(8.16)
PF 26.12(7.21) 50.23(2.81) 41.52(7.34)

FPT(ours) 37.40(4.77) 56.03(3.48) 55.83(6.72)

4

FT 36.64(5.37) 52.46(4.28) 47.50(6.29)
SVM 37.11(6.88) 53.03(5.65) 47.58(8.67)
Con 36.64(5.37) 52.46(4.28) 47.50(6.29)
PF 37.13(5.11) 53.18(2.99) 48.46(4.79)

FPT(ours) 44.88(3.27) 56.17(3.84) 55.00(4.86)

8

FT 40.45(2.91) 61.11(3.15) 61.46(7.81)
SVM 40.52(3.67) 60.98(5.78) 61.55(9.10)
Con 41.65(2.98) 58.41(3.31) 58.96(7.43)
PF 44.00(2.86) 59.32(2.97) 55.62(10.9)

FPT(ours) 47.60(3.66) 62.40(3.30) 64.17(5.95)

16

FT 45.73(4.11) 65.93(5.50) 71.04(7.97)
SVM 46.85(3.72) 63.72(4.98) 71.22(8.15)
Con 48.33(3.99) 64.52(4.73) 71.46(6.12)
PF 48.66(3.20) 65.08(4.60) 69.38(6.79)

FPT(ours) 53.94(3.16) 68.10(3.25) 69.17(7.77)

Table 3: Experimental results comparing with feature
fusion methods. Con means Concatenation. For a fair
comparison, here FPT concatenates the embedded lin-
guistic features to the embeddings of the input sequence
(without hard prompt template) and outputs the classi-
fication logits over [CLS] token embedding instead of
[MASK].

shot setting. (1) Our method FPT significantly
outperforms nearly all baseline methods across all
three datasets under different shots, demonstrat-
ing that our method exhibits greater robustness
and adaptability to variations in data sizes and lan-
guages. (2) FTP particularly excels on the Chine-
seLR dataset, and it outperforms the soft prompt
(SP) method by 8.41, 14.1, 10.15, 9.94 and 7.9
points under 1, 2, 4, 8, 16 shots, respectively. (3)
In the task of RA, the soft prompt method gener-
ally outperforms the hard prompt. Interestingly,
the hybrid prompt, a combination of both, does
not always yield better results than the standalone
soft prompt. This could be attributed to the inher-
ent challenge in designing and selecting effective
hard prompts for RA. Nevertheless, as a hybrid
prompt approach that integrates linguistic knowl-
edge, our proposed method continues to exhibit
robust performance, demonstrating its adaptability
and effectiveness.
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6.2 Comparison with Fusion Methods

Table 3 reports the experimental results compar-
ing with fusion methods under the few-shot set-
ting. (1) Our proposed method FPT shows a stable
and significant improvement compared to the pre-
vious feature fusion methods. For instance, in the
2-shot setting, FPT outperforms the best previous
fusion methods by 11.28, 5.8 and 11.66 points on
ChineseLR, Weebit and Cambridge, respectively.
This demonstrates our method’s effectiveness in
integrating linguistic features for RA. (2) Methods
with linguistic features perform better than stan-
dard fine-tuning on Chinese datasets. However, it
may not necessarily lead to improvement on En-
glish datasets, especially when k is increased to
a sufficient amount, which indicates that simply
applying linguistic features to aid in English RA is
not consistently effective.

Dataset Methods k=2 k=4 k=8

ChineseLR
FPT 46.24 48.93 52.66
-SC 40.97 46.03 50.48
-SC and FP 25.45 36.56 40.57

Weebit
FPT 55.10 57.70 64.92
-SC 52.68 56.92 63.63
-SC and FP 48.65 53.41 61.31

Table 4: Ablation study of FPT on ChineseLR and
Weebit datasets. SC represents the similarity calibra-
tion and FP means utilizing linguistic features as soft
prompts.

Figure 3: The comparison results of linguistic features,
randomly initialized vectors and pseudo tokens.

6.3 Ablation Study

To validate the effectiveness of each component
in our proposed model, we conduct ablation ex-
periments on both English Weebit and ChineseLR
datastes. Table 4 lists the results. Notably, our
similarity calibration (SC) is built on the feature
prompt (FP), with the aim to maintain consistent
inter-class similarity of linguistic features. There-
fore, removing FP also detaches SC, explaining
why our ablation study is performed incrementally.

Our full model yields the best performance on
both datasets. When removing the SC module, the
performance is markedly decreased, demonstrating
the necessity of retaining the linguistic features’
original similarity information during optimization.
We have also investigated the impact of SC by vi-
sualising the similarity difference matrix before
and after applying SC, the results of which are pre-
sented in Appendix C. Moreover, further removal
of the FP shows a steep drop in performance (12.37
points on ChieseLR and 4.29 points on Weebit
when k = 4), validating the effectiveness of incor-
porating linguistic features as soft prompts. We
note that the improvement of SC and FP is more
significant on the Chinese dataset compared to the
English dataset, indicating that the Chinese RA
task is more dependent on linguistic features.

6.4 The Significance of Linguistic Features
To further analyze whether linguistic features im-
prove performance, in our model structure, we re-
place the linguistic feature vectors with randomly
initialized vectors. On the other hand, we re-
implement the Hybrid Prompt Tuning by utilizing
pseudo tokens as soft prompts. We conduct experi-
ments on WeeBit and ChineseLR datasets, and the
comparison results are shown in Figure 3.

The performance on both datasets significantly
decreases when the linguistic features are replaced
with random vectors, especially on the ChineseLR
dataset, where the decrease is up to 16.27%. The
fewer the samples, the more severe the decline
caused by the replacement, further indicating the
beneficial role of linguistic features when data is
insufficient. Moreover, compared to pseudo tokens,
using vector-form embeddings as soft prompts re-
quires the integration of linguistic knowledge to
achieve better performance.

6.5 Comparison with the LLM
The large language model (LLM) excels at various
downstream tasks without the need for parameter
adjustment. We carry out experiments on LLM,
utilizing the gpt-3.5-turbo-16k API. We sample the
same examples as in other experiments, and the
prompt is generated by GPT-4. Specifically, we
provide GPT-4 with the task instructions to gener-
ate the system prompt and user input for gpt-3.5-
turbo-16k, as shown in Figure 4. Table 5 shows
that our model with 110M parameters significantly
outperforms the LLM on the English dataset (ex-
cept for one sample on Cambridge). Moreover,
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gpt-3.5-turbo-16k is unable to perform 1-shot or
2-shot experiments on ChineseLR due to its limited
context length. This underscores the necessity for
research on handling long texts in RA.

Figure 4: The system prompt and the user input for
prompting LLM.

k Dataset FPT LLM

0
Weebit - 30.79

Cambridge - 43.33
ChineseLR - 21.67

1
Weebit 43.61 31.75

Cambridge 44.17 48.33
ChineseLR 39.63 -

2
Weebit 55.10 33.17

Cambridge 59.79 54.16
ChineseLR 46.24 -

Table 5: Comparison (accuracy) between our model
and LLM (gpt-3.5-turbo-16k) on three datasets. k rep-
resents the number of in-context examples. Due to the
limitation of context length, the experiments on Chinese
dataset cannot be carried out.

7 Conclusion

Inspired by the solid performance of prompt tun-
ing on classification tasks and the importance of
linguistic features in the RA task, we empirically
investigated the effectiveness of incorporating lin-
guistic features into prompt tuning for RA. We
convert linguistic features of the input into soft to-
kens and utilize the similarity calibration loss to
preserve the similarity relationship between classes
before and after the transformation. The results

show noticeable improvements over previous fu-
sion methods and prompt-based approaches in the
few-shot learning setting. The ablation study fur-
ther illustrated that the proposed model benefits
from linguistic features and additional similarity
calibration. Our proposed method, FPT, has demon-
strated a new possibility of prompt tuning in an era
dominated by LLMs, showcasing its undeniable
significance and value in linguistic-related tasks.
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Limitations

Our proposed method, which leverages the masked
language model (MLM) backbone such as BERT,
has demonstrated its efficacy across a variety of
natural language processing tasks. Despite its
strengths, we acknowledge several limitations that
warrant further investigation.

Firstly, our approach exhibits constraints in pro-
cessing long texts, a scenario frequently encoun-
tered in Chinese readability evaluation datasets.
The inherent architecture of MLMs like BERT is
optimized for shorter sequences, leading to poten-
tial performance degradation when dealing with
extensive text inputs.

Secondly, while MLM-based methods are profi-
cient in classification tasks, they often fall short
in terms of interpretability of the classification
outcomes. The black-box nature of these models
makes it challenging to trace and understand the
decision-making process, which is crucial for ap-
plications where justification of results is required.

Lastly, the success of our method is significantly
contingent upon the quality of linguistic features
extracted from the text. However, the extraction
of high-quality linguistic features is not always
guaranteed, especially in languages with rich mor-
phology or poor data resources.

In conclusion, while our method stands as a ro-
bust approach for several NLP tasks, addressing
these limitations is imperative for advancing the
field and extending the applicability of MLM-based
models to a broader spectrum of text analysis chal-
lenges. It is also worth noting that only one Chinese
dataset is included in this work, as it appears to be
the only Chinese RA dataset available to the best of
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our knowledge. We urge that more attention should
be paid to this field of work and further experiments
will be conducted if new datasets are released.

Ethics Statement

Potential Risks Firstly, as a neural network-
based method, the predictive outcomes of our ap-
proach should not be applied in practical applica-
tions without the involvement of human experts.
This is a responsible practice for the actual benefi-
ciaries, the learners. Secondly, as mentioned earlier,
low-quality or even incorrect linguistic features can
negatively impact our method. Therefore, evaluat-
ing the quality of linguistic features is essential for
the efficacy of our approach.

About Computational Budget For each k-shot
experiment, we conducted a total of 16 repetitions
(refer to Section 5.4) for all baselines and FPT. The
duration of a single experiment varies according to
the size of k (approximately 20 seconds to 200 sec-
onds), but the time consumed by different methods
is almost identical.

Use of Scientific Artifacts We utilize the lingfeat
toolkit (Lee et al., 2021) to extract linguistic fea-
tures from English texts; this toolkit is publicly
accessible under the CC-BY-SA-4.0 license. For
extracting Chinese linguistic features, we employ
the zhfeat toolkit (Li et al., 2022).

Use of AI Assistants We have employed Chat-
GPT as a writing assistant, primarily for polishing
the text after the initial composition.
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A Details of Linguistic Features

A.1 Chinese Linguistic Features

Idx Dim Feature description
1 1 Total number of characters

Idx Dim Feature description
2 1 Number of character types
3 1 Type Token Ratio (TTR)
4 1 Average number of strokes
5 1 Weighted average number of strokes
6 25 Number of characters with different strokes
7 25 Proportion of characters with different strokes
8 1 Average character frequency
9 1 Weighted average character frequency
10 1 Number of single characters
11 1 Proportion of single characters
12 1 Number of common characters
13 1 Proportion of common characters
14 1 Number of unregistered characters
15 1 Proportion of unregistered characters
16 1 Number of first-level characters
17 1 Proportion of first-level characters
18 1 Number of second-level characters
19 1 Proportion of second-level characters
20 1 Number of third-level characters
21 1 Proportion of third-level characters
22 1 Number of fourth-level characters
23 1 Proportion of fourth-level characters
24 1 Average character level

Table 6: Character features description.

Idx Dim Feature description
1 1 Total number of words
2 1 Number of word types
3 1 Type Token Ratio (TTR)
4 1 Average word length
5 1 Weighted average word length
6 1 Average word frequency
7 1 Weighted average word frequency
8 1 Number of single-character words
9 1 Proportion of single-character words
10 1 Number of two-character words
11 1 Proportion of two-character words
12 1 Number of three-character words
13 1 Proportion of three-character words
14 1 Number of four-character words
15 1 Proportion of four-character words
16 1 Number of multi-character words
17 1 Proportion of multi-character words
18 1 Number of idioms
19 1 Number of single words
20 1 Proportion of single words
21 1 Number of unregistered words
22 1 Proportion of unregistered words
23 1 Number of first-level words
24 1 Proportion of first-level words
25 1 Number of second-level words
26 1 Proportion of second-level words
27 1 Number of third-level words
28 1 Proportion of third-level words
29 1 Number of fourth-level words
30 1 Proportion of fourth-level words
31 1 Average word level
32 57 Number of words with different POS
33 57 Proportion of words with different POS

Table 7: Word features description.
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Idx Dim Feature description
1 1 Total number of sentences
2 1 Average characters in a sentence
3 1 Average words in a sentence
4 1 Maximum characters in a sentence
5 1 Maximum words in a sentence
6 1 Number of clauses
7 1 Average characters in a clause
8 1 Average words in a clause
9 1 Maximum characters in a clause
10 1 Maximum words in a clause
11 30 Sentence length distribution
12 1 Average syntax tree height
13 1 Maximum syntax tree height
14 1 Syntax tree height <= 5 ratio
15 1 Syntax tree height <= 10 ratio
16 1 Syntax tree height <= 15 ratio
17 1 Syntax tree height >= 16 ratio
18 14 Dependency distribution

Table 8: Sentence features description.

Idx Dim Feature description
1 1 Total number of paragraphs
2 1 Average characters in a paragraph
3 1 Average words in a paragraph
4 1 Maximum characters in a paragraph
5 1 Maximum words in a paragraph

Table 9: Paragraph features description.

A.2 English Linguistic Features

Idx Dim Feature description
1 1 Total number of Entities Mentions counts
2 1 Average number of Entities Mentions counts per

sentence
3 1 Average number of Entities Mentions counts per

token (word)
4 1 Total number of unique Entities
5 1 Average number of unique Entities per sentence
6 1 Average number of Entities Mentions counts per

token (word)s
7 1 Total number of unique Entities
8 1 Ratio of ss transitions to total
9 1 Ratio of so transitions to total
10 1 Ratio of sx transitions to total
11 1 Ratio of sn transitions to total
12 1 Ratio of os transitions to total
13 1 Ratio of oo transitions to total
14 1 Ratio of ox transitions to total
15 1 Ratio of on transitions to total
16 1 Ratio of xs transitions to total
17 1 Ratio of xo transitions to total
18 1 Ratio of xx transitions to total
19 1 Ratio of xn transitions to total
20 1 Ratio of ns transitions to total
21 1 Ratio of no transitions to total
22 1 Ratio of nx transitions to total
23 1 Ratio of nn transitions to total
24 1 Local Coherence for PA score
25 1 Local Coherence for PW score
26 1 Local Coherence for PU score
27 1 Local Coherence distance for PA score
28 1 Local Coherence distance for PW score
29 1 Local Coherence distance for PU score

Idx Dim Feature description

Table 10: Discourse features description.

Idx Dim Feature description
1 1 Total count of Noun phrases
2 1 Average count of Noun phrases per sentence
3 1 Average count of Noun phrases per token
4 1 Ratio of Noun phrases count to Verb phrases

count
5 1 Ratio of Noun phrases count to Subordinate

Clauses count
6 1 Ratio of Noun phrases count to Prep phrases

count
7 1 Ratio of Noun phrases count to Adj phrases

count
8 1 Ratio of Noun phrases count to Adv phrases

count
9 1 Total count of Verb phrases
10 1 Average count of Verb phrases per sentence
11 1 Average count of Verb phrases per token
12 1 Ratio of Verb phrases count to Noun phrases

count
13 1 Ratio of Verb phrases count to Subordinate

Clauses count
14 1 Ratio of Verb phrases count to Prep phrases

count
15 1 Ratio of Verb phrases count to Adj phrases count
16 1 Ratio of Verb phrases count to Adv phrases

count
17 1 Total count of Subordinate Clauses
18 1 Average count of Subordinate Clauses per sen-

tence
19 1 Average count of Subordinate Clauses per token
20 1 Ratio of Subordinate Clauses count to Noun

phrases count
21 1 Ratio of Subordinate Clauses count to Verb

phrases count
22 1 Ratio of Subordinate Clauses count to Prep

phrases count
23 1 Ratio of Subordinate Clauses count to Adj

phrases count
24 1 Ratio of Subordinate Clauses count to Adv

phrases count
25 1 Total count of prepositional phrases
26 1 Average count of prepositional phrases per sen-

tence
27 1 Average count of prepositional phrases per token
28 1 Ratio of Prep phrases count to Noun phrases

count
29 1 Ratio of Prep phrases count to Verb phrases

count
30 1 Ratio of Prep phrases count to Subordinate

Clauses count
31 1 Ratio of Prep phrases count to Adj phrases count
32 1 Ratio of Prep phrases count to Adv phrases count
33 1 Total count of Adjective phrases
34 1 Average count of Adjective phrases per sentence
35 1 Average count of Adjective phrases per token
36 1 Ratio of Adj phrases count to Noun phrases

count
37 1 Ratio of Adj phrases count to Verb phrases count
38 1 Ratio of Adj phrases count to Subordinate

Clauses count
39 1 Ratio of Adj phrases count to Prep phrases count
40 1 Ratio of Adj phrases count to Adv phrases count
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Idx Dim Feature description
41 1 Total count of Adverb phrases
42 1 Average count of Adverb phrases per sentence
43 1 Average count of Adverb phrases per token
44 1 Ratio of Adv phrases count to Noun phrases

count
45 1 Ratio of Adv phrases count to Verb phrases

count
46 1 Ratio of Adv phrases count to Subordinate

Clauses count
47 1 Ratio of Adv phrases count to Prep phrases count
48 1 Ratio of Adv phrases count to Adj phrases count
49 1 Total Tree height of all sentences
50 1 Average Tree height per sentence
51 1 Average Tree height per token (word)
52 1 Total length of flattened Trees
53 1 Average length of flattened Trees per sentence
54 1 Average length of flattened Trees per token

(word)
55 1 Total count of Noun POS tags
56 1 Average count of Noun POS tags per sentence
57 1 Average count of Noun POS tags per token
58 1 Ratio of Noun POS count to Adjective POS

count
59 1 Ratio of Noun POS count to Verb POS count
60 1 Ratio of Noun POS count to Adverb POS count
61 1 Ratio of Noun POS count to Subordinating Con-

junction count
62 1 Ratio of Noun POS count to Coordinating Con-

junction count
63 1 Total count of Verb POS tags
64 1 Average count of Verb POS tags per sentence
65 1 Average count of Verb POS tags per token
66 1 Ratio of Verb POS count to Adjective POS count
67 1 Ratio of Verb POS count to Noun POS count
68 1 Ratio of Verb POS count to Adverb POS count
69 1 Ratio of Verb POS count to Subordinating Con-

junction count
70 1 Ratio of Verb POS count to Coordinating Con-

junction count
71 1 Total count of Adjective POS tags
72 1 Average count of Adjective POS tags per sen-

tence
73 1 Average count of Adjective POS tags per token
74 1 Ratio of Adjective POS count to Noun POS

count
75 1 Ratio of Adjective POS count to Verb POS count
76 1 Ratio of Adjective POS count to Adverb POS

count
77 1 Ratio of Adjective POS count to Subordinating

Conjunction count
78 1 Ratio of Adjective POS count to Coordinating

Conjunction count
79 1 Total count of Adverb POS tags
80 1 Average count of Adverb POS tags per sentence
81 1 Average count of Adverb POS tags per token
82 1 Ratio of Adverb POS count to Adjective POS

count
83 1 Ratio of Adverb POS count to Noun POS count
84 1 Ratio of Adverb POS count to Verb POS count
85 1 Ratio of Adverb POS count to Subordinating

Conjunction count
86 1 Ratio of Adverb POS count to Coordinating Con-

junction count
87 1 Total count of Subordinating Conjunction POS

tags

Idx Dim Feature description
88 1 Average count of Subordinating Conjunction

POS tags per sentence
89 1 Average count of Subordinating Conjunction

POS tags per token
90 1 Ratio of Subordinating Conjunction POS count

to Adjective POS count
91 1 Ratio of Subordinating Conjunction POS count

to Noun POS count
92 1 Ratio of Subordinating Conjunction POS count

to Verb POS count
93 1 Ratio of Subordinating Conjunction POS count

to Adverb POS count
94 1 Ratio of Subordinating Conjunction POS count

to Coordinating Conjunction count
95 1 Total count of Coordinating Conjunction POS

tags
96 1 Average count of Coordinating Conjunction POS

tags per sentence
97 1 Average count of Coordinating Conjunction POS

tags per token
98 1 Ratio of Coordinating Conjunction POS count

to Adjective POS count
99 1 Ratio of Coordinating Conjunction POS count

to Noun POS count
100 1 Ratio of Coordinating Conjunction POS count

to Verb POS count
101 1 Ratio of Coordinating Conjunction POS count

to Adverb POS count
102 1 Ratio of Coordinating Conjunction POS count

to Subordinating Conjunction count
103 1 Total count of Content words
104 1 Average count of Content words per sentence
105 1 Average count of Content words per token
106 1 Total count of Function words
107 1 Average count of Function words per sentence
108 1 Average count of Function words per token
109 1 Ratio of Content words to Function words

Table 11: Syntactic features description.

Idx Dim Feature description
1 1 Unique Nouns/total Nouns (Noun Variation-1)
2 1 (Unique Nouns**2)/total Nouns (Squared Noun

Variation-1)
3 1 Unique Nouns/sqrt(2*total Nouns) (Corrected

Noun Variation-1)
4 1 Unique Verbs/total Verbs (Verb Variation-1)
5 1 (Unique Verbs**2)/total Verbs (Squared Verb

Variation-1)
6 1 Unique Verbs/sqrt(2*total Verbs) (Corrected

Verb Variation-1)
7 1 Unique Adjectives/total Adjectives (Adjective

Variation-1)
8 1 (Unique Adjectives**2)/total Adjectives

(Squared Adjective Variation-1)
9 1 Unique Adjectives/sqrt(2*total Adjectives) (Cor-

rected Adjective Variation-1)
10 1 Unique Adverbs/total Adverbs (AdVerb

Variation-1)
11 1 (Unique Adverbs**2)/total Adverbs (Squared

AdVerb Variation-1)
12 1 Unique Adverbs/sqrt(2*total Adverbs) (Cor-

rected AdVerb Variation-1)
13 1 Unique tokens/total tokens (TTR)
14 1 Unique tokens/sqrt(2*total tokens) (Corrected

TTR)
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Idx Dim Feature description
15 1 Log(unique tokens)/log(total tokens) (Bi-

Logarithmic TTR)
16 1 (Log(unique tokens))**2/log(total tokens/u-

nique tokens) (Uber Index)
17 1 Measure of Textual Lexical Diversity (default

TTR = 0.72)
18 1 Total AoA (Age of Acquisition) of words
19 1 Average AoA of words per sentence
20 1 Average AoA of words per token
21 1 Total lemmas AoA of lemmas
22 1 Average lemmas AoA of lemmas per sentence
23 1 Average lemmas AoA of lemmas per token
24 1 Total lemmas AoA of lemmas, Bird norm
25 1 Average lemmas AoA of lemmas, Bird norm per

sentence
26 1 Average lemmas AoA of lemmas, Bird norm per

token
27 1 Total lemmas AoA of lemmas, Bristol norm
28 1 Average lemmas AoA of lemmas, Bristol norm

per sentence
29 1 Average lemmas AoA of lemmas, Bristol norm

per token
30 1 Total AoA of lemmas, Cortese and Khanna norm
31 1 Average AoA of lemmas, Cortese and Khanna

norm per sentence
32 1 Average AoA of lemmas, Cortese and Khanna

norm per token
33 1 Total SubtlexUS FREQcount value
34 1 Average SubtlexUS FREQcount value per sen-

tenc
35 1 Average SubtlexUS FREQcount value per token
36 1 Total SubtlexUS CDcount value
37 1 Average SubtlexUS CDcount value per sentence
38 1 Average SubtlexUS CDcount value per token
39 1 Total SubtlexUS FREQlow value
40 1 Average SubtlexUS FREQlow value per sen-

tence
41 1 Average SubtlexUS FREQlow value per token
42 1 Total SubtlexUS CDlow value
43 1 Average SubtlexUS CDlow value per sentence
44 1 Average SubtlexUS CDlow value per token
45 1 Total SubtlexUS SUBTLWF value
46 1 Average SubtlexUS SUBTLWF value per sen-

tence
47 1 Average SubtlexUS SUBTLWF value per token
48 1 Total SubtlexUS Lg10WF value
49 1 Average SubtlexUS Lg10WF value per sentence
50 1 Average SubtlexUS Lg10WF value per token
51 1 Total SubtlexUS SUBTLCD value
52 1 Average SubtlexUS SUBTLCD value per sen-

tence
53 1 Average SubtlexUS SUBTLCD value per token
54 1 Total SubtlexUS Lg10CD value
55 1 Average SubtlexUS Lg10CD value per sentence
56 1 Average SubtlexUS Lg10CD value per token

Table 12: Lexico Semantic features description.

Idx Dim Feature description
1 1 Total count of tokens x total count of sentence
2 1 Sqrt(total count of tokens x total count of sen-

tence)
3 1 Log(total count of tokens)/log(total count of sen-

tence)

Idx Dim Feature description
4 1 Average count of tokens per sentence
5 1 Average count of syllables per sentence
6 1 Average count of syllables per token
7 1 Average count of characters per sentence
8 1 Average count of characters per token
9 1 Smog Index
10 1 Coleman Liau Readability Score
11 1 Gunning Fog Count Score
12 1 New Automated Readability Index
13 1 Flesch Kincaid Grade Level
14 1 Linsear Write Formula Score

Table 13: Shallow Traditional features description.

B Templates

Chinese Dataset Based on the Chinese Curricu-
lum Standards for Compulsory Education, we de-
vise the following templates:

• T1(·) =一篇第[MASK]学段的文章:

• T2(·) =这是一篇第[MASK]学段的课文:

• T3(·) =一篇第[MASK]学段的课文:

• T4(·) =一篇阅读难度为[MASK]的课文:

English Dataset Based on (Vajjala and Meurers,
2012), we use the following templates:

• T1(·) = A [MASK] article to understand:

• T2(·) = A [MASK] text to understand:

• T3(·) = This is a [MASK] article to under-
stand:

• T4(·) = A [MASK] article to read:

C The Impact of Similarity Calibration

To investigate the impact of Similarity Calibration
(SC), we plot the similarity difference matrices be-
fore and after linguistic feature embedding on two
datasets, both with and without SC. Specifically,
we calculate the similarity of linguistic features be-
tween each category before and after embedding to
obtain two similarity matrices. Then we subtract
the former from the latter to obtain the difference
matrix. The results are shown in Figure 5, where
the diagonal of the matrix represents the similarity
of the linguistic features from the same category.

On both datasets, SC can effectively increase the
similarity between the same and analogous cate-
gories (represented by warm colors), while reduc-
ing the similarity between distance categories (rep-
resented by cool colors). This can provide effective
assistance for classification tasks.
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Figure 5: Similarity difference matrices. We plot the
difference matrices of similarity before and after linguis-
tic feature embedding, both with and without SC. The
horizontal and vertical coordinates represent the level
of linguistic features. By comparing the diagonal of the
matrix before and after the similarity calibration (that
is, the similarity between linguistic features of the same
level), the similarity between analogous categories is
drawn closer.
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