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Abstract

The NLP community typically relies on per-
formance of a model on a held-out test set to
assess generalization. Performance drops ob-
served in datasets outside of official test sets
are generally attributed to “out-of-distribution”
effects. Here, we explore the foundations of
generalizability and study the factors that affect
it, articulating lessons from clinical studies. In
clinical research, generalizability is an act of
reasoning that depends on (a) internal validity
of experiments to ensure controlled measure-
ment of cause and effect, and (b) external valid-
ity or transportability of the results to the wider
population. We demonstrate how learning spu-
rious correlations, such as the distance between
entities in relation extraction tasks, can affect a
model’s internal validity and in turn adversely
impact generalization. We, therefore, present
the need to ensure internal validity when build-
ing machine learning models in NLP. Our rec-
ommendations also apply to generative large
language models, as they are known to be sen-
sitive to even minor semantic preserving alter-
ations. We also propose adapting the idea of
matching in randomized controlled trials and
observational studies to NLP evaluation to mea-
sure causation.

1 Introduction

What factors lead to poor generalizability of mod-
els? To understand causes of non-generalization,
the notion of generalizability needs to be first
clearly defined. One definition of generalizability,
in the context of general machine learning, is the
ability of a model to perform well on data unseen
during training, but drawn from the same distribu-
tion or population (Google, 2022). Data unseen
during training clearly refers to data that is not part
of training data, and is arguably uncontroversial to
support sound evaluation. However, the require-
ment of data drawn from the same distribution or
population warrants more scrutiny.

It is important to consider the impact of data
distribution on generalization, yet this is very chal-
lenging for natural language data. In statistics, the
concept of distribution indicates “the pattern of
variation in a variable or set of variables in the mul-
tivariate case”, and thus describes the frequency of
values of an observed variable (Wild, 2006). Dis-
tribution or frequency of observed variable values
can be challenging notions to meaningfully adapt
to high dimensional, multivariate, and high vari-
ability text data. Currently, no formal definition of
in-distribution or out-of-distribution (OOD) texts,
or how to detect them, exists for NLP (Arora et al.,
2021). Where distributions are considered, simple
surface linguistic characteristics or lexical-level dis-
tributions are emphasized (Verspoor et al., 2009).

Despite the lack of a comprehensive formal defi-
nition of OOD in existing NLP literature, OOD has
become the most commonly cited reason for gener-
alization failure when a model performs poorly out-
side an official test set. Due to the black-box nature
of deep learning models, it is increasingly difficult
to demonstrate if a model has established a robust
decision-making process that is generalizable to
unseen data. As a consequence, generalization fail-
ures are typically ascribed to external factors, i.e.
those extraneous to model development practices,
and primarily to shifts in data distribution, or OOD.

Recent studies have emerged showing that the
robustness of a model can be undermined by inad-
vertent errors made during development of a model.
For example, it has been shown that data leakage
from training into test splits can lead to inflated
test results (Elangovan et al., 2021). Other works
have pointed out spurious correlations in various
benchmark datasets that may be leveraged by deep
learning models to achieve inflated performances
on test sets, while having poor generalization ca-
pability to real-world settings (Gururangan et al.,
2018; McCoy et al., 2020; Shinoda et al., 2022).

In this paper, we hope to draw attention to the
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causes of NLP model generalization failures, es-
pecially those internal factors that are part of the
model development process (e.g. preparation of
training data). We argue that the external validity
of a model should only be examined if the internal
validity of the model is established. We start with
a case study, showing how generalization failures
can be caused by internal factors – the model has
learned surface patterns in training data. We then
propose that a pragmatic notion of model gener-
alizability in the NLP domain can be established
through borrowing and adapting practices from a
domain seemingly far afield – clinical research.

The contribution of this paper is two-fold. First,
we show how OOD may not be the sole cause of
generalization failures, via a relation extraction
task, highlighting the need for intrinsic investi-
gation of why models fail. Second, we propose
to categorize the causes of generalization failures
in NLP models, drawing inspiration from clinical
studies. Our work provides guidance on how to
more systematically analyze generalization failures
and adapt the principles behind randomized con-
trolled trials for NLP model evaluation.

2 Relation extraction case study

Through a relation extraction case study over two
data sets, we demonstrate that poor generalization
in real-world application can result from ineffec-
tive modelling, i.e. learning of superficial surface
patterns, rather than data distribution shift. For
completeness, we also study a popular benchmark
dataset on natural language inference (NLI) task.

2.1 Approach

Due to the black-box nature of deep learning mod-
els, it is difficult to interpret the underlying basis
for model predictions. Inspired by recent works in
explainable NLP models, such as LIME (Ribeiro
et al., 2016), we employ interpretable surrogate
models to examine the behavior of deep learn-
ing models. Specifically, assume a dataset D =
{⟨x, y⟩}, where x represents the input sequence of
words and y represents the ground-truth label for
x. We train two surrogate models: a model Sg that
is fit on the dataset ⟨xu, y⟩ and another model Sm̂

that is fit on the dataset ⟨xu, ŷm⟩, where xu repre-
sents x via a representation technique u and ŷm is
the prediction of the deep learning model Bm to be
examined, e.g. a BERT-based model (Devlin et al.,
2019). For u, we adopt a vector of surface patterns.

We hypothesize that a strong correlation between
the predictions of the surrogate Sm̂ and the corre-
sponding main model predictions indicates that the
underlying model Bm has relied on the surface pat-
terns in xu, and that the model’s predictions may
not be reliable. The idea here is that if a surrogate
model can reproduce the behavior of a comparator
model with high fidelity, then that surrogate model
is a good approximation of that comparator model
and hence there is no evidence that the comparator
model has learned anything more than the patterns
captured in the surrogate model. This also fol-
lows from the principle of Occam’s razor related to
the law of parsimony (Epstein, 1984; Felsenstein,
1983). We interpret the correlation between the
predictions of Sĝ and the ground truth labels as the
indicator of the extent to which the surface patterns
xu are present in the underlying data. A strong
correlation indicates the weakness in the dataset
itself and how these patterns can be exploited to
achieve highly accurate predictions without deeper
linguistic comprehension. We use Cohen’s Kappa
κ to measure correlations.

2.2 Datasets
We use the following datasets:

• PTM-PPI (PTM) is sampled from PubMed
abstracts (Elangovan et al., 2022) for relation
extraction (REL) task, annotated with 6 types
of post-translational modification relationship
between two proteins. Out of the 6 positive
classes, we only consider the class “phospho-
rylation” since only this class has a sufficient
number (> 100) of training samples. Conse-
quently, the dataset used has 2 classes: “phos-
phorylation” class and the negative class.

• ChemProt (CHM) is sampled from PubMed
abstracts, annotated with 5 types of pro-
tein–chemical relationships (Krallinger et al.,
2017) for REL task. The dataset contains 6
classes in total: 5 positive classes and the neg-
ative class.

• SNLI (SNL) is a NLI task dataset with 3
classes (Bowman et al., 2015).

For CHM and PTM, we fine-tune a BioBERT
model (Lee et al., 2019). For SNLI dataset, we
fine-tune a BERT (Devlin et al., 2019) model.

2.2.1 Generalization data sets
To understand the impact of generalization behav-
ior of a model that has relied on spurious factors,
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Dataset Split (Label) # Pos / # Neg

PTM

TR (GT) 139 / 1116
TS (GT) 44 / 308
TS (MP) 24 / 328
GH (MP) 250 / 5000

CHM

TR (GT) 4172 / 2265
TS (GT) 3469 / 2275
TS (MP) 3726 / 2018
GH (MP) 7500 / 2500

SNL
TR (GT) 366374 / 182764
TS (GT) 6605 / 3219
TS (MP) 6462 / 3362

Table 1: Summary of data sets. TR: official training set;
GT: ground-truth labels are used; TS: official test set;
MP: model prediction labels, GH: generalization set.

beyond the test set, we selected the REL tasks due
to the availability of data on PubMed. We select
a random subset of PubMed abstracts to create
a “generalization” set. We apply the fine-tuned
BioBERT model to generate the predictions for
the “generalization” set. From this generalization
set, we randomly sample from the top 25 percentile
high confidence predictions to form set GH for each
class (Elangovan et al., 2022) and report results
across 10 runs. Selecting only the high confidence
predictions follows Hendrycks and Gimpel (2017),
which demonstrated that the prediction probabili-
ties of OOD samples tend to be lower than those of
correct samples. Table 1 summarizes the datasets.

2.3 Surrogate models and surface patterns
We employ two explainable surrogate models:

• Multinomial Naive Bayes (NB): The Multi-
nomial Naive Bayes approach represents in-
put samples using simple surface patterns (n-
grams, n = 1). To avoid over-fitting, we se-
lect the top k most commonly n-grams per
class. Hence, the maximum number of n-
grams that the NB model uses is k× number
of classes. We set k as 100 in the experiment.

• Naive Bayes + Decision Tree (NB-T): Here
we use model stacking, where a Decision Tree
is stacked on top of a NB model. In NB-T, the
prediction of NB is used as one feature input
in the subsequent decision tree. Additionally,
handcrafted rules, detailed in section 2.3.1, are
used as surface pattern features in the decision
tree. To void over-fitting and to allow the
decision process to be explainable, we restrict
the tree depth to <= 4.

2.3.1 Crafted surface pattern features
To study whether the BioBERT-based model has
relied on distance-based surface patterns for rela-
tion extraction, we manually analyze BioBERT’s
predictions on the PTM task and identified 4 sur-
face patterns that potentially explain the model pre-
dictions. We then use these hand-crafted surface
patterns to represent the inputs to a surrogate model
and verify how well the predictions of the surro-
gate model correlates with BioBERT’s predictions
(which is given the full-text input). The 4 surface
patterns are:

• Percentage count of participating entities
(E1C and E2C) : Given an input sentence
s and a relation ⟨E1, Rel, E2⟩ in s, this fea-
ture captures the percentage of the total to-
kens in s corresponding to each entity. For
instance, for the input “GENE_A interacts
with CHEMICAL_C and binds to CHEMI-
CAL_C and CHEMICAL_D" and the relation
⟨CHEMICAL_C, Rel, GENE_A⟩, the fea-
tures E1C and E2C are 2

10 ∗ 100 = 20.0 and
1
10 ∗ 100 = 10.0, respectively (input contains
10 words, E1 occurs twice and E2 once).

• Length of shortest span containing the
participating entities and a given trig-
ger word T (LSS_⟨T⟩): This feature rep-
resents the length of the shortest span
containing the two entities and a speci-
fied trigger word. For instance, an input

“GENE_A interacts with CHEMICAL_C and
binds to CHEMICAL_C and CHEMICAL_D"
and ⟨CHEMICAL_C, Rel, GENE_A⟩ the
length of the shortest span containing the
trigger word “interacts", LSS_interacts, is 4,
whereas LSS_binds is 6.

• Length of shortest span that con-
tains the entities and any trigger
word (LSS): For instance, given input

“GENE_A interacts with CHEMICAL_C
and binds to CHEMICAL_C and CHEMI-
CAL_D" and relation ⟨CHEMICAL_C, Rel,
GENE_A⟩, the shortest span has length 4.

• Fraction of sentences containing participat-
ing entity pair (SPC): This feature repre-
sents the normalized count of sentences con-
taining the entity pair. For instance, if the
input text contains sn sentences and only k
sentences contain both entities E1 and E2 in
⟨E1, Rel, E2⟩, then this feature would be k

sn
.
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For SNLI, we use the spurious factors reported by
Gururangan et al. (2018), such as the length of the
hypothesis and presence of negation.

2.4 Results
Table 2 reports the Kappa correlation between (a)
the surrogate models and ground truth; and (b) the
surrogate models and fine-tuned model’s predic-
tion. For the PTM corpus, NB-T achieves better
correlation with ground-truth, compared to NB, in
all settings, demonstrating that the hand-crafted
surface patterns are more likely than n-grams along
to be influencing model predictions. In addition,
when ground-truth labels are used as targets, i.e. TS
(GT) vs Stest

g predictions and TR (GT) vs STrain
g

predictions, NB-T correlation κ is 0.55 and 0.54
respectively, indicating that similar surface patterns
exist in both the training and test sets of ground-
truth labels. This is not surprising given that the
test and train sets were obtained using a random
split from a single dataset.

To examine if the fine-tuned BioBERT model
has relied on those hand-crafted surface patterns,
we compare the correlation between NB-T on the
test set when fitting to the ground-truth labels, TS
(GT), versus the BioBERT model’s predictions,
TS (MP). We see that the κ correlation increases
drastically from 0.55 – weak correlation, to 0.73
– moderate correlation (based on McHugh (2012)
ranges), when the target labels are replaced with
BioBERT predictions (cf. trees in Appendix A).
This demonstrates that NB-T using handcrafted
features is more correlated with BioBERT’s predic-
tions compared to ground-truth labels themselves,
increasing the evidence that the BioBERT model
may rely on these features. This phenomenon is
further exacerbated on the GH set, where NB-T
achieves κ correlation of 0.85 - strong correlation
when fitting to BioBERT’s predictions. In fact,
Elangovan et al. (2022) report that only 6 out of 30
(20%) of the phosphorylation predictions turned
out to be accurate when the high confidence pre-
dictions were randomly sampled and verified by
experts, compared to test set precision of 62.5%.
The drop in precision, compared to test set perfor-
mance, may be explained by the model relying on
these surface patterns rather than broadly general-
izable features.

In the CHM dataset, distance based surface pat-
terns do not seem to be a stronger predictor than
n-grams, as shown in Table 2. All the surrogate
models have a correlation between 0.4 and 0.5 in-

DS (L) SM PTM κ CHM κ SNL κ

TR (GT)
NB 0.33 0.45 0.25
NB-T 0.54 0.46 0.27

TS (GT)
NB 0.26 0.48 0.29
NB-T 0.55 0.48 0.33

TS (MP)
NB 0.25 0.50 0.32
NB-T 0.73 0.51 0.34

GH (MP)
NB 0.77 (0.3) 0.44 (0.002) -
NB-T 0.85 (0.3) 0.44 (0.002) -

Table 2: Surrogate model correlations on dataset (DS)
and the target label (L): The surrogate model (SM) NB-
T correlates better with BioBERT’s prediction than the
ground truth labels for the PTM dataset. For GH set, we
report standard error for 10 runs ( σ√

n
, where n = 10).

The p-value for Cohen’s-κ is less than 0.05.

dicating weak correlation (McHugh, 2012).
For SNLI, the surrogate models achieve mini-

mal correlation between 0.21 and 0.39 (McHugh,
2012) indicating there are potentially other features
required to improve the surrogate model. The hy-
pothesis length, as reported by Gururangan et al.
(2018), is one of the key features that NB-T also
identifies, see details in Appendix B.

OOD is NOT always a sufficient explanation
for generalization failures. Given the broad and
generic definition of OOD, almost any sample can
be categorized as OOD. It is difficult to counter
the OOD argument, as there is no comprehensive
approach to establishing that a given instance is in-
distribution (Arora et al., 2021). While in the case
of CHM, we were unable to detect clear surface pat-
terns, in the case of the PTM dataset, BioBERT ap-
pears to heavily rely on surface patterns reflected
in our handcrafted distance-based patterns. The
strong correlation between the surrogate model and
the BioBERT-based model prediction points to the
model potentially relying on such surface patterns,
which will undoubtedly hinder the model’s gener-
alizability to external datasets. Therefore, before
concluding OOD as a potential cause of general-
ization failure, we need to ensure that spurious
correlations are NOT the source of a model’s high
performance. There are cases where some surface
patterns might be reasonable for some tasks, we
discuss such cases in detail in Section 4.3. While
we acknowledge that correlation does not necessar-
ily imply causation, under certain conditions it may
indeed (Gardner, 2000). Our results above and sev-
eral other works suggest that spurious factors might
be enabling models to achieve high performance
(Gururangan et al., 2018; McCoy et al., 2019), but
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further (difficult to design) tests would be required
to unambiguously establish that the cause of high
performance is indeed spurious correlations.

Detecting spurious correlations is non-trivial,
while simple surrogate models can detect dominant
surface patterns provided we know what to look
for apriori. Hence, our approach of using surro-
gate models has two main challenges: a) it requires
good handcrafted features, and b) it assumes only
a few dominant patterns exist. Deep learning mod-
els, such as transformers, that can potentially learn
thousands of low frequency surface patterns (that
may not be detectable by simple models), while
these patterns may also be present in the test set,
leading to inflated test performance.

3 Foundations of generalizability

The core idea behind generalizability is that the
conclusions drawn, or a model inferred, from a
sample can be applied to a wider population. In
this section, we discuss some of the foundations
of generalizability from clinical studies and why
generalization failures cannot be solely attributed to
out-of-distribution factors. Identifying the cause of
generalization failures requires several components
to be well-defined ahead of the experiments, which
are discussed in detail in this section.

Internal Validity

Establish intra-test set  
model literacy to ensure cause

 (linguistic capability)  and effect
(model performance)

Cross -
Domain

Generalization

Cross
language

generalization

Cross task
generalization

Cross dataset
generalization

Many other
forms of

generalization
...

Figure 1: Internal validity is a mandatory precursor
for any form of external generalization, including cross
dataset generalization. Internal validity is required to
ensure that the model has learned core linguistic strate-
gies to solve the task within the context of the test set.

3.1 The notion of generalizability

Clinical studies aim to answer questions such as
“is this drug treatment effective?", and critically

rely on generalizability to establish meaningful
evidence (Rothwell, 2005; Guyatt et al., 2011b;
Schünemann et al., 2013). A core element of a
clinical study is the specification of the study pop-
ulation, referring to a subset of the population se-
lected for research; it is impossible to study the
entire population (Kukull and Ganguli, 2012). The
implicit assumption is that conclusions drawn from
the sample are applicable to the population, requir-
ing the population boundary to be defined. This
boundary depends on the aim of the study, can in-
clude various factors, including country, insurance
memberships or disease status (Kukull and Ganguli,
2012). For instance, for a study that investigates
the effects of a drug on a disease, the relevant pop-
ulation would typically be all the people with that
disease. To ensure that any conclusions from the
study using the samples drawn from the population
are confidently generalizable to the entire relevant
population, intrinsic and extrinsic validity of exper-
iments (Guyatt et al., 2011a) must be established.
We detail these concepts below.

3.2 Study Aim

In machine learning or more specifically NLP, the
aim of a study might seem obvious, for example, to
establish whether one model is better than the other
for a given task according to a chosen metric. How-
ever, even such a straightforward research goal can
be ambiguous, as the conclusion drawn depends on
the dataset used to evaluate the models. Hence, if
the study aim is well-defined or constrained, e.g.
referring to performance on a benchmark such as
GLUE (Wang et al., 2018), then the objective is
clear, allowing the conclusions to be contextual-
ized. In real-world settings, the objective is usually
to know if the model can meet certain performance
objectives, e.g. will the model’s predictions be at
least 70% accurate when deployed. As a conse-
quence, it becomes pertinent to define the popu-
lation boundary or the context to ensure that the
model performance is optimal for the task it is de-
signed for in that broader context. Hence, defining
the aim of the study requires careful definition of
the target population.

3.3 Defining populations

In the context of machine learning, if a test set is
a sample that effectively represents a population,
then the conclusions based on the test set should
apply to the entire population. For instance, if the
conclusion is that the model has an accuracy of
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90% based on the test set, it should mean that when
the model is applied to the entire population, the
prediction accuracy ideally should also be ∼90%.

In NLP, for the datasets used to benchmark
model performance, such as GLUE (Wang et al.,
2018), the broader “population” corresponding to
these datasets is not clearly defined, and hence it
is difficult to define the boundary or context of
generalizability, i.e. the population that these re-
sults are meant to apply to or when data is out-
of-distribution (OOD). As a result, when a model
performs poorly on a different test set, an expla-
nation that the data is OOD is insufficient unless
the notion of distribution is clearly defined. We
cannot simply attribute poor performance to OOD
data. Model performance actually depends on (a)
what the model has learned, and (b) how effective
a test set is in measuring its performance. More-
over, OOD data should ideally have lower model
confidence scores (Hendrycks and Gimpel, 2017).
Thus, claims of OOD as an explanation for poor
performance at the very least require the context of
population or distribution to be clearly defined.

When we define a new task, we implicitly de-
fine the population boundary for the task, such as
through the use of data cards (Pushkarna et al.,
2022). For instance, if our task is to analyze the
sentiment of IMDB movie reviews, IMDB movie
reviews are the population of texts that this model
applies to. However, defining the boundary of this
population is not trivial. It may require additional
constraints around language, written vs. spoken
style, and more precise specification of the domain,
such as -restaurant vs. movie reviews.

An effective, well-informed boundary should
consider key factors that can impact the perfor-
mance of a model in a real-world scenario and
constrains the problem space so that the samples
can be drawn from the population that the model
is meant to serve. Hence, defining the population
boundary is a mandatory precursor to collecting
training and test data to ensure that the collected
samples are representative of the population.

3.4 Internal validity
Internal validity is crucial to ensure that the mea-
surement of the relationship between cause and
effect is not affected by spurious correlations or
bias in the data (Delgado-Rodríguez and Llorca,
2004). This particularly affects what we can infer
from a gain in model performance.

To understand internal validity in the NLP con-

text, consider a hypothetical example of a customer
sentiment analysis text classification task. To col-
lect data, we may randomly select 500 customer
emails from organization A (org-A), and another
500 from organization B (org-B). Let’s assume that
org-A generally provides better customer service
than org-B, and that the samples from org-A con-
tain a signature marker, “FROM-ORG-A”. Say that
a deep learning model that requires no feature en-
gineering has over 90% accuracy, while another
simpler model based on carefully curated semantic
features achieves a performance of 75%. The soft-
ware code is well tested, and the researchers also
perform statistical significance tests and conclude
that the deep learning model is better than the sim-
pler model. However, the deep learning model has,
in fact, relied on the signature “FROM-ORG-A” as
a key indicator for positive labels, while the sim-
pler model relies on the presence of words such as
“great”, “mediocre”, etc. to differentiate between
classes. Is the conclusion that the deep learning
model is better than the simple model at customer
sentiment analysis internally valid? The same par-
allels can be drawn from the case study of the PTM
dataset discussed above, where the model seems
to have relied on spurious correlations. Hence, the
performance on a test set need not indicate that the
model has the basic linguistic task level literacy
even within the limited scope of the test set, as
depicted in Figure 1.

Internal validity of experiments can also be af-
fected by factors such as sample selection and in-
strumentation (Wortman, 1983). Internal validity
is to ensure that the study and the conclusions are
valid within the context of the experiment, where
the cause (model has learned the right aspects of
the language) and effect (model’s performance) is
fairly evident. Experimental errors such as bugs in
the code, issues with test/training split resulting in
data leakage (Elangovan et al., 2021) are obvious
examples of errors that invalidate results. Factors
such as dataset bias, data splits and test data issues
affect reproducibility of experiments (Gundersen
et al., 2023) also affect internal validity. The inter-
nal validity can also be affected by the selection of
participants in the study (Patino and Ferreira, 2018).
The participants of a study in NLP can be construed
as the data and any human annotators. Lack of care-
ful consideration of details such as training or test
sample size, sample selection criteria etc. can make
the study lack internal validity.

Performance gains made by large language mod-
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els can be misunderstood as natural language un-
derstanding (Bender et al., 2021). Geirhos et al.
(2020) also emphasize the need to differentiate the
capability required to perform on a dataset cf. the
underlying capabilities of a model. Robustness of
experimental design, data selection criteria, well-
tested code, careful train-test split, effective test
sets, statistical analysis, etc. are core aspects of
internal validity in NLP.

3.5 External validity
External validity, associated with transportabil-
ity of results from samples to the wider popula-
tion, is a heavily debated topic even in clinical
research, whereas internal validity is a more es-
tablished concept in clinical studies (Tipton, 2014;
Yarkoni, 2022; Degtiar and Rose, 2023). If a study
is not internally valid, then external validity is irrel-
evant (Patino and Ferreira, 2018). Assuming study
results are internally valid, whether the conclusions
of a study are generalizable or transportable to the
wider population depends on the ability to sepa-
rate “relevant" from “irrelevant" facts for the study.
Importantly, well-designed population-based stud-
ies can minimize the risk of selection factors with
unintended consequences on study results (Kukull
and Ganguli, 2012).

Spurious correlations in training data affect in-
ternal validly as the model is set up to learn irrele-
vant facts, while training samples that do not suffi-
ciently represent the underlying population affect
external validity (Delgado-Rodríguez and Llorca,
2004). In clinical studies, conclusions drawn from
the sample may lack external validity when there
are differences between study samples and the tar-
get populations, such as subject characteristics or
hospital procedures (Degtiar and Rose, 2023). For
an equivalent example in NLP, consider sentiment
analysis. A trained model with a set of words such
as “good” associated with positive sentiment may
be internally valid, but may fail to perform well
on the wider population when it encounters newer
terms such as “heartwarming”.

In NLP, even though there is no single com-
prehensive formal definition of OOD (Arora
et al., 2021), conceptually generalization chal-
lenges stemming from OOD can generally be con-
sidered external validity challenges. OOD can be
a result of domain or distribution shift, due to lan-
guages or tasks differing from training data (Hup-
kes et al., 2023), or even samples from adversarial
attacks (Omar et al., 2022).

4 Discussion

4.1 Is the generalization failure due to
internal or external validity?

Attributing the right cause of failures enables us
to take the most effective corrective action, hence
separating internal vs. external factors is important,
given internal factors are far more controllable than
external ones. Ensuring internal validity requires
that we understand cause and effect of a model’s
performance. This in turn forces researchers to
analyze the data, investigate training methods that
are robust against issues in the training data such
as noisy labels and spurious correlations. High per-
formance on the test set is clearly not sufficient to
ensure that the model is capable of solving the task
it is trained for, as similar spurious correlations
can exist in both training and test sets. Training
data is rarely perfect, as it can contain many prob-
lems reflecting annotator bias, incorrect or noisy la-
bels (McCoy et al., 2019; Gururangan et al., 2018).

Inspired by prior works that point to the con-
tributors of poor internal validity, as described in
Section 3.4, we propose the following checks to
ensure internal validity:

1. How many spurious correlations or noisy la-
bels are present in training and/or test data?

2. How diverse is the training data, and is it suf-
ficient in volume to learn the right features for
a given task?

3. How robust is the training procedure against
spurious correlations or noisy labels?

4. Were model explainability analyses able to
identify the model’s reliance on spurious cor-
relations?

5. Are experiments well-designed and repro-
ducible?

6. How effective is the test set in verifying what
the model has learned and/or weaknesses in
the model?

Questions 1-4 can be difficult to answer accu-
rately in practice due to deficiencies in the current
set of tools and technologies available to analyze
the large volumes of data for surface patterns. They
may rely on domain knowledge. It may simply
be expensive to collect more training data. These
challenges are compounded by the fact that neural
networks are difficult to understand.
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Good test sets, on the other hand, provide a prag-
matic way to understand the capabilities of a model,
even without access to the underlying model archi-
tecture. Ideally, the size of the randomly sampled
test set should be sufficiently large, as a large sam-
ple size is much more likely to representative of
true performance than a smaller one (Faber and
Fonseca, 2014). Ribeiro et al. (2020) use the prin-
ciples of software testing to test models, essentially
behavioral testing the models using a CheckList of
test cases. The CheckList tests the model against
a set of linguistic capabilities such as negation, re-
placing named entities etc. This requires careful
curation of test examples and requires that these
samples are updated as the capabilities of the model
improve. Similar strategies have been employed to
develop test suites for concept recognition systems
(Cohen et al., 2010; Groza and Verspoor, 2014) and
negation inference (Truong et al., 2022). Kiela et al.
(2021) develop Dynabench to continuously update
the test set samples with human-in-the-loop.

4.2 Establishing cause and effect in models
In clinical studies, randomized control trials (RCT)
form the gold standard of evidence to establish
cause and effect of treatment or interventions (Hari-
ton and Locascio, 2018) and their outcomes. In a
RCT, participants of the study are randomly as-
signed to a “experimental" and “control" group,
where the experimental group receives the inter-
vention and the control group receives a placebo
(Kendall, 2003). The key intuition is that if the only
non-random difference between the experimental
and control group is the intervention, then the in-
tervention must be the cause of the outcome of the
intervention. More specifically, causal effects can
be measured by “matching” or balancing the distri-
bution in the case and control groups, an approach
that is used in observational studies and RCTs to
minimize bias or confounder effects (Stuart, 2010;
Paterson and Welsh, 2024; Rubin, 1974).

Adapting this approach to NLP benchmarks
would involve curating a counterpart ‘control’ test
set for the standard randomly sampled test set. The
control test set would be created by making mi-
nor perturbations to a sample in the original test
set, e.g. through the use of contrast sets (Gardner
et al., 2020). The idea here is that if the model
has effectively learned the key linguistic aspects
required to predict a given label, then the model
should also make the correct prediction when the
key aspect is perturbed, see Table 3. In Table 3,

Case (O) Control (O) S
The movie is good. ✘ The movie is bad. ✔ 0
The flower is pretty. ✔ The flowers are pretty. ✘ 0
Tom did a great job. ✔ Jack did a great job. ✔ 1

Table 3: Simplified example of matched pairs to mea-
sure causal effects. The outcome (O), or the model
prediction, can be either correct ✔ or incorrect (✘), and
the score (S) for a single test scenario is either 1 or 0.
With matched pair evaluation, a model relying on spu-
rious factors would be scored 1

3 = 33.3%, compared
without matched pairs where each sample is treated
independently 4

6 = 66.7%.

some of the linguistic aspects that are measured are
(a) meaning good vs bad (b) the impact of singular
vs plural or swapping nouns on sentiment. Further-
more, we suggest that a model’s prediction should
be marked as correct if and only if its prediction on
a perturbed counterpart is also correct. This would
ensure that the model is judged for its linguistic
skills, evaluated in the matched pair, at least within
the context of the test set, ensuring internal validity.
The examples in Table 3 are simplified to illustrate
the key idea to measure causal effects, matching in
NLP evaluation needs to be explored further.

4.3 How unreliable is a surface pattern?

While it may be impossible to prevent models from
relying on surface patterns, we specifically need
to watch out for model’s dependence on spurious
correlations or features that tend to be highly unre-
liable, e.g. the distance between the participating
entities in relation extraction discussed above.

Generalizability of deep learning networks de-
pends on whether they learn (a) spurious correla-
tions, (b) reasonable heuristics, or (c) oracle true
language meaning. Oracle true meaning refers to
true language understanding that takes into account
the meanings of the individual words as well as
the interplay between them relevant to a target task.
Spurious correlations are surface patterns with lit-
tle or no linguistic backing tied to specific sample
characteristics, whereas heuristics are plausible sur-
face patterns that may generally work without the
need for deeper comprehension. Generalizability is
most adversely impacted by spurious correlations,
making the model internally invalid. For instance,
a model that associates the presence of the word
“good” in a review with positive sentiment has cap-
tured a heuristic; it is a reasonable rule but may not
produce a correct prediction when used in the con-
text of negation or sarcasm. Spurious correlations
can render the model useless beyond the test set.
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4.4 Replication studies and generalization

Replication studies in psychology have brought the
concerns of unreliable studies from scientific re-
search to the forefront, including the possibility of
spurious results to be accepted as genuine effects
(Nature Editorial, 2022). While reproducibility of
results in machine learning is a challenge (Gunder-
sen and Kjensmo, 2018; Belz et al., 2022), repli-
cating experiments in an independent dataset can
help support or challenge the generalizability of an
original finding (Kukull and Ganguli, 2012). For in-
stance, if good model performance is only achieved
in one test set and not replicable in any other tests, it
points to possible issues in internal and/or external
validity of the study. As an example, (McCoy et al.,
2020) identified that the performance of BERT on
the original MNLI (Williams et al., 2018) test set
is not consistently replicable on a modified version
of the test set, and investigations point to BERT re-
lying on heuristics such as lexical overlap between
the premise and hypothesis to achieve high scores
on the official MNLI test set (McCoy et al., 2019).

4.5 Generalization in large language models

While pretrained and instruction fine-tuned ultra-
large language models (LLMs) with billions of
parameters such as GPT-3 (Brown et al., 2020)
seem to demonstrate improved in-context zero or
few shot generalization capabilities, compared to
smaller models with a few hundred million param-
eters such as BERT (Devlin et al., 2019), the jury
is out on whether these results can be explained by
improved memorization rather than generalization.
This is in part because the official training data / test
data from public datasets may not be fully indepen-
dent – they could have been used to train such large
models and the training data used is not publicly
disclosed or well documented (Sainz et al., 2023;
Magar and Schwartz, 2022). Furthermore, these
LLMs tend to be highly sensitive to the prompts
used, where characteristics that should not influ-
ence a prompt’s interpretation can result in accu-
racy varying by over 25 points in LLMs including
GPT-4 and LLaMA-2-13B (Gan and Mori, 2023;
Sclar et al., 2024). These facts bring into question
the linguistic comprehension of such LLMs.

Furthermore, whether fine-tuning such LLMs on
smaller target datasets with a few thousand training
samples can achieve better generalization, com-
pared to much smaller models like BERT, needs
to be studied further. Regardless, the need to ver-

ify that it is indeed linguistic capabilities that have
resulted in the model’s performance and not the
model relying on spurious correlations remains.
This requires ensuring that the test sets are effec-
tive in measuring linguistic capabilities.

5 Related works

There are several reports of spurious correlations
in SOTA models and benchmark datasets McCoy
et al. (2019); Gururangan et al. (2018); Shinoda
et al. (2022), as discussed previously in this paper.
Gardner et al. (2021) attempt to formalize the def-
inition of which features can be deemed spurious.
Approaches to detect spurious features without apri-
ori handcrafting them have also been studied, e.g.
Utama et al. (2020), relying on the observation that
pre-trained models exploit simple patterns in the
early stage of the training phase. Training a model
to be robust against spurious correlations is also an
active area of research, e.g. Tu et al. (2020) find that
multitask learning improves generalization. Data-
driven approaches such as the use of h-adversarial
training samples (Elangovan et al., 2023), appro-
priate sample selection (Schwartz and Stanovsky,
2022), or robust loss function (He et al., 2023) can
improve model robustness to spurious correlations.
Causal deep learning and inference can also assist
in ensuring causality (Luo et al., 2020).

6 Conclusion

Generalization is an act of reasoning that involves
drawing broad inferences from specific observa-
tions (Polit and Beck, 2010). While generalization
of machine learning models in NLP is a complex
topic, clinical research offers guiding principles on
how to understand generalization, including pre-
cise population definitions and contrasting controls.
There are various points of failure in NLP mod-
elling that can produce results that may not be
generalizable. Out-of-distribution (OOD) effects
may be an overly simplistic explanation for gen-
eralization failures. Attributing causation to gen-
eralization failures requires detailed investigation
into some potential pitfalls affecting internal valid-
ity. Ensuring internal validity requires at least an
effective test set that controls for spurious correla-
tions in the training data. More careful construction
of evaluation frameworks will ensure appropriate
inferences about the relationship between cause
(model’s linguistic capabilities) and effect (perfor-
mance) from experimental results.
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Limitations

Internal validity can be compromised for various
reasons, broadly speaking, data vs non-data related
problems. Non data related issues can be bugs in
code. Data related problems such label noise, poor
quality annotation can also make a model internally
invalid. In this paper, we have primarily focused
on spurious correlations, assuming that the labels
themselves are of high quality.

As mentioned in section 2.4, identifying spuri-
ous correlations that a model relies on is non-trivial.
A simple surrogate model used in our case study
can only detect the dominant spurious features,
while a deep learning model such as BERT can
learn thousands of such spurious features. Hence,
if the simple surrogate model has poor performance,
it does not mean that the model has not relied on
spurious features.

Ethics Statement

This work does not involve collection of new data;
all analysis relies on previously published data sets.
Our work adheres to the ACL Ethics Policy1.
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A Appendix: PTM-PPI dataset Decision-tree

Generalization high confidence predictions fit

≤ >

Figure 2: Decision Tree (NB-T) fit in high confidence predictions in the generalization set

Train ground truth fit

≤ >

Figure 3: Decision Tree (NB-T) fit in Train ground truth fit
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Test ground truth fit

≤ >

Figure 4: Decision Tree (NB-T) fit in Test ground truth fit

Test prediction fit

≤ >

Figure 5: Decision Tree (NB-T) fit in Test set BioBERT predictions fit
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B Appendix: SNLI Correlation

We analyze the spurious correlations on the ground truth (GT) as well as the predictions (MP) from BERT
(Devlin et al., 2019) using features such as (a) the number of words (sentence length) of the hypothesis
(HYL) or premise (PRL), (b) the presence of negation in the hypothesis (HNEG) and the premise (PNEG).
As shown in Table 4, using only the hypothesis achieves the highest κ in the case of both train and test.
We also find that hypothesis length (HYL) is a key feature appearing at the top of the decision trees in
Figure 7 and Figure 6, which is also identified by Gururangan et al. (2018).

gini = 0.639
samples = 1979

value = [569, 924, 486]

gini = 0.482
samples = 513

value = [83, 351, 79]

gini = 0.658
samples = 1237

value = [433, 323, 481]

gini = 0.642
samples = 762

value = [167, 337, 258]

gini = 0.598
samples = 105

value = [34, 55, 16]

gini = 0.595
samples = 1465

value = [808, 325, 332]

gini = 0.636
samples = 360

value = [130, 159, 71]

gini = 0.35
samples = 58

value = [6, 46, 6]

gini = 0.608
samples = 675

value = [305, 93, 277]

gini = 0.641
samples = 824

value = [237, 207, 380]

gini = 0.564
samples = 750

value = [206, 106, 438]

gini = 0.372
samples = 279

value = [50, 14, 215]

gini = 0.643
samples = 148

value = [36, 45, 67]

gini = 0.624
samples = 402

value = [89, 200, 113]

gini = 0.634
samples = 129

value = [24, 53, 52]

gini = 0.5
samples = 138

value = [15, 32, 91]

LOV <= 3.5
gini = 0.618

samples = 2492
value = [652, 1275, 565]

LOV <= 2.5
gini = 0.664

samples = 1999
value = [600, 660, 739]

HYL <= 17.5
gini = 0.605

samples = 1570
value = [842, 380, 348]

LOV <= 5.5
gini = 0.62

samples = 418
value = [136, 205, 77]

NBE <= 0.5
gini = 0.637

samples = 1499
value = [542, 300, 657]

HYL <= 57.5
gini = 0.522

samples = 1029
value = [256, 120, 653]

PRL <= 62.5
gini = 0.643

samples = 550
value = [125, 245, 180]

HYL <= 58.5
gini = 0.59

samples = 267
value = [39, 85, 143]

NBN <= 0.5
gini = 0.652

samples = 4491
value = [1252, 1935, 1304]

LOV <= 3.5
gini = 0.626

samples = 1988
value = [978, 585, 425]

NBN <= 0.5
gini = 0.604

samples = 2528
value = [798, 420, 1310]

NBN <= 0.5
gini = 0.64

samples = 817
value = [164, 330, 323]

NBC <= 0.5
gini = 0.659

samples = 6479
value = [2230, 2520, 1729]

LOV <= 5.5
gini = 0.629

samples = 3345
value = [962, 750, 1633]

HYL <= 40.5
gini = 0.667

samples = 9824
value = [3192, 3270, 3362]

Figure 6: Decision Tree (NB-T) fit in SNLI Test set BERT predictions fit using HYP+PRM

gini = 0.658
samples = 983

value = [329, 261, 393]

gini = 0.652
samples = 1612

value = [526, 682, 404]

gini = 0.563
samples = 1200

value = [252, 716, 232]

gini = 0.637
samples = 649

value = [137, 294, 218]

gini = 0.62
samples = 760

value = [374, 244, 142]

gini = 0.569
samples = 845

value = [493, 139, 213]

gini = 0.443
samples = 141

value = [26, 101, 14]

gini = 0.641
samples = 289

value = [112, 118, 59]

gini = 0.645
samples = 734

value = [235, 174, 325]

gini = 0.597
samples = 566

value = [274, 71, 221]

gini = 0.589
samples = 435

value = [136, 64, 235]

gini = 0.448
samples = 364

value = [79, 28, 257]

gini = 0.652
samples = 490

value = [119, 169, 202]

gini = 0.618
samples = 403

value = [83, 204, 116]

gini = 0.647
samples = 194

value = [44, 68, 82]

gini = 0.494
samples = 159

value = [18, 35, 106]

NBE <= 0.5
gini = 0.665

samples = 2595
value = [855, 943, 797]

NBN <= 0.5
gini = 0.598

samples = 1849
value = [389, 1010, 450]

HYL <= 27.5
gini = 0.602
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value = [867, 383, 355]

HYL <= 29.5
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samples = 430
value = [138, 219, 73]

NBC <= 0.5
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value = [509, 245, 546]

HYL <= 50.5
gini = 0.535

samples = 799
value = [215, 92, 492]

LOV <= 6.5
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samples = 4444
value = [1244, 1953, 1247]

LOV <= 3.5
gini = 0.624

samples = 2035
value = [1005, 602, 428]

NBN <= 0.5
gini = 0.611

samples = 2099
value = [724, 337, 1038]

NBN <= 0.5
gini = 0.644

samples = 1246
value = [264, 476, 506]

NBC <= 0.5
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value = [3237, 3368, 3219]

Figure 7: Decision Tree (NB-T) fit in SNLI Test set GT fit using HYP+PRM
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Dataset L M κ

SNLI TR PRM GT NB *0.00
SNLI TR PRM GT NB-T 0.19
SNLI TR HYP GT NB 0.25
SNLI TR HYP GT NB-T 0.27
SNLI TR HYP+PRM GT NB 0.16
SNLI TR HYP+PRM GT NB-T 0.22
SNLI TS PRM GT NB 0.04
SNLI TS PRM GT NB-T 0.20
SNLI TS HYP GT NB 0.29
SNLI TS HYP GT NB-T 0.33
SNLI TS HYP+PRM GT NB 0.18
SNLI TS HYP+PRM GT NB-T 0.24
SNLI TS PRM MP NB 0.05
SNLI TS PRM MP NB-T 0.20
SNLI TS HYP MP NB 0.32
SNLI TS HYP MP NB-T 0.34
SNLI TS HYP+PRM MP NB 0.19
SNLI TS HYP+PRM MP NB-T 0.25

Table 4: Cohen’s κ on SNLI Train (SNLI TR) and Test (SNLI TS). The Surrogate models NB and NB-T are used to
predict the target label (L) – the ground truth (GT) and the model prediction (MP) of BERT. The features used for
Naive Bayes both during NB and stacked NB-T, can either be just the hypothesis (HYP) or just the premise (PRM)
or both hypothesis and the premise (PRM). * indicates that Cohen’s kappa p-value is 0.10. For all other results, the
p-value of Cohen’s kappa is less than 0.05.
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