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Abstract
Symbolic meaning representations of natural
language text have been studied since at least
the 1960s. With the availability of large an-
notated corpora, and more powerful machine
learning tools, the field has recently seen sev-
eral new developments. In this survey, we study
today’s most prominent Meaning Representa-
tion Frameworks. We shed light on their theo-
retical properties, as well as on their practical
research environment, i.e., on datasets, parsers,
applications, and future challenges.

1 Introduction

Being able to represent the semantic structure of a
text has been an important research goal since the
early days of NLP. Early works developed natural
language interfaces for specific databases. They
transformed raw text into an executable language,
using formalisms such as SQL, first-order logic
or lambda-calculus (Mooney, 1996; Wong and
Mooney, 2006; Mooney, 2007). Another avenue of
research, which is the focus of this work, has de-
veloped general-purpose, non-executable Meaning
Representations (MRs), inspired by formal gram-
mars. These often take the form of human-readable
graphs. Figure 1 shows an example.

Such MRs are used to improve the accuracy of
NLP systems in tasks such as summarization or
machine translation (Gao and Vogel, 2011; Liu
et al., 2015; Mohamed and Oussalah, 2019; Liao
et al., 2018; Song et al., 2019; Ribeiro et al., 2022).
In the age of large language models (LLMs), they
also get leveraged for their interpretability, e.g., to
enhance semantic search (Bonial et al., 2020; Cai
et al., 2022; Opitz and Frank, 2022b) or natural
language inference (Opitz et al., 2023b). They are
also used to generate paraphrases (Cai et al., 2021),
augment training data (Shou et al., 2022), or to do
style-transfer (Jangra et al., 2022; Shi et al., 2023).

In this survey, we provide a structured overview
of current Meaning Representation Frameworks.

Several other surveys have discussed MRs before
us. However, they are either focused on linguistic
theory (Abend and Rappoport, 2017; Žabokrtský
et al., 2020; Pavlova et al., 2023) and thus tend
to neglect applications, parsers, and resources, or
they focus on the practical application only (Verrev,
2023). Our survey aims to strike a middle ground:
It presents both the different formalisms and their
applications, resources, and parsers. This balance
allows us to describe a bigger picture of the field
and outline open challenges. Our survey thus aims
to be a handy reference for anyone who wishes
to choose, understand, build, or use a Meaning
Representation.

In Section 2 we introduce the main concepts
and properties of MRs. Section 3 tackles Shallow
MRs, and Section 4 Deep MRs. Finally, Section 5
discusses open challenges in the domain.
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Figure 1: AMR graph for the sentence “Tiffany decided
that she would never fly again, because it is bad for the
environment”.

2 Meaning Representations

Given a text in natural language, MR parsing is
the task of producing a symbolic representation
of its meaning, as it is understood by a language
speaker (Abend and Rappoport, 2017). Differ-
ent Meaning Representation Frameworks (MRFs)
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MRF Subevents Shape Compositional Node type (Flavor) Edge type

SR - Tree - Text spans (1) Numbered
RST - Tree ✓ Text spans (1) Theory-oriented
UDS - Tree ✓ Text spans (1) Numbered & theory-oriented

SD ✓ Graph - Augmented Text Spans (0) Numbered
EDS ✓ Graph - Augmented Text Spans (1) Numbered
UCCA ✓ Tree ✓ Text spans (1) Theory-oriented
AMR ✓ Graph - Synsets (Propbank) (2) Predicate-dependent
DRS ✓ Graph ✓ Synsets (WordNet) (2) Predicate-independent

Table 1: Properties of the Meaning Representation Frameworks that we survey. The middle line separates shallow
and deep formalisms.

have been developed. In this survey, we are in-
terested in graph-like MRFs with their corpora
and parsers. We focus on Semantic Roles (SR),
Rhetorical Structure Theory (RST), Universal
Decompositional Semantics (UDS), Semantic De-
pendencies (SD), Elementary Discourse Struc-
tures (EDS), Universal Conceptual Cognitive
Annotation (UCCA), Abstract Meaning Repre-
sentation (AMR), and Discourse Representation
Structure (DRS). We will focus on English sen-
tences, and discuss the aspects of multi-sentence
and multi-lingual support where relevant.

MRFs are often inspired by a Neo-Davidsonian
semantics, and see events as the main elements
of sentences. The predicate of an event defines
the type of the event, and is most often a verb
(decide-01 or fly-01 in Figure 1). The argu-
ments of the event are the entities that participate in
the event (“Tiffany” in the example), or the circum-
stances of the event, such as its place or manner (a
negative polarity “-”, in our example). The seman-
tic role of an argument specifies the role that the
participant plays in the event. In our example, the
semantic role of Tiffany in the decide-01 event is
the subject/agent (ARG0 in AMR jargon).

Based on this, the semantic information in a sen-
tence can be decomposed into three levels: The
level in the middle describes events. The sub-
event level decomposes the arguments of events
into smaller components – up to words and possi-
bly even sub-words. In our example, “bad for the
environment” is modeled by the link from bad-4
to environment with the semantic role ARG2. The
supra-event level links events to other events. This
is done using discourse relations. In our exam-
ple, the cause-01 node connects decide-01 and
bad-04, meaning that the decision was taken be-
cause flying is bad for the environment. Discourse
relations can even link events across sentences.

Different MRFs vary these general ideas along

several axes, which we show in Table 1. First, not
all MRFs can represent sub-events (Column 2 in
Table 1). We call a MRF deep if it can represent
sub-events, and shallow otherwise. Second, MRFs
construct either trees (where each node has at most
one parent) or full-fledged graphs (Column 3). Our
example in Figure 1 is not a tree: person has two
different parents, because it plays two different
roles. Third, some MRFs are compositional (Col-
umn 4), which here means that nodes can denote
sub-graphs/trees. Our example in Figure 1 is not
compositional: every node contains the same level
of information. However, we can imagine creat-
ing a node that represents the fact that the fly-01
event is negated. This would then be a composi-
tional node. The difference between compositional
and non-compositional MRFs is thus similar to the
difference between dependency and constituency
trees in syntactic parsing.

MRFs can further be distinguished by how ab-
stract their node labels are (Column 5): Nodes can
be labeled with a span from the text, but they can
also be augmented with extra information such as
a POS tag. Some representations go as far as us-
ing abstractions such as synsets from predefined
vocabularies, to help reduce (or even eliminate)
lexical ambiguity, and make events invariant to sur-
face form. In the case of compositional MRFs, this
property applies to leaf nodes. The node type can
be completed with the Flavor hierarchy proposed
by Oepen et al. (2019). This hierarchy differenti-
ates MRFs based on anchoring, i.e. on the explicit
correspondence between nodes and the input sen-
tence. Flavor 0 means that each node injectively
corresponds to one word; Flavor 1 relaxes the an-
choring constraints, allowing a node to correspond
to a whole span, and the same span to correspond
to several nodes; and Flavor 2 marks the absence
of explicit links between the nodes and the text.

Finally, the MRFs differ in their edge type (Col-
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umn 6): Some MRFs use roles that depend on a
specific linguistic theory, like elaboration (dis-
course theory) or scene (cognitive science). These
schemes can describe only a limited array of re-
lations, and do not distinguish the agents and pa-
tients of events. Other representations are more
specific and use numbered semantic roles (A0, A1,
...). In these schemes, A0 and A1 usually corre-
spond to Dowty’s Proto-Agent and Proto-Patient
(Dowty, 1991), respectively. These proto-roles are
defined by their features: Typical agent features are
awareness, movement, and volition, while typical
patient features are change of state, being station-
ary, etc. The other semantic roles (A2, A3, ...) usu-
ally do not have such a predefined meaning. Again
other MRFs are more specific, and use predicate-
independent semantic roles that distinguish finer
roles such as Agent and Patient. Finally, some
MRFs make the meaning of the role dependent on
the predicate: in Figure 1, ARG0 means “pilot, agen-
tive entity capable of flight” for fly-01, while it
means “decider” for decide-01. These MRFs thus
describe their arguments very specifically.

3 Shallow Meaning Representation
Frameworks

3.1 Semantic Roles

A prominent Shallow Meaning Representation
Framework is the Semantic Roles framework (SR,
Gildea and Jurafsky, 2000). Given an input sen-
tence and a predicate, its purpose is to determine
the arguments of the predicate and their semantic
roles – a task known as Semantic Role Labeling
(SRL). SRL focuses on event-level relations, which
means that its predicates are verbs. There are (at
least) three different implementations of seman-
tic roles. The most popular one is PropBank SRL,
where semantic roles are split into core and non-
core roles according to PropBank (Palmer et al.,
2005). The non-core roles are also called mod-
ifiers, and they always have the same meaning:
ARGM-CAU indicates cause, ARGM-LOC indicates lo-
cation, etc. The meaning of core roles (ARG2...n)
depends on the predicate. However, ARG0 and ARG1
usually correspond to Dowty’s Proto-Agent and
Proto-Patient (Dowty, 1991). Other paradigms ex-
ist: FrameNet SRL generalizes descriptions across
similar verbs (e.g., say, speak) as well as similar
nouns and other words (e.g., speech), based on
FrameNet (Baker et al., 1998). Semantic Proto-
Role Labeling (SPRL) aims at directly approxi-

mating Dowty’s Proto-Roles with features such as
movement, awareness, etc (Dowty, 1991).

Figure 2 shows a merger of three parsings for
our example (in PropBank-SRL style), for the pred-
icates “decided”, “fly”, and “is”. Since an SRL
graph consists of only one predicate node and its
arguments, the graph is a dependency tree, with
text spans as nodes. SRL is a rather light anno-
tation, and it is used to enhance LLMs (Zhang
et al., 2020b), e.g., for downstream tasks such as
Fact Checking (Zhong et al., 2020), Question An-
swering (Pillai et al., 2018), and Summarization
(Mohamed and Oussalah, 2019; Zhang and Bansal,
2021).

Tiffany decided that she would never fly again , because it is bad for the environment.

ARG0 ARG1

ARGM-CAU

ARG1

ARGM-MOD

ARGM-NEG

ARGM-TMP

ARG1 ARG2

Figure 2: Semantic Role Labeling of our example sen-
tence in span-graph style. Each color corresponds to a
predicate (bold) and its arguments (solid)

Resources. PropBank-SRL has been the focus of
several shared tasks, which produced datasets that
are used to this day. CoNLL 2005 (Carreras and
Màrquez, 2004, 2005) introduced span-based SRL,
while CoNLL 2008 (Surdeanu et al., 2008) and
2009 (Hajič et al., 2009) introduced dependency-
based SRL (which labels only the syntactic heads
of the arguments). These works are based on the
expert annotations of the WSJ section of the Penn
Treebank (in English) from Propbank. The re-
sulting training sets consist of 40,000 sentences
each. Other datasets provide FrameNet SRL (Bur-
chardt and Pennacchiotti, 2008; Das and Smith,
2011; Hartmann et al., 2017) and SPRL annota-
tions (Reisinger et al., 2015; White et al., 2016).

Parsing. Regardless of the flavor of SRL, many
approaches for parsing (or labeling) are heavily
reliant on syntactic features (Pradhan et al., 2005;
Punyakanok et al., 2008; Li et al., 2018; Fei et al.,
2021). The progress in Neural Networks has al-
lowed systems to become more syntax-agnostic
(Zhou and Xu, 2015; He et al., 2017; Tan et al.,
2018; Rudinger et al., 2018; Arora et al., 2022;
Spaulding et al., 2023), so much that recent ap-
proaches extract not just the arguments, but also
the predicates themselves (Cai et al., 2018; He et al.,
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2018; Zhang et al., 2022). This is particularly ap-
pealing, as it allows to directly transform a text into
a MR.

3.2 Rhetorical Structure Theory

Rhetorical Structure Theory (RST, Mann and
Thompson, 1988) takes interest in discourse re-
lations. It sees the text as a sequence of Elemen-
tary Discourse Units (EDUs), which roughly cor-
respond to events, and seeks to identify the re-
lations between these units, such as Condition,
Contrast, Cause, Result, or Elaboration. RST
models a text as a tree, in which discourse rela-
tions are recursively applied to connect discourse
units. Leaf nodes are EDUs (text spans), while in-
ner nodes are unlabeled compositional nodes. Fig-
ure 3 shows the RST MR of our example sentence.
The EDUs coincide with the spans delimited by
predicates and arguments in the SRL graph. Each
discourse relation links a satellite (supporting in-
formation) to a nucleus (central information). In
our example, the nucleus of the Reason relation
is the fact that Tiffany decided to never fly again,
and the satellite is the reason for that decision. The
repertoire of discourse relations depends on the
dataset.

Discourse relations can cross sentence bound-
aries, which means that one rhetorical structure
can represent a multi-sentence document. RST has
been used for Summarization (Xu et al., 2020) and
Question Answering (Ouyang et al., 2021), and
even for Argument Mining (Peldszus and Stede,
2013; Mitrović et al., 2017; Chakrabarty et al.,
2019).

Figure 3: RST-DT style annotation for our example.

Resources. The main dataset for RST is RST-DT
(Carlson et al., 2001), which defines 78 discourse
relations, divided into 16 classes. The dataset con-
tains 385 documents from the Wall Street Journal
corpus, which have been annotated with around

20,000 EDUs by expert linguists on the basis of an
extensive annotation manual.

Parsing is usually performed in two steps: EDU
Segmentation and Tree Building. Wang et al.
(2018) achieves a near-perfect performance on seg-
mentation using a Bi-LSTM-CRF based model.
First approaches for Tree Building (Soricut and
Marcu, 2003; Hernault et al., 2010) used hand-
crafted features. Ji and Eisenstein (2014) intro-
duced the first RST-DT neural parser, followed by
bottom-up parsers (Li et al., 2016; Braud et al.,
2017; Wang et al., 2017; Yu et al., 2018), and more
recently top-down ones (Lin et al., 2019; Zhang
et al., 2020a; Kobayashi et al., 2020). Though they
have different approaches, Nguyen et al. (2021) and
Koto et al. (2021) are the current best-performing
systems for this task.

3.3 Universal Decompositional Semantics

Universal Decompositional Semantics (UDS) is
a multi-layer semantic annotation scheme, which
means that it allows annotating the same sentence
on different dimensions. These dimensions include
factuality and time for predicates, and genericity
and word sense for arguments. UDS builds a se-
mantic compositional tree, where the leaf nodes are
the words of the sentence (or special tokens) and
inner nodes represent larger semantic units. The
graph structure is based on PredPatt (White et al.,
2016), a pattern-based framework for predicate-
argument extraction that operates on (syntactic)
Universal Dependencies (UD, de Marneffe et al.,
2021). It focuses on event-level relations, which
means that the extracted structure is close to that
of merged SRL graphs. UDS uses Dowty’s Proto
Roles decomposition, which, as mentioned above,
describe features of event participants and how
they are affected by the event (movement, volition,
change of state, and so on).

Resources. The UDS dataset can be accessed
through the Decomp Toolkit (White et al.,
2020). The original annotations include proto-roles
(Reisinger et al., 2015), word sense, and factu-
ality. Around 10,000 arguments were annotated
with proto-roles, using answers of Mechanical Turk
workers to simple questions about the arguments.
The framework was enriched with annotations on
time (Vashishtha et al., 2019), and generalizing
statements (Govindarajan et al., 2019), and also
some discourse relations (Gantt et al., 2022).
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Parsing. UDS Parsing is a fairly unexplored task.
Zhang et al. (2018) performs cross-lingual UDS
parsing with a pipeline approach performing graph
transduction, coreference resolution and semantic
proto-role labeling. Stengel-Eskin et al. (2020)
proposes an end-to-end parser with an encoder-
decoder structure, while Stengel-Eskin et al. (2021)
parses UD and UDS jointly.

4 Deep Meaning Representation
Frameworks

Deep Meaning Representation Frameworks go fur-
ther than shallow ones by representing relations at
all levels of the text, in particular at the sub-event
level. They aim to model the meaning of the text
exhaustively, representing as many phenomena as
possible (negations, comparisons, modifiers, time,
cause, etc.).

4.1 Semantic Dependencies

Semantic Dependencies (SD) is a family of MR
frameworks that are used in the SemEval 2014 &
2015 challenges (Oepen et al., 2014, 2015). Their
aim is to go further than syntactic dependency
parsing, and to represent the semantic structure
of a sentence – a process called Semantic Depen-
dency Parsing (SDP). Four main frameworks have
been proposed, derived from independent anno-
tation schemes with different formalisms: DM
(DELPH-IN MRS-Derived Bi-Lexical Dependen-
cies, Flickinger et al., 2012), PAS (Enju Predicate-
Argument Structures, Miyao, 2006), PSD (Prague
Semantic Dependencies, Hajič et al., 2012), and
CCD (Combinatory Categorial Grammar Depen-
dencies, Hockenmaier and Steedman, 2007).

All frameworks see the semantic structure as a
dependency (non-compositional) graph with Flavor
0 (every node corresponds to exactly one word in
the sentence). In contrast to syntactic dependency
trees, the modeling of semantic dependencies re-
quires a graph, as nodes can have several incoming
edges (a phenomenon called re-entrancy) if a word
is the argument of several predicates, as well as
none if they are semantically vacuous. A node
is a word that can be augmented with its lemma,
POS-tag or framework-specific identifier. The ex-
act vocabulary of semantic roles, as well as the
way the graph models different phenomena, varies
across frameworks. Most of them use unspecific se-
mantic roles (ARG1, ARG2, ARG3, ...). Nevertheless,
similar to SRL, ARG1 and ARG2 usually correspond

to Dowty’s Proto-Agent and Proto-Patient.
Still, SD has the advantage to be easily under-

standable by human readers. Figure 4 shows DM
annotations for our example sentence. The event
decomposition goes all the way to the token level:
the adjective phrase “bad for the environment” is
seen as an object of interest, with “for” being a
predicate, with the arguments “bad” and “environ-
ment”.

Resources. Oepen et al. (2016) proposes a corpus
with annotations for all four frameworks, with close
to 37,000 English sentences from the WSJ corpus,
which were obtained through expert annotation.
The dataset also provides a corpus of annotations
in ohter languages: Chinese for PAS, and Czech
for PSD. Other corpora are formalism-specific:
DeepBank for DM (Flickinger et al., 2012), the
Enju Treebank for PAS (Miyao, 2006), the Prague
Czech-English Dependency Treebank for PAS (Ha-
jič et al., 2012), CCGBank for CCD (Hockenmaier
and Steedman, 2007).

Parsing. Most parsing approaches for SDP are in-
spired by syntactic dependency parsing (Dozat and
Manning, 2018; Fernández-González and Gómez-
Rodríguez, 2020). The best results across the dif-
ferent SDP variants are achieved by a multi-task
system (Wang et al., 2021b).

Variations. English Resource Grammar (ERG),
of which DM is a reduction, produces MRs in the
Minimal Recursion Semantics (Copestake et al.,
2005). These structures are particularly expres-
sive and can model scope, but they are also com-
plex to read and exploit. Elementary Discourse
Structures (EDS, Oepen and Lønning, 2006) try to
reduce this complexity by making the graph non-
compositional. The main difference between EDS
and DM is that EDS are Flavor 1 graphs, which has
more abstract node labels: in addition to POS tags
and identifiers, nodes can be labeled with proper-
ties, such as time or number.

4.2 Universal Conceptual Cognitive
Annotation

The Universal Conceptual Cognitive Annotation
(UCCA, Abend and Rappoport, 2013) is a semantic
annotation scheme aiming to be “universal”, i.e., it
aims to be resistant to syntactic variation within and
across languages. An UCCA Representation takes
the form of a compositional tree whose leaf nodes
are the words of the sentence, and intermediate
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Figure 4: A Semantic Dependency Parse in DM-style for our running example.

nodes, called units, are unlabeled. UCCA identi-
fies 3 levels of semantic information. On the central
level, scene units correspond to events. They are
linked to a predicate, to its core arguments by a
generic label participant, as well as to non-core
arguments using several other labels (see Figure 5).
On the lower level, sub-scene units help specify
the participants of a scene. Finally, superparallel
units can link two scenes with generic parallel
scene edges, and possibly a cue word indicating
the type of discourse relation with a linker edge.
At any level, functional units can represent phe-
nomena such as prepositions, articles, or expletive
pronouns. UCCA can annotate several sentences
in a single graph.

There are very few semantic roles in UCCA,
which makes the annotation task more accessible
to non-experts and portable to other languages. Se-
mantic roles have a generic interpretability, but it
can be hard to exploit them directly: for instance,
the participant role doesn’t make a difference
between what would be labeled as ARG0 (Agent)
and ARG1 (Patient) in other frameworks. UCCA
is multi-layered, which makes it possible to add
extensions to the representation, for instance to an-
notate co-reference links, more specific semantic
roles, or more abstract node types. UCCA is cross-
lingual, and as such found applications in Machine
Translation (Slobodkin et al., 2022; Birch et al.,
2016), but also in Text Simplification (Sulem et al.,
2018a,b).

Tiffany decided that she would never fly again, because it is bad for the environment.
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Figure 5: UCCA graph for our example. H: Parallel
Scene, L: Linker, P: Process, A: Participant, D: Adver-
bial, F: Function C: Center, E: Elaborator, R: Relator.

Resources. UCCA comes with a large expert-
annotated multilingual corpus (Abend and Rap-
poport, 2013). Its English version annotates a total
of 1350 passages (more than 200,000 tokens). This
includes not only elements from Wikipedia, the
Web- and Penn Treebanks, but also from the litera-
ture (e.g. The Little Prince).

Parsing. The first proposed parser for UCCA
(Hershcovich et al., 2017) was transition-based.
Other methods exploit constituency parsers (Jiang
et al., 2019; Bölücü and Can, 2021). Nowadays,
the best parsers are sequence-to-sequence models
(Ozaki et al., 2020; Samuel and Straka, 2020).

4.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR, Ba-
narescu et al., 2013) aims at further abstracting
away from syntax, even mapping named entities
to Wikipedia. AMR has no explicit alignments be-
tween nodes and the text. The representation itself
takes the form of a rooted, acyclic, directed depen-
dency graph, where each node (aka variable) is
labeled with a concept, and represents an instance
of this concept.1 The root of an AMR is used
for modeling the focus, or main event, of a text.
Figure 1 shows the AMR graph for our running
example.

AMR has an abstract node type: a node can
be labeled with PropBank frames (for events and
entities), English word lemmas, or special frames
(e.g. for dates, modalities, negations, comparisons,
or family relationships). Semantic roles are either
PropBank roles, which have accessible predicate-
specific interpretation, or manually-crafted ones
(e.g. :name, :location, :cause, :concession,
:month, :poss, degree...).

Many AMR roles can be reified and used as
concepts, thus allowing the focus to be on the re-
lation itself. AMR also makes use of re-entrancy:

1There are cases where a variable is the same as the concept
(e.g. for negation modelled with an ‘-’). We generalize over
such special cases.
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in our example, Tiffany appears only once as a
node, and is linked to both decide-01 and fly-01.
AMR also represents explicit quantities and tem-
poral relations. This makes AMR graphs nearly
unambiguous.

Of all MRFs, AMR has probably garnered the
most attention in recent years. It has been used
in tasks such as Machine Translation (Song et al.,
2019), Question Answering (Kapanipathi et al.,
2021; Lim et al., 2020; Xu et al., 2021), Toxic Con-
tent Detection (Elbasani and Kim, 2022), Semantic
Search and Natural Language Inference (Opitz and
Frank, 2022b; Opitz et al., 2023b), and Social Rea-
soning (Chanin and Hunter, 2023).

Resources. The most important AMR corpus is
the AMR Annotation Release (Banarescu et al.,
2013). It was constructed fully manually by trained
annotators, and contains about 60,000 English
AMR graphs in its latest (3.0) version, including
multi-sentence graphs (O’Gorman et al., 2018).
AMR graphs are often linearized in the ‘Penman’
form (Kasper, 1989), which is easy to read, and al-
lows processing with neural models in a sequence-
to-sequence manner (the Penman form uses a depth-
first traversal and can, in principle, linearize any
directed rooted graph).

Parsing. Many AMR parsers have been proposed
through the years, graph-based (Flanigan et al.,
2014; Werling et al., 2015; Cai and Lam, 2020),
transition-based (Wang et al., 2015; Vilares and
Gómez-Rodríguez, 2018; Lee et al., 2020), or seq-
2-seq (Barzdins and Gosko, 2016; Peng et al.,
2018; Bevilacqua et al., 2021), possibly leveraging
adapters to better incorporate graph topology (Va-
sylenko et al., 2023). Most systems of the 2020s
leverage large pre-trained language models and
achieve strong performance on AMR 3.0.

Extensions. AMR has been extended to model
tense and aspect (Donatelli et al., 2018), as well
as scope (Pustejovsky et al., 2019), and larger
documents (Naseem et al., 2022). The Babel-
Net Meaning Representation (Navigli et al., 2022)
aims at making it multilingual by using BabelNet
synsets for concepts (Navigli et al., 2021) and
semantic roles from VerbAtlas (Di Fabio et al.,
2019). Perhaps even more ambitiously, the Uni-
versal Meaning Representation (UMR, Van Gysel
et al., 2021) aims at compensating all main short-
comings of AMR, adding aspect and scope, inte-
grating document-level annotations with corefer-

ence, temporal and modal relations between sen-
tences, and making the representation language-
agnostic.

4.4 Discourse Representation Structure

Discourse Representation Structure (DRS) is the
fruit of Discourse Representation Theory (DRT,
Kamp, 1981; Kamp and Reyle, 1993) and provides
a meaning representation that fully integrates with
first order logic. We focus here on the characteris-
tics of the DRS format used in the Parallel Meaning
Bank (PMB, Abzianidze et al., 2017), based on Seg-
mented Discourse Representation Theory (Asher
and Lascarides, 2003), which augments DRT with
discourse relations.

A Discourse Representation Structure (DRS) is a
recursive structure of nested boxes. Figure 6 shows
the representation of our example sentence.

While AMR links concepts to PropBank, con-
cepts in DRS are linked to Wordnet synsets (Miller,
1995). Wordnet has a very wide coverage of En-
glish, which means that most words can be mapped
to such Wordnet synsets. Semantic roles are taken
from VerbNet (Kipper et al., 2000), augmented by
hand-crafted roles (e.g. Quantity, Name, Owner,
Time). These roles are generic, dispensing of
predicate-specific interpretation.

Usually, a simple box represents a situation (an
event in our terminology, similar to an EDU). Dis-
course relations are represented similarly to seman-
tic roles, but with boxes as arguments. This means
that DRS is compositional, and naturally equipped
for multi-sentence representation. Modal logic op-
erators can also be applied to boxes (negation, pos-
sibility, and necessity), which allows for a precise
scoping of these operators: in the example, “she
will never fly again” is represented as the negation
of the box expressing that Tiffany flies at some
point in the future.

Even though there may be no ideal way to trans-
form a DRS into a graph (Abzianidze et al., 2020),
we can see concepts as nodes, and semantic roles
as labels of the edges between these nodes. Boxes
would be another type of nodes, with discourse re-
lations linking them. The most recent development
of DRS, the Sequence Notation (Bos, 2023), pro-
poses a similar graph equivalent. With this view,
DRS are compositional graphs, where high-level
nodes represent scope.

Resources. DRS annotations are hard to produce
even for experts, which makes constructing large
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corpora difficult. The Groningen Meaning Bank
(GMB, Basile et al., 2012) was the first DRS cor-
pus, followed by the Parallel Meaning Bank (PMB,
Abzianidze et al., 2017). These banks were built
using an semi-automatic pipeline based on the
rule-based parser DRS parser ‘Boxer’ (Bos, 2008)
and a CCG parser. The latest release contains al-
most 10,000 human-corrected English ‘gold’ doc-
uments. In addition, the PMB tries to make DRS
language-neutral by associating English documents
with translations to one or several languages.

Parsing. Several DRS parsers are available, ex-
ploiting transition-based parsing (Evang, 2019),
DAG Grammars (Fancellu et al., 2019) or POS-
tags and dependency graphs (van Noord, 2019).
Modern parsers use LLMs (van Noord et al., 2018,
2020) and generally outperform older ones.

Figure 6: DRS for our running example.

5 Current Research Trends

Synthesizing insights from our overview of MRFs,
we see research trends in three main areas for Deep
MRFs: MRF design, MR parsing, and MR applica-
tions.

5.1 Trends in MRF design

MRs seem to lend themselves to multi-linguality,
since they represent semantic concepts such as
agent, patient, instrument, and cause that appear to
be universal. However, these concepts, and more
generally their structure, are still based on English
semantics. Only UCCA, built on Basic Linguistic
Theory (Dixon, 2009), is natively fully language in-
dependent. To make them more language-agnostic,
some MRFs are being equipped with parallel cor-
pora, node labels, and even more neutral structure
(Abzianidze et al., 2020; Navigli et al., 2022; Gior-
dano and Lopez, 2023; Van Gysel et al., 2021).

Multi-sentence representation is also a topic of
research. Compositional MRFs are naturally well-
equipped for this, to the point that RST and DRS
are already able to represent multi-sentence docu-
ment in one MR. Several AMR extensions (Naseem
et al., 2022; Van Gysel et al., 2021) also work in
this direction.

Another trend is to make MRFs more expressive.
This happens along three axes: One axis extends
existing MRFs (as illustrated by AMR extensions
for tense or scope modeling, see above); another
axis uses multi-layer annotation schemes (as ex-
emplified by UCCA or UDS); and yet another one
employs more complex structures (as DRS does).

However, there is a trade-off between expressiv-
ity and simplicity of a MRF. The simpler an MRF
is, the easier it is to generate training data sets. In
fact, several works aim at reducing the annotation
load: some aim at crowd-sourcing MRs (e.g., by
re-formulating annotation tasks into simple ques-
tions White et al., 2016); others improve annotation
tools (e.g., with a CodePilot machine-in-the-loop
Cai et al., 2023); and again others create new, sim-
pler MRFs, based on AMR (Feng et al., 2023) or
DRS (Bos, 2023).

It is interesting to note that most works on AMR
focus on increasing expressivity, while works on
DRS tend to focus on improving simplicity. This
might indicate hat the right balance lies somewhere
between the two.

5.2 Trends in MR Parsing
Parsing. For humans, producing an MR is an ar-
duous task, particularly for abstract frameworks: a
trained annotator needs about 10 minutes to anno-
tate a sentence in AMR (Banarescu et al., 2013).
Therefore, much research has been dedicated to
building automatic parsing systems, with many
ideas shared between frameworks in Deep Mean-
ing Representations Parsing, as highlighted by the
SemEval shared tasks (Oepen et al., 2019, 2020).
Traditional approaches to Neural MR Parsing usu-
ally fall into two main categories: graph-prediction,
which try to identify nodes and the best edge as-
signment, and transition-based parsers, which build
the graph iteratively with a restrained set of ac-
tions and a stack-buffer structure. Graph-prediction
seems particularly suited for SDP, as the nodes
are the input tokens bearing strong relations to
syntactic dependency parsing (Almeida and Mar-
tins, 2015; Dozat and Manning, 2018). However,
when integrated into a pipeline that performs con-
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cepts identification and afterwards relations predic-
tion, it straightforwardly extends to AMR (Flanigan
et al., 2014; Werling et al., 2015; Lyu and Titov,
2018) or EDS (Cao et al., 2021; Chen et al., 2019).
Transition-based parsers seem suited to predict ab-
stract structures, and were used for building UCCA
parsers (Hershcovich et al., 2017; Jiang et al., 2019;
Bölücü and Can, 2021), DRS parsers (Evang, 2019;
Fancellu et al., 2019) and AMR parsers (Wang
et al., 2015; Vilares and Gómez-Rodríguez, 2018).
Most parsers now use sequence-to-sequence archi-
tectures (Ozaki et al., 2020; Samuel and Straka,
2020; van Noord et al., 2018, 2020; Bevilacqua
et al., 2021; Zhou et al., 2021). These models take
text as input, and output the linearized graph. How-
ever, there is a wide variety of learning strategies:
graph pre-training (Bai et al., 2022; Wang et al.,
2023), instruction fine-tuning (Lee et al., 2023),
graph information distillation (Vasylenko et al.,
2023), or even prompting (Ettinger et al., 2023).
Other approaches mix deep learning with classi-
cal ideas, using the representations of language
models in transition-based parsing (Astudillo et al.,
2020; Zhou et al., 2021), graph-prediction parsing
(Lyu and Titov, 2018), or ensembling (Hoang et al.,
2021; Lorenzo et al., 2023).

Evaluation. The evaluation of graph-based MRs
is ‘classically’ addressed through metrics such as
SMATCH that measures the structural similarity
of the output graph to a reference graph (Allen
et al., 2008; Cai and Knight, 2013; Opitz, 2023).
Three main issues have been observed in SMATCH:
First, the procedure it is inefficient, because com-
puting graph isomorphism is NP complete. Dif-
ferent heuristics have been developed to remedy
this problem, based on graph traversals (Song and
Gildea, 2019; Liu et al., 2020) or SMATCH dis-
tillation (Opitz et al., 2023a). The second issue is
that SMATCH evaluations consider only the graph
structure, and fails to see, e.g., that a node cat is
similar to a node kitten or a sub-graph cat :mod
young. Different neural networks and graph algo-
rithms are developed to remedy this issue (Opitz
et al., 2020, 2021; Shou and Lin, 2023). Finally,
SMATCH struggles to discriminate between strong
parsers (Opitz and Frank, 2022a). Finer semantic
graph measures are thus being developed, using
neural networks or graph algorithms (Opitz et al.,
2020, 2021; Shou and Lin, 2023; Kachwala et al.,
2024). As an alternative approach to metric evalu-
ation, MRF-specific ‘challenge sets’ are proposed

for AMR (Groschwitz et al., 2023) and DRS (Wang
et al., 2021a), to test parsers across a suite of tasks,
e.g., difficult ‘Winograd’ pronouns (Levesque et al.,
2012), or tense.

5.3 Trends in MR Application
We may wonder what is the place of MRFs in a do-
main dominated by always better-performing large
language models (LLMs). However, different from
LLMs, MRs make all facets of the meaning of a text
explicit, which can provide accuracy, control, ro-
bustness, and explainability to any NLP pipeline.
And indeed, these assets have been leveraged in
several ways, also in combination with LLMs.

A ‘classic’ strategy is to use the MR as support-
ing information, which is exploited in a neural ar-
chitecture. For this, MRs can be fed into sequence
encoders as linearized strings (Ouyang et al., 2021;
Xu et al., 2020), or into graph neural networks
that exploit structure (Song et al., 2019; Xu et al.,
2021; Lim et al., 2020; Ribeiro et al., 2022). Other
works use discourse-level information to perform
scene-aware attention (Slobodkin et al., 2022), or
combine sentence and MR embeddings to refine
representations (Cai et al., 2022).

Another strategy is to exploit the graphs directly
in symbolic or neuro-symbolic pipelines, so as to
control the results or explain them. Some works
leverage MRs for improved paraphrasing (Cai et al.,
2021; Huang et al., 2023) and style transfer (Jangra
et al., 2022), neutralizing ‘translationese’ in transla-
tion references (Wein and Schneider, 2024), or link
prediction (Yang et al., 2023). Other approaches
apply MR-to-text generation after manipulating or
splitting MR subgraphs, e.g., for data augmentation
(Shou et al., 2022) or text simplification (Sulem
et al., 2018b). Graph metrics are used to assist tex-
tual inference between pairs of sentences (Bonial
et al., 2020; Opitz et al., 2023b). Other works use
MRs for symbolic reasoning (Kapanipathi et al.,
2021; Chanin and Hunter, 2023).

Yet another strategy is to indirectly exploit MRs:
Opitz and Frank (2022b) partition text embeddings
into interpretable linguistic features by binding dis-
tances between embedding parts to distances be-
tween MR-subgraphs that elicit, e.g., polarity, or
semantic roles. A technical advantage of this is that
a parser is not required at inference.

MRFs are thus being combined fruitfully with
LLMs, contributing interpretability, useful interme-
diate representations, and a bridge towards formal
logic.
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6 Limitations

Our survey is limited to graph-like meaning repre-
sentations. While these are indeed the most popu-
lar meaning representations these days, there are
others that could be discussed in this survey. Ray-
mond Mooney’s ground-breaking works (Mooney,
1996; Wong and Mooney, 2006; Mooney, 2007),
e.g., or L. Zettlemoyer’s work on CCG parsing
(Kwiatkowski et al., 2011; Wang et al., 2014;
Dasigi et al., 2019), aim at building MRs from
a corpus for a target application. The compactness
of this survey also prevents us from going more
into detail for the parsing techniques. While we do
discuss current methods and future trends, parsing
itself could merit a survey. The majority of appli-
cations presented in Section 5 stem from AMR.
This is simply because AMR is the most popular
MRF, with very well-performing parsers. However,
this does not mean that the other MRFs are less
useful. They each have their unique properties that
predispose them to different applications.
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