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Abstract

The increasing versatility of language models001
(LMs) has given rise to a new class of bench-002
marks that comprehensively assess a broad003
range of capabilities. Such benchmarks are as-004
sociated with massive computational costs, ex-005
tending to thousands of GPU hours per model.006
However, the efficiency aspect of these evalu-007
ation efforts had raised little discussion in the008
literature.009

In this work, we present the problem of Effi-010
cient Benchmarking, namely, intelligently re-011
ducing the computation costs of LM evaluation012
without compromising reliability. Using the013
HELM benchmark as a test case, we investi-014
gate how different benchmark design choices015
affect the computation-reliability trade-off. We016
propose to evaluate the reliability of such de-017
cisions, by using a new measure – Decision018
Impact on Reliability, DIoR for short. We019
find, for example, that a benchmark leader020
may change by merely removing a low-ranked021
model from the benchmark, and observe that022
a correct benchmark ranking can be obtained023
by considering only a fraction of the evaluation024
examples. Based on our findings, we outline a025
set of concrete recommendations for efficient026
benchmark design and utilization practices. To027
take a step further, we use our finding to pro-028
pose an evaluation algorithm, that, when ap-029
plied to the HELM benchmark, leads to dra-030
matic cost savings with minimal loss of bench-031
mark reliability, often reducing computation by032
x100 or more.1033

1 Introduction034

Given the ongoing advances in the versatility and035

performance of Language Models (LMs), they are036

now expected to perform a diverse range of tasks.037

This expectation raises a profound challenge – how038

do we evaluate and rank the quality of different039

LMs over a variety of capabilities?040

1Reproduction code would be supplied upon acceptance
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Figure 1: HELM model ranks for different numbers
of inference calls. Each colored curve represents a
different model. Model ranks are extremely stable even
when compute drops dramatically: a ×10 decrease in
the number of examples per scenario produces nearly
the same results as the full benchmark, while a ×400
reduction still clusters models in the same small groups
seen in the full compute regime.

This is a complex evaluation endeavor (Chang 041

et al., 2023), as it transcends the boundaries of 042

a specific task and seeks to measure the overall 043

capabilities of an LM over a wide manifold of nat- 044

ural language tasks. To this end, LM benchmarks 045

are constantly being proposed, where each new 046

benchmark further expands the coverage and diver- 047

sity of evaluated tasks and settings (Wang et al., 048

2018; bench authors, 2023; Gao et al., 2021; Tal- 049

mor et al., 2020; Yuan et al., 2023; Zhang et al., 050

2023). Running such expansive benchmarks can 051

entail spending $10K+ or 4K+ GPU hours for eval- 052

uating a single model (Liang et al., 2022), and may 053

even surpass those of pretraining (Biderman et al., 054

2023) when evaluating checkpoints. At the same 055

time, even when compute resources are abundant, 056

benchmarks are bound to make certain concessions 057

aiming to approximate true model ability. These 058
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concessions – in the form of benchmark design059

choices – are to be made such that their impact060

on benchmark reliability (§2) is both minimized061

and transparent. This, to minimize cases where062

suboptimal design choices lead to reliability issues063

such as anointing a different best model or mak-064

ing rank differences between models statistically065

meaningless.066

In this work, we call attention to the topic of067

Efficient Benchmarking, namely intelligently re-068

ducing the computation costs of evaluation without069

compromising reliability. While the trade-off be-070

tween computation and performance is usually dis-071

cussed in the context of pre-training (e.g., scaling072

laws; Hoffmann et al., 2022; Ivgi et al., 2022) and073

finetuning (e.g., parameter efficient; Lialin et al.,074

2023), here we call for putting this trade-off on the075

center stage of evaluation design.076

In practice, the compute side of the trade-off al-077

ready plays a role in most large-scale evaluation078

decisions, both in benchmark design (Liang et al.,079

2022) and in its use for evaluation (e.g., choosing080

the number of seeds; Csordás et al., 2021; Choshen081

et al., 2022). However, despite their practical im-082

portance, these choices and their impact on bench-083

mark reliability have hardly been discussed in the084

literature, making researchers apply their own effi-085

ciency heuristics instead of using systematic guide-086

lines or literature when building their benchmarks.087

In order to advance efficient evaluation practices,088

the community is in need of a systematic set of089

guidelines and recommendations. These, in turn,090

must be based on a rigorous study of the different091

decisions made in benchmark design and how they092

affect efficiency.093

To begin addressing these challenges, we pro-094

pose Decision Impact on Reliability – DIoR – a way095

to measure the Impact of a Decision over a setup096

size (e.g., 1K examples, 10 datasets) on the Relia-097

bility. In addition, we perform a comprehesive anal-098

ysis study on efficient benchmarking. With HELM099

(Liang et al., 2022) as a test case, we test various100

decisions made and how they affect the trade-off be-101

tween computation and reliability: decisions about102

scenarios which are aggregated phenomena (§5.1),103

subscenarios (§5.2), few-shot prompts (§5.4) and104

the metric (§5.5). Among other findings, we ob-105

serve a substantial computation redundancy (see106

Fig. 1, 4); that a change in one rank is currently107

unreliable (§5.1); that splitting the data into groups108

(scenarios) hurts reliability; and that the mean win109

rate score (§5.5) is unreliable and gameable.110

Benchmark Building Tips

1. Know your Reliability-Compute Tradeoff (§2)
2. Compute matters - reduce samples to save (§5.3)
3. Reliability matters - add samples to improve (§5.3)
4. Maximize data-points variability, avoid varying one

trait at a time, sample across traits (§5.4)

5. Align resource allocation with importance (§6)

Given our analysis findings, we collect a set of 111

general guidelines for future benchmark creation 112

and use (see Tips above). Moreover, we show how 113

our findings can benefit current benchmarks by 114

proposing Flash-HELM (§6), a general evaluation 115

algorithm that enables obtaining a model’s ranking 116

with a fraction of the computation and minimal loss 117

of benchmark reliability. 118

In summary, the contributions of this work are 119

as follows: 120

1. We highlight the importance of the balance 121

between computation and reliability in 122

benchmark design and utilization, and pro- 123

pose DIoR as a quantitative measure of the 124

reliability of a specific efficiency strategy. 125

2. We conduct the first systematic study of the 126

effects of benchmark design on reliability. 127

3. Given the analysis findings, we provide a set 128

of practical recommendations for construct- 129

ing and using benchmarks; These guidelines 130

outline how best to reduce the computational 131

cost of benchmarking while maintaining an 132

adequate level of evaluation reliability. 133

4. We propose an algorithm for dynamic rank- 134

ing of a new LM, assigning higher importance 135

to rank top-performing models. In HELM, we 136

show that this algorithm dramatically reduces 137

the computation by up to×200 with minor de- 138

viations from the original ranking (see Fig. 5). 139

2 The Objective, Validity, Reliability 140

In this section, we first define 3 critical aspects for 141

evalution: the objective, validity, and reliability. 142

Then, we discuss benchmark reliability and how to 143

measure it, in more detail, being the focus of this 144

study. 145
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The Objective. The question the benchmark146

aims to answer. For example, “How good is a147

given model at sentiment analysis?” or “Which148

is the best language understanding model?”. The149

objective guides the initial, high-level decisions150

such as the choice of metric, tasks, domains, and151

datasets.152

Validity. Ensuring that the benchmark actually153

satisfies the objective, i.e., that it answers the right154

question, is not trivial. Following common psycho-155

metrics literature (Cronbach, 1946), we refer to this156

quality as validity. Validity challenges are often157

discussed in the literature, in general, (v. Kistowski158

et al., 2015) and in validating metrics (Choshen159

and Abend, 2018a; Freitag et al., 2022) or data (Po-160

liak et al., 2018; Gururangan et al., 2018; Northcutt161

et al., 2021b,a). For example, if the objective is to162

measure broad language understanding capabilities163

but the benchmark measures only a narrow aspect164

of language understanding, the benchmark has a165

validity problem.166

Reliability. Due to the noisy nature of broad eval-167

uation, two valid protocols may yield different re-168

sults (Maynez et al., 2023). Reliability assesses169

the degree to which the evaluation answer remains170

consistent under different random decisions, many171

of which are selections from the distribution of172

elements composing the benchmark (Kuder and173

Richardson, 1937).174

Building a benchmark involves numerous deci-175

sions (e.g., the number of datasets, or of examples176

per dataset). Importantly, such design decisions177

determine the reliability of the benchmark, and the178

conclusions that can (or cannot) be drawn from it.179

Therefore, we argue that such decisions must be180

made in an informed manner, including consider-181

ing their impact on reliability. From a practical182

point-of-view, well-informed decisions can lead183

to improved benchmarks, yielding more reliable184

results with lower computational costs.185

2.1 Quantifying Reliability: DIoR186

Just like significance, which relies on p-value, reli-187

ability requires a metric. However, such a metric188

is not available. Thus, we propose a new metric –189

the Decision Impact on Reliability test (hereafter190

DIoR) – as a way to assess the effect of a bench-191

mark design decision (e.g., choosing 16 specific192

language understanding datasets) on the reliability193

of the benchmark. Given a collection of instan-194

tiations of the decision (e.g., dataset samples of195

size 16), a benchmark scoring function (e.g., rank) 196

and a similarity meta-metric to measure the con- 197

sistency of the scoring function under a pair of 198

different instantiations (e.g., correlation between 199

rankings), DIoR assesses the stability of the meta- 200

metric across different instantiations. Specifically, 201

we define DIoR as the lower bound of the confi- 202

dence interval for the value of the meta-metric; we 203

report the lower bound as this corresponds to the 204

minimal value we are certain of. 205

Formally, given a set of models M , random in-
stantiations of the decision c ∼ D, and the orig-
inal instantiation co, a benchmark scoring func-
tion sc : M → r and a similarity meta-metric
f : r, r → [0, 1], DIoR is defined as:

DIOR = CI95%,c∼D(f(sco(M), sc(M)))

A reliable decision should receive a high DIoR, 206

implying that different instantiations do not sub- 207

stantially affect the results. 208

3 Data, Models and Scores 209

As a test case for investigating benchmark effi- 210

ciency, we analyze the results of the HELM bench- 211

mark (Liang et al., 2022). We stress, that although 212

HELM satisfies a good candidate for our analysis, 213

due to the wide range of tasks and models it offers, 214

our conclusions and methods are general and in no 215

way bound to a specific benchmark. 216

We take the scores of 37 models reported on 217

HELM version 0.2.22 as the data for most of our 218

experiments. As a test set for our recommendations 219

(§6), we take the 7 new models introduced in the 220

latest the later version, 0.2.3. 221

The HELM benchmark defines a taxonomy of 222

scenarios, where each scenario corresponds to a 223

collection of labeled data, as well as a metric used 224

to evaluate performance on this data. The bench- 225

mark designates 16 scenarios as “core scenarios”, 226

on which all LMs are evaluated and a bottom-line 227

score is calculated (see below). Each scenario 228

within HELM is further divided into one or more 229

subscenarios; each is an individual dataset with a 230

dedicated scoring function and 3 few-shot prompts, 231

which are originally referred to as seeds. Note 232

that the grouping of subscenarios into a scenario 233

can stem from historical reasons, such as grouping 234

datasets based on prior work. For instance, one of 235

the scenarios in HELM is RAFT, which consists 236

2https://crfm.stanford.edu/helm/v0.2.2/?group=
core_scenarios
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of several different datasets used within the RAFT237

benchmark (Alex et al., 2021). In §5.2, we discuss238

the consequences of this grouping decision.239

The HELM benchmark ranks LMs by an aggre-240

gation of their scores over all 16 core scenarios241

and 65K examples. The aggregation metric used242

is Mean Win Rate (MWR), which compares LMs243

against one another per scenario (a Borda Count244

variant, Emerson, 2013). MWR measures the aver-245

age win rate for each model over all scenarios (see246

App. A for a formal definition).247

4 Experimental Setting248

In our main experiments, we calculate DIoR to ex-249

amine the reliability under the current realization250

of the benchmark, as well as more efficient realiza-251

tions. Thus, we calculate DIoR for varying amounts252

of compute, ranging from the full HELM bench-253

mark to a small fraction of it (e.g., a benchmark254

with 1 scenario, or 100 examples).255

For each design choice (number of examples,256

scenarios etc.) we sample different instantiations257

of this choice, and use them to calculate DIoR. We258

follow a bootstrap approach, namely, sampling 1K259

times with repetition. For example (in §5.1), to260

test whether taking 10 scenarios reliably indicates261

the best model, we sample 10 scenarios (out of the262

available 16) 1K times, calculating the win rate263

values for each sample (in a sample, some datasets264

may be chosen more than once, or not at all).265

4.1 Benchmark Objectives266

Throughout our analysis, we consider three objec-267

tives that benchmarks often aim to measure. For268

every objective, we recommend a specific metric269

and then provide a related meta-metric to check its270

reliability.271

One objective is to acquire the full ranking.272

The meta-metric measures the number of models273

switching places in the overall ranking (Kendall274

τ ). We also calculate a weighted alternative that275

emphasizes correctly ranking the top models (Vi-276

gna, 2014), finding generally similar trends (see277

App. §C, §E).278

For the objective of determining which model is279

the best model, we define the meta-metric as the280

Error Rate, namely, the probability (across differ-281

ent instantiations) of a rank switch between the top282

two models. As we care about the best model in283

general, and not the current one specifically, we284

repeat the experiment 5 times, each time removing285
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Figure 2: Scenarios / Subscenarios / Examples DIoR.
Different subscenarios or scenarios would highly affect
results, but not examples. Each cluster of bars represents
a measure of DIoR (top labels) for the corresponding
objective (bottom labels). Each color denotes the granu-
larity: Examples, Subscenarios, or Scenarios. The area
above the vertical line in light green represents high
reliability levels (≥ 95%), while the area below in red
indicates lower reliability.

the top model from the benchmark (as if it was not 286

yet submitted). 287

The last objective is to evaluate model quality, 288

i.e., how well each model performs. For this, we 289

calculate the absolute bottom-line score. To be 290

consistent with the literature, we report MWR as 291

the model quality metric, where the meta-metric is 292

the absolute difference in MWR scores. 293

5 Results 294

In this section, we examine the impact of different 295

design choices on the reliability of the benchmark 296

objectives. 297

5.1 Scenarios 298

HELM selected 16 core scenarios for model evalu- 299

ation. We do not challenge this choice’s validity or 300

relevance. Instead, by applying bootstrapping, we 301

run a simulation of selecting equally valid alterna- 302

tive scenarios, in order to investigate the reliability 303

of this choice. 304

In Fig. 2 we report the reliability of HELM’s 305

original choice of (16) scenarios, for each of the 306

objectives. We find that the reliability of the set of 307

scenarios is low. Put another way, under a different 308

choice of scenarios it is quite likely that HELM’s 309

ranking, score, and winners would be different. 310

Further, as shown in App. §C, upon reducing the 311

number of scenarios, reliability drops drastically; 312

thus, the common compute-reduction approach of 313

dropping datasets (e.g., big-bench lite, bench au- 314

thors, 2023), is in fact an ill-advised practice. 315
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5.2 Subscenarios316

In this section, we first examine the reliability of317

HELM’s original design choice of 40 subscenarios318

(single-datasets grouped to construct the scenarios).319

Then, we question the reliability of the common de-320

sign choice (also prevalent in HELM) of grouping321

multiple subscenarios into scenarios vs. keeping322

every subscenario as a standalone.323

Repeating the reliability test for the three objec-324

tives (Fig. 2 and App. §C), we find that similarly to325

scenarios, the choice of subscenarios only supports326

low reliability, meaning that dropping subscenar-327

ios is a problematic approach for reducing com-328

pute. Given this finding, we revisit the decision to329

group subscenarios into scenarios. We find, that in330

terms of reliability, considering each subscenario331

as a standalone scenario is helpful, for example, in332

reducing the error rate between top pairs to 14%333

instead of 22% (see App. F).334

The rationale for grouping subscenarios is their335

shared focus on testing a particular skill or phe-336

nomenon. Their reweighting as a single group337

prevents over-emphasis on this skill across the338

benchmark (see example in App. §B). By com-339

plementing each other, these grouped subscenarios340

should offer a more holistic assessment of that spe-341

cific skill. Qualitatively, in HELM, it is not clear342

that the grouping is crucial and indeed prevents343

over-representation of specific phenomena. For344

example, the 7 open/closed question answering sce-345

narios (e.g., openbookQA, Mihaylov et al., 2018)346

seem closer in spirit to each other, than MMLU’s347

(Hendrycks et al., 2020) 4 subscenarios which were348

designed to cover distinct topics in language under-349

standing.350

If the above intuition proves correct, related sub-351

scenarios should test the same skill and are ex-352

pected to rank models consistently. Conversely,353

rankings from unrelated subscenarios would likely354

diverge, as they evaluate different capabilities.355

In App. §E, we measure just that and present356

the correlation between rankings made by differ-357

ent subscenarios. We do not find an a stronger358

correlation within subscenarios that belong to the359

same scenarios, concluding that aggregation is not360

needed for validity.361

Although we found that aggregating subscenar-362

ios scores hurts the general benchmark reliabil-363

ity, we note that aggregated scores might still be364

interesting to report for fine-grained evaluation365

(Gehrmann et al., 2021) or for historical reasons366
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Figure 3: The probability that models would switch
places (y-axis) given a different random choice of ex-
amples for evaluation (x-axis). Each line corresponds
to taking a group of N models and testing if the top and
bottom switch places. Results are averaged across 1K
iterations (95% confidence interval in shade) and over
the top 5 models as the top model.

(reusing a benchmark) as these can be considered 367

as separate sub-objectives. Hence, we suggest that 368

each such sub-objective would include aggrega- 369

tions, but that the bottom-line benchmark calcu- 370

lations should ignore these. This will allow the 371

benefits of sub-objectives while preventing over- 372

all benchmark reliability decline. Concretely, in 373

HELM, one can aggregate the final model score 374

over all subscenarios, but still report the aggregated 375

scores per scenario separately. 376

5.3 Examples 377

Previously, we have found that the reliability of 378

(sub)scenarios is already low, hence decreasing 379

computational cost by removing them is undesir- 380

able. In contrast, as Fig. 2 shows, the current choice 381

of examples is highly reliable. Thus, removing ex- 382

amples is a preferable strategy for reducing com- 383

pute. Further, we find a certain discrepancy be- 384

tween the objectives, where best-model is not reli- 385

able while model-quality and full-ranking are. To 386

reiterate, in the current state of HELM, discussing 387

the top model is pointless. In smaller benchmarks, 388

we expect the problem to be even more severe. 389

For the model-quality and full-ranking objective, 390

the current state is reliable, hence, we test relia- 391

bility with fewer examples per scenario. We find 392

(see Fig. 1) that model ranks are quite stable re- 393

gardless of the number of examples used. Remark- 394

ably, with the bare minimum of examples, models 395

are already clustered into equivalence classes of 396
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about 2-5 models, and with a few hundred exam-397

ples, models are separated into groups of ∼2 – the398

best separation the benchmark ever achieves. We399

find similar trends, of high reliability with a small400

number of examples, for the other objectives as401

well (App. §C). Fig. 6 quantifies the error in rank402

per model, and finds it is small, ranging from 6 to403

2.404

In the findings discussed so far, we repeatedly405

found models to be indistinguishable from the406

model ranked right above or below them. However,407

it is also interesting to consider the level of separa-408

tion between models that are farther apart. Thus,409

we examine clusters of adjacent models within410

the full HELM ranking (e.g., for a cluster size of411

5, we consider the models ranked 1-5, 2-6, 3-7412

etc.). In Fig. 3 we plot the probability of rank lo-413

cation switch (i.e., error rate) between the first and414

last models in rank clusters of sizes 2, 3, 5, 10 or415

20. While with cluster size 2 models often switch416

places – even with all benchmark examples – for417

clusters of 3 (i.e., a diff of two places), 1⁄4 of the418

computation is sufficient to get an average error419

rate under 5%. For larger clusters, one can get420

reliable results with a hundredth of the cost or less.421

We leave the special case where a “benchmark”422

is a single dataset to App. §D. Even then, fewer423

examples suffice. Moreover, as some datasets are424

more stable than others, one can tune the number425

of examples per dataset as needed, taking more426

examples where distinctions are harder to make.427

We leave more elaborate research on that for future428

work.429

5.4 Few-Shot Prompts (HELM’s seeds)430

Under the in-context learning paradigm, LMs are431

expected to predict the right answer given some ex-432

amples. As the choice of exemplars might change433

results (Min et al., 2022; Dai et al., 2023; Pan,434

2023), a reliable benchmark should account for435

this variability as well. For this reason, HELM436

considers three sets of few-shot exemplars, uses437

them against every example (Liang et al., 2022),438

and averages their score.439

To assess the reliability of prompts, bootstrap ap-440

proximation is not a viable option as there are only441

three prompts. Instead, we compare the effect of442

two different approaches for using a given budget443

to evaluate model performance. In our example,444

the budget of inference calls is 3K examples. One445

method, as HELM did, samples a set of K examples446

and then samples prompts (3). Then, every model is447
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Figure 4: In-context example selection strategies. The
95% CI of the MWR difference of bootstrap (Boot) and
sub-sample (Sub) for two choices of In-context example
selection (All Prompts and Uniform). It shows that (1)
sampling In-context examples uniformly from the pool
is superior to using all examples per samples and that
(2) more than half of the compute can be saved at no
cost to reliability. This analysis discarded the scenarios
that did not vary their in-context examples.

tested on every example and prompt, the full cross- 448

product. In contrast, one may sample uniformly 449

from the cross product of all (K) examples and all 450

possible prompts, where each call samples a differ- 451

ent prompt and example (and perhaps other traits), 452

ideally a unique example and prompt in each call. 453

Thus the calls will evaluate 3K examples and 3K 454

prompts. This approach captures more from each 455

variable (e.g., example), but cannot separate the im- 456

pact of each specific example on the performance 457

of the model. As our use case is benchmarking, 458

we do not care about, for instance, which example 459

makes the model fail, and hence expect the uniform 460

sampling to be more fitting. In practice, the group 461

of all possible prompts is of size 3, as is available 462

in HELM. 463

Comparing the two methods in Fig. 4, we find 464

that the uniform method increases reliability. Being 465

limited to only three prompts, we expect this is an 466

underestimation of its true potential. Inducting 467

from the prompt-example pairing to the general 468

case, when multiple factors are taken into account, 469

we conclude it is best to sample uniformly, covering 470

as much variability of each factor. 471

5.5 Metrics 472

Choosing a valid and reliable metric is a complex 473

art, with vast literature. From discussion about met- 474

ric biases (Choshen and Abend, 2018b; Mathur 475

et al., 2020; Sulem et al., 2018; Peyrard et al., 476

2021), to metric validation (Choshen and Abend, 477
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2018a; Honovich et al., 2022; Zerva et al., 2022;478

Kocmi et al., 2021; Fabbri et al., 2020), reference-479

less metrics (Honovich et al., 2021; Rei et al., 2022)480

and models that evaluate themselves (Chia et al.,481

2023). However, benchmarks that rely on existing482

datasets (the subscenarios) as their building blocks483

often adopt their metrics as well. Thus, in this anal-484

ysis, we discuss only the proposed way to convert485

subscenarios’ scores to HELM’s score – MWR.486

This includes two decisions; the grouping of sub-487

scenarios into scenarios, where each scenario is488

weighted similarly (see discussion in §5.2), and the489

decision to convert the absolute scores per model490

to a comparative score.491

A comparative measure such as win rate pro-492

vides a preference over models, but can not tell493

how good a model is at performing a task. This494

is especially useful when preference is easier to495

collect than an absolute score, as often happens496

with human evaluation (Bojar et al., 2016; Choshen497

and Abend, 2018a), or if even direct assessment498

produces relative scores unintentionally (Mathur499

et al., 2017; Liang et al., 2020). Fortunately, this500

is not our case, where each subscenario provides a501

score for each example and MWR converts it into502

pairwise comparisons as a normalization technique.503

There are however known and inherent limitations504

to comparative measures, most famously the im-505

possibility theorems (Arrow, 1950). In this case,506

introducing a new model to the benchmark changes507

the scores of existing models (Knowles, 2021).508

We analyze if this indeed affects the MWR we509

currently observe. Take for example the first two510

models in HELM – davinci2 (Ouyang et al., 2022)511

and Cohere XXL. Those top models switch places512

when they are compared with or without Cohere513

Medium. This follows from MWR’s tendencies.514

When we introduce models that are just slightly515

worse in everything than one model, this model516

sweeps the benchmark collecting all the wins while517

other models only get some of the wins. Thus,518

introducing a weaker model changed the rank of519

two stronger models.520

One might consider the example above a rare and521

extreme case, but actually, this is the expected case.522

The common practice today is to release several523

sizes of a new model. Those model variations were524

trained similarly, and hence tend to have similar525

strengths, with the larger variant being stronger526

in every aspect. In App. §B we provide a simple527

numerical example of models changing rank when528

a new weaker model is introduced.529
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Figure 5: Efficient evaluation proposal. Flash-HELM
(§6) produces similar ranks to HELM with a fraction
of the compute. Models are Test-set and were not part
of the analysis. Each circle size and numerals repre-
sent the reduction in compute usage for evaluation, in
comparison to HELM’s .

In essence, one can maliciously raise a model 530

to the top by evaluating numerous models almost 531

equal to their own, but with one wrong sentence 532

in each scenario. While such intentional gaming is 533

unanticipated, it is a favorable characteristic for a 534

benchmark to improve only if results are better, en- 535

couraging innovation through healthy competition. 536

6 Efficient Alternative: Flash-HELM 537

In this section, we demonstrate the practical utility 538

of our study, by proposing an efficient variation of 539

the HELM benchmark, which we coin as Flash- 540

HELM. This variation preserves the important in- 541

formation of HELM, while reducing computation 542

costs by up to 200 times. 543

Objective. As discussed in §2, a well crafted 544

evaluation answers a question. Here we consider 545

the question “How is model X ranked when com- 546

pared to other models?”. Usually, however, the 547

required reliability of the answer varies depending 548

on the model’s performance. For example, when 549

a model’s ranking falls within the lower range of 550

the benchmark – say, between positions 25 and 40, 551

the precise ranking might not hold much impor- 552

tance; instead, a broad conclusion that the model is 553

poor should suffice. On the flip side, when a model 554

attains a position in the top 5 ranks, the specific 555

placement carries more weight. 556
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Approach. Following this motivation, we pro-557

pose the following use-case: segmenting the rank-558

ing into five “tiers”; Rank 1, Ranks 2-4, 5-9, 10-19,559

and Ranks 20 and below. Now, we associate each560

tier with a designated ‘desired reliability’ level,561

starting with a low amount of computation for562

lower ranks and gradually raising it for higher563

ranks. This allows to evaluate most models tap-564

ping into a fraction of the computation. To achieve565

this improved efficiency while minimally harming566

reliability, we reduce examples and sample prompts567

as suggested above.568

Algorithm. For each tier, 1-4, 5-9, 10-19, and 20569

we set the required precision to 1,2,3 and 4 rank570

resolution respectively. For the top model, we set571

the precision requirement to be maximal, as iden-572

tifying the best model bears special importance.573

Based on that and the data in Figure 6, we can de-574

termine the size of the sub-sample needed in order575

to evaluate a model in each tier. We denote this re-576

lationship as TierRank(S) – the lower rank of the577

“tier” that is associated with a sub-sample size S.578

Furthermore, we denote: Rank(M,S) - the rank579

of model M when calculated using a sub-sample580

size S, and Res(S) – the achieved rank resolu-581

tion for sub-sample size S (based on Fig. 6). We582

formulate an efficient ‘coarse-to-fine’ tournament583

algorithm.584

Evaluation. We assess the performance of our al-585

gorithm using the seven newly-introduced models586

found in HELM v0.2.3 – models that were not used587

in our previous analysis. The results are showcased588

in Figure 5. Flash-HELM ranks are very close to589

the full HELM ranks and are within the required590

resolution. These results highlight the algorithm’s591

effectiveness in preserving important ranking infor-592

mation while achieving a reduction up to a factor593

Algorithm 1 Efficient ’coarse-to-fine’ tournament
M ← The evaluated model
for Sample size S ∈ [20, 50, 200, 1000,Max]
do

Rank(M,S)← Evaluated model M using
sub-sample of size S.

if Rank(M,S)+Res(S) ≥ TierRank(S)
then

stop;
end if

end for
report Rank(M,S).;

of 200 in computational demands. 594

7 Discussion and Conclusion 595

Why this sudden focus on reliability when our field 596

largely thrived without it? The shift from single 597

datasets to complex multi-dataset benchmarks, like 598

HELM, has changed the evaluation landscape. In 599

the past, individual datasets offered great reliability 600

due to a large i.i.d. sample pool spanning all the 601

relevant example space; In current benchmarks, on 602

the other hand, the space is constructed of more di- 603

mensions such as datasets, prompts, etc. For some 604

of those dimensions (e.g. 3 prompts in HELM), the 605

benchmark holds a handful of examples making for 606

a severely low coverage. Even when the number 607

of examples is sufficient for reliable, and stable in- 608

sights for some dimensions, this might not be true 609

for others. the lack of sufficient coverage narrows 610

the gap with fields like psychology and physiology, 611

which often rely on smaller samples. Just as we 612

wouldn’t expect meaningful psychological insights 613

from 3 or even 16 human subjects, we shouldn’t 614

expect reliable conclusions from just 3 different 615

prompts or 16 datasets without careful design. 616

Our study shows that by utilizing efficient eval- 617

uation methods we can both increase reliability 618

and drastically reduce costs. We advocate for the 619

development of more transparent, efficient and re- 620

liable evaluation benchmarks and techniques, and 621

by doing so, not only to enhance their effective- 622

ness, but also to make research more accessible 623

across diverse groups, more reproducible and more 624

respectful of environmental concerns. 625

Limitations 626

Future work will analyze other benchmarking de- 627

cisions and other benchmarks. Thus, while the pa- 628
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per’s results are sound, they might ignore common629

unreliable decisions in other benchmarks which630

were not apparent in this scenario or were left out631

(such as the choice of prompt templates, choices of632

non-textual benchmarks, etc.). A decision of spe-633

cial interest is that of efficient inference methods.634

With many efforts to tackle the tradeoff between635

performance and computation (Chen et al., 2023;636

Choukroun et al., 2019), future work would wonder637

if there is a validity and reliability tradeoff as well638

or if such methods can be used to evaluate models639

(that do not use them) as well.640

In some of the analyses (e.g., tournament) we641

compare the change with respect to the reported642

HELM score, as we note throughout the paper,643

this is but an approximation of the true score each644

model deserves. Thus, where an efficient method645

might seem to be deviating in 3 ranks, it might only646

deviate in 2 (or 4) because the point of reference647

may itself be wrong. In a sense, reliability com-648

pares the change among realizations and solves649

this problem by not defining which one is the true650

value.651

Here, we considered datasets as sampled and652

hence similarly informative (except for discussing653

their correlations). However, it is possible to split654

datasets into meaningful scenarios. If this would655

be done for validity reasons one would also want to656

diversify the scenarios used, perhaps in the space657

of tasks and domains and skills.658

The validity and reliability axes and the claims659

calling for considering the tradeoffs carefully are660

general. However, we note that the specific analysis661

is, specific. It might change in the future, if models662

characteristics change drastically or improvements663

make some of the subscenarios redundant.664

Especially prone to that is the rank change, if665

many similar models are added. In that case, each666

model would switch more ranks, but as models667

would still show grouped behaviour and the ab-668

solute scores won’t change more, we assume the669

meaningful qualifiers would change as well (for a670

thousand models, a ±10 in ranks might not be as671

meaningful as with the current 40).672

Another limitation of our work is that we intro-673

duce a known and critical aspect in testing, reli-674

ability, but evaluate it in an unconventional way.675

We believe using confidence intervals to be more676

intuitive and more general and available as any-677

one running the benchmark already has access to678

the computation necessary. However, it is more679

likely that adaptations and improvements would be680

needed as the traditional statistical study of relia- 681

bility focuses on variances and such notions. 682

Our use of bootstrap for experiments (especially 683

with full HELM) has two main limitations. The 684

first is the limitation of bootstrapping in general, 685

while this is the best approximation of the real 686

distribution (e.g., of examples), it is merely an ap- 687

proximation using the sample at hand (HELM’s 688

data). 689

The second, is that we add an assumption that 690

other decisions could be made that are as valid as 691

the one made by HELM. In other words, we as- 692

sume there exists a larger distribution from which 693

other choices could have been taken (e.g., instead 694

of considering a summarization task scenario con- 695

sidering paraphrase generation). We do not see 696

that as a strong assumption, as we do not need to 697

explicitly state which distribution that is. If how- 698

ever, the dataset were covering exactly all types of 699

known capabilities or following a theory, that spe- 700

cific choice might not have been a good prospect 701

to test reliability, as it could not change under the 702

circumstances. 703
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A Mean Win Rate: A Formal Definition1017

For a given set of models M , scenarios CS con-1018

taining subscenarios. Each subscenario provides1019

a single metric to evaluate and score models. For1020

brevity, we identify subscenarios s∈CS with their1021

scoring function and define it as s : M→R:1022

MWR(m) =1023

E
S∈CSm

E
mi∈M\m

1

(
E
s∈S

s(m) > E
s′∈S

s′(mi)

)
1024

Where 1 is the indicator function. When a sub-1025

scenario score was not submitted to the benchmark1026

for a specific model m (missing value) it is omitted1027

from CS, denoted as CSm.1028

B Examples of Score Sensitivity1029

We give several examples of how small changes1030

change the ranking of models without need.1031

Adding a model. Take two models with per1032

model scores 10,10,10 and 12,12,8. The second is1033

clearly better. It also gets a better score when the1034

two are compared. However, adding an even worse1035

model 9,9,9 now changes the picture. The win rates1036

of the original models are now 0.5,0.5,1 and 1,1,01037

respectively. So on average the scores of the two1038

models are suddenly tied. Adding more such mod-1039

els would improve the first model’s ranking more1040

and more, enlarging the difference.1041

Combining datasets. Let two models have1042

scores 1,1,0,0 and 0,0,1,1 on 4 datasets respectively.1043

If we call the first two datasets a scenario, we get1044

that one model wins on one scenario and loses on1045

two. This makes the first model suddenly better;1046

choosing the last two datasets would do the con-1047

trary.1048

Reporting partially. Let three models have aver-1049

age win rates of 0.9,0.9 and 0 and 0.8,0.8,0.8 with1050

many models. If the first model does not report1051

the last 0-winning-rated dataset, then it is consid-1052

ered a better model, with 0.9 win rate on average,1053

while it would be the worse one with 0.6 win rate1054

otherwise.1055

C Objectives per Decision1056

In this section, we present graphs (8,9,10) for deci-1057

sions and objectives that were left out of the main1058

paper. We provide a triplet of graphs per decision1059

(one for each objective): scenarios in Fig. 8, sub- 1060

scenarios in Fig. 9 and examples in Fig. 10. 1061

D Each Dataset as Standalone 1062

Benchmark 1063

In this section, we report (Fig. 7) the results sep- 1064

arated and without aggregation. We presume this 1065

would be helpful both for the use of single stan- 1066

dalone benchmarks in the future, and for more 1067

elaborate choices when integrating datasets into 1068

a new benchmark, such as choosing datasets which 1069

provide commendable traits or varying the number 1070

of examples shown per dataset in the benchmark. 1071

E Full Subscenario Correlations 1072

We provide the full heatmap of correlations be- 1073

tween pairs of subscenarios in Fig. 12, finding little 1074

similarity within scenario. 1075

F Scenario Vs Subscenario Aggregation 1076

13
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Figure 7: In-context example selection strategies. The figure depicts the mean dataset score along with the
bootstrap (Boot) and sub-sample (Sub) 5% Confidence intervals for two choices of In-context example selection (All
Seeds and Uniform). It shows that (1) sampling In-context examples uniformly from the pool is superior to using all
examples per samples and that (2) more than half of the compute can be saved at no cost in score reliability.
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Figure 8: Scenarios reliability. Reliability of different amounts of computation for the three objectives and
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Figure 9: Subscenarios reliability. Reliability of different amounts of computation for the three objectives and
corresponding meta-metrics.
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in each standalone subscenario. Correlations within a
scenario are not higher than across scenarios.
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Figure 12: Subscnerios Ranking Correlations. This figure depicts the Kendall τ correlation matrix between the
ranking of models based on the performance in different subscenarios.
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Figure 13: The probability that models would switch
places, MWR over subscenarios (y-axis) given a differ-
ent random choice of examples for evaluation (x-axis).
Each line corresponds to taking a group of N models and
testing if the top and bottom switch places. Results are
averaged across 1K iterations (95% confidence interval
in shade) and over the top 5 models as the top model.
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Figure 14: The probability that models would switch
places, MWR over scenarios (y-axis) given a differ-
ent random choice of examples for evaluation (x-axis).
Each line corresponds to taking a group of N models and
testing if the top and bottom switch places. Results are
averaged across 1K iterations (95% confidence interval
in shade) and over the top 5 models as the top model.
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