Program-Aided Reasoners (Better) Know What They Know

Anonymous ACL submission

Abstract

Prior work shows that program-aided reason-
ing, in which large language models (LLMs)
are combined with programs written in pro-
gramming languages such as Python, can sig-
nificantly improve accuracy on various reason-
ing tasks. However, while accuracy is essen-
tial, it is also important for such reasoners to
“know what they know”, which can be quan-
tified through the calibration of the model.
In this paper, we compare the calibration of
Program Aided Language Models (PAL) and
text-based Chain-of-thought (COT) prompting
techniques over 5 datasets and 2 model types
- LLaMA models and OpenAl models. Our
results indicate that PAL leads to improved cal-
ibration in 75% of the instances. Our analysis
uncovers that prompting styles that produce
lesser diversity in generations also have more
calibrated results, and thus we also experiment
with inducing lower generation diversity using
temperature scaling and find that for certain
temperatures, PAL is not only more accurate
but is also more calibrated than COT. Overall,
we demonstrate that, in the majority of cases,
program-aided reasoners better know what they
know than text-based counterparts.!

1 Introduction

As language models (LMs) grow in size and ca-
pabilities, several works examine methods to im-
proving their reasoning skills with different styles
of prompting (Wei et al., 2022; Wang et al., 2022;
Suzgun et al., 2022b; Zhou et al., 2022; Yao et al.,
2023). One representative method, chain of thought
(COT) reasoning (Wei et al., 2022), takes inspira-
tion from how humans approach problem-solving
— by breaking down the problem into a sequence
of natural language explanations before arriving
at a final answer. Furthermore, prompts that en-
able problem-solving are not limited to natural

'Anonymized code and data are available at https://
anonymous . 4open.science/r/code-calibrates-A61D/.

Q : 4 people share a room. Each month the electricity bill is $100.
How much will each roommate pay per year for electricity, if they
divide the share equally?

Chain of Thought (CoT) Program Aided LM (PaL)

def solution():
total _bill = 100
roommates = 4
per_month_pay = total_bill

/ roommates

per_year_pay = per_month_pay * 12
result = per_year_pay
return result

Since the electricity bill is $100 each
month, we multiply this amount by 12
(months in a year) to find the total cost
per year.

$100/month * 12 months/year = $1200

We divide the total cost by the number
of roommates to find how much each
roommate will pay:

$1200/4 roommates = $1200

The answer is $1200
Interpreter

1200 X 300

Figure 1: Comparisons of COT and PAL outputs. COT
can sometimes generate the correct reasoning chain but
fail to derive the correct answer as a final step. PAL
fixes this issue by executing generated code to arrive at
a deterministic answer.

language; program-aided language models (PAL);
Gao et al. (2022) have demonstrated the efficacy of
using code (such as Python programs) as a means
of improving the model’s reasoning, surpassing the
accuracy of conventional chain-of-thought style
prompts in some tasks (Madaan et al., 2022; Lyu
et al., 2023; Zhang et al., 2023a,b). Both methods
are illustrated in Figure 1.

Currently, most works proposing such methods
have been primarily focused on improving accu-
racy. However, for real-world applications, another
highly desirable feature of ML systems is that they
should be able to provide reliable confidence esti-
mates. Accurate estimates of model confidence
are helpful for many applications, including al-
lowing the model to refrain from providing an
answer when uncertain, asking for human inter-
vention in uncertain cases, or providing confidence
estimates to a downstream model that consumes
the outputs. The reliability is measured through
calibration, how a model’s confidence in its predic-
tions aligns accurately with actual outcomes (Guo
et al., 2017a; Jiang et al., 2020; Zhao et al., 2021).

2262

Proceedings of the 2024 Conference of the North Americar} Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 2262-2278
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://anonymous.4open.science/r/code-calibrates-A61D/
https://anonymous.4open.science/r/code-calibrates-A61D/

GSM8K CoT
Arithmetic Reasoning — | Breaking down problem into a

sequence of natural language
steps before arriving at answer.

Date Understanding

Al {ogpg> 05

A2 2/10 : 0.2 '

Datasets

Symbolic Reasoning

Object Counting

Algorithmic Reasoning > K answer.

PaL

Breaking down problem into
Python code before executing
it to arrive at the final

Confidence Score

Interpreter

Figure 2: Illustration of eliciting model confidence through self-consistency

In sum, the previous research has shown, as elo-
quently stated by Kadavath et al. (2022) “language
models (mostly) know what they know” — LLMs
are reasonably well calibrated, although some im-
perfections remain.

In this work, we examine the effect of program-
aided reasoning on calibration. We consider five
datasets that cover different reasoning tasks and
evaluate the performance of both PAL and COT
style prompting for OpenAl models (OpenAl,
2023) and LLaMA models (Touvron et al., 2023)
with respect to accuracy and calibration. We pri-
marily explore three main research questions :

* RQ 1: Does program-aided reasoning result
in significantly different calibration than text-
based COT?

* RQ 2: Are the observed trends different across
OpenAl models and LLaMA models?

* RQ 3: Does the consistency of LLM genera-
tions affect calibration? We examine this by
measuring generation diversity and answer
space entropy.

Our results show that program-aided reasoners
know what they know even better than standard
text-based reasoners with COT. In particular, on
OpenAl models, PAL exhibits not only superior
accuracy but also a consistent enhancement in cal-
ibration of about 50%, over COT. Interestingly,
the consistent improvement of calibration is not
observed in LLaMA models. Still, we find that
adjusting the temperature of sampling (similar to
a widely used method of Platt scaling (Platt et al.,
1999), PAL improves with respect to accuracy and
calibration. We also conduct a detailed analysis of
these observations and find a correlation between

the similarity of the generated chains-of-thoughts
or programs and calibration, which might help ex-
plain these trends. Code and data available here
under the Apache 2.0 license.

2 Preliminaries and Mathematical
Formulation

2.1 Measuring Calibration

Calibration refers to the alignment between the pre-
dicted probability estimates of a model and their
actual correctness or accuracy (Guo et al., 2017b).
Formally, a perfectly calibrated model can be ex-
pressed using the following equation, where X is
the given input, Y is the true output, the model’s
output is ¥ and Py (Y | X) = p is the probability,
or “confidence”, over the model’s output.

P(Y =Y | Py(Y | X)=p) =p,Vp e [0,1]
(D

In essence, Equation 1 conveys that if a perfectly
calibrated model makes 100 predictions, and the
confidence of each prediction is 0.6, then we ex-
pect the accuracy to be also 0.6. Nevertheless, the
model may exhibit varying confidence levels for
each sample. Therefore, it is imperative to calcu-
late calibration across all confidence scores. We
estimate this probability by dividing the predictions
into M separate and equally sized interval buckets
based on their confidence levels.

We use the expected calibration error (ECE),
a common measure of (lack of) calibration, a
weighted average of the discrepancy between each
bucket’s accuracy and confidence. It is given in
Equation 2

Here B,, is the m-th bucket that contains sam-
ples whose probabilities of predictions fall in the

2263
2

https://anonymous.4open.science/r/code-calibrates-A61D

Bm,
interval (m_1 M] where Zml i B,,,’s size rel-

ative to all the samples. acc (B) is the average
accuracy of the samples in the m-th bucket, and
conf (B,,) is the corresponding average confidence
of the samples falling in the m-th bucket.

Ms

|acc m) —conf (Bp)| (2)

m=1

Consider a setup where we have buckets with a
width of 0.1. All instances where a model assigns
probabilities between 0.4 and 0.5 will be allocated
to the bucket B3 or the bucket encompassing prob-
abilities between 0.4 and 0.5. Subsequently, the
average accuracy for the instances in these buck-
ets and the average probability/confidence is com-
puted. The absolute difference of the accuracy and
confidence is multiplied by the proportion of total
instances in a bucket. This process is repeated for
every bucket, and the individual scores are summed
up to calculate ECE.

2.2 Self-consistency as a measure of
confidence

Self-consistency (Wang et al., 2022) is a natural
language reasoning technique that uses chain-of-
thought prompting to generate multiple paths for
reasoning. This process aims to select the most
consistent answer by sampling and marginalizing.
Here, we use a latent variable Z to represent the
reasoning chain/programs. Y is the answer that is
either extracted in case of COT or obtained after
execution in case of PAL. We marginalize over Z
by taking a majority vote over answers. Thus, we
rely on majority voting over the answers to obtain
confidence estimates for each sample.

K is a hyperparameter that controls the num-
ber of generations (referenced in equation 3). The
higher the value of I, the better our approximation
of the probability of each sample. Figure 2 shows
an overview of this process.

| XK
=Y {hi=%}
i=0
Wang et al. (2022) and Xiong et al. (2023a) sug-
gest that self-consistency can be an effective way
to elicit confidence from models. Hence, given the
lack of per-token log probabilities in closed LMs
like gpt-3.5-turbo and text-davinci-003, we
adopt self-consistency as a proxy measure for cali-
bration.

P(Yo|Zo) =

2.3 Similarity and Answer Entropy

In addition to empirically evaluating the impact on
accuracy and calibration, we conduct a qualitative
analysis of the reasoning chains (the latent vari-
able Z described previously). Here, we observe a
consistent pattern, i.e. the correct answers corre-
sponding to a question are often associated with
similar generations.

We find that this observation aligns with the find-
ing made by Li et al. (2022a), that there are nu-
merous ways in which solutions can be incorrect.
In contrast, correct solutions tend to exhibit more
uniform behaviour.

To empirically validate this observation, we em-
ployed sentence embeddings generated from the
all-MiniLM-v6 model to compute the average sim-
ilarity among the generations/reasoning chains,
equivalent to calculating similarity over latent vari-
ables Z.

Furthermore, to gain deeper insights into the re-
lationship between similarity in generations and
corresponding answers, we compute the entropy
H(A) of the answer space where P(a;) refers to
the probability of the i*" answer in K answers ob-
tained by extraction or program execution for a
given sample.

K
— Z P(a;) - logy P(a;) 4)

i=1
This allowed us to investigate whether the ob-
served similarity in the latent variable space Z
leads to a lower entropy within the answer space.

3 Experimental Design

3.1 Models

We compare the calibration and accuracy of two
different prompting strategies - CoT and PaL. on
an equal number of closed-source and open-source
models. The open source models used in exper-
imentation are LLaMA2-13B, LLaMA2-70B (Tou-
vron et al., 2023). and the closed-source models
are gpt-3.5-turbo, text-davinci-003 (Brown
et al., 2020). It should be noted that all models
have received some form of supervision from code
during pre-training (OpenAl, 2023; Touvron et al.,
2023), in addition to being primarily trained on text.
For LLaMA models, we leveraged vLLM (Kwon
et al., 2023) for distributed inference using A6000
GPU(s).

2264

3

Dataset Category # Samples Example
GSMSK (Cobbe et al., 2021) Arithmetic 1319 Q: A robe takes 2 bolts of blue fiber and half that much white fiber.
How many bolts in total does it take? A: 3
GSMBS8K Hard (Gao et al., 2022) Arithmetic 1319 Q: A robe takes 2287720 bolts of blue fiber and half that much white fiber.

Date Understanding (Suzgun et al., 2022a) Symbolic 360

Object Counting (Suzgun et al., 2022a) Algorithmic 250

Repeat Copy (Suzgun et al., 2022a) Algorithmic 32

How many bolts in total does it take? A: 3431580

Q: Yesterday was April 30, 2021.

What is the date today in MM/DD/YYYY? A: 05/01/2021
Q: I have three couches, a lamp, a stove, a table, a fridge,
and a microwave. How many objects do I have? A: 8

Q: say python twice and data once, and then repeat all of this three times.
A: python python data python python data python python data

Table 1: Datasets with their examples and categories.

3.2

For our experiments, we set temperature (T) as 1.0
and the probability (p) for nucleus sampling (Holtz-
man et al., 2020) as 1.0. Selecting a temperature of
1.0 enables direct sampling from the model as no
scaling of probabilities is involved, as seen from
Equation 5. Here, z; refers to the logit for the ith
token generated, and V is thezvocabulary size.

Hyperparameters

eT

N Zi
> =0 €T
For use K = 10 generations per sample for all

datasets. We set the maximum number of tokens
(input + output) for each generation to 1024.

&)

g (Zz) =

3.3 Tasks

We examined reasoning tasks encompassing sev-
eral challenges, including arithmetic, algorithmic,
and symbolic reasoning. We use five datasets
that cover these different kinds of reasoning tasks.
The arithmetic reasoning datasets include GSM8K
(Cobbe et al., 2021) and GSMS8K Hard (Gao et al.,
2022). The algorithmic reasoning tasks include
Object-Counting (Suzgun et al., 2022a) and Repeat-
Copy (Suzgun et al., 2022a). We used Date-
Understanding as a Symbolic Reasoning Dataset
(Suzgun et al., 2022a). Specific information about
the datasets used can be found in Table 1.

3.4 Prompt Design

We provide all models with natural language
chain-of-thought (CoT) prompts and code-based
Program-Aided Language Model (PaL) prompts.
For datasets where CoT prompts are available in
their original form, we use them as presented in
the original paper (Wei et al., 2022). We modify
these prompts for other datasets to suit the specific
task while maintaining their original format. For
PaLlL prompts, we use and adapt the code prompts
provided in (Gao et al., 2022). The prompts are

included in Appendix A.

4 Results

We investigate two model types: OpenAl models
and LLaMA models along with the two different
prompting strategies - PAL and COT.

4.1 Effect of prompting style on Calibration

In this section, we look at the first two RQs:

RQ 1: Does one prompting style result in signifi-
cantly better calibration than the other?

RQ 2: Are the observed calibration trends different
across OpenAl models and LLaMA models?

Table 2 shows results for OpenAl models, we
observe that PAL prompting improves both cali-
bration and accuracy across all datasets. We see
approximately 50% relative reduction in calibra-
tion error and an average improvement of 18.42%
in accuracy.

In Figure 3, we show reliability plots which il-
lustrate improved calibration, with the reliability
curves for PAL prompting consistently aligning
closer to the ideal reliability curve as compared
to COT across datasets. While PAL shows a no-
table gain of 14.83% in accuracy across all datasets
for LLaMA models, it shows better calibration in
only half of our settings. Overall, for both OpenAl
models and LLaMA models, we observe that PAL
leads to better calibration than COT for 75% of the
settings. The reliability plots for all datasets for
the models gpt-3.5-turbo and LLaMA2-7@B can
be seen in Appendix Section E, D.

Effect of PAL on calibration controlling for ac-
curacy One reasonable hypothesis is that PAL is
improving calibration because it achieves higher
accuracy, and more accurate models can be better
calibrated. To examine this hypothesis, we con-
duct statistical analysis using mixed linear models
(McLean et al., 1991), which allows us to consider

2265
4

Name Score Model GSMS8K Object-Counting ~ Repeat-Copy ~ Date-Understanding GSM8K Hard
CoT Pal. | CoT PalL CoT PalL CoT PalL CoT PalL

ECE(}) LLaMA | 019 0.07 0.17 0.14 0.18 0.23 | 0.09 0.18 0.07 0.03

LLaMA2-70B ACC (1) LLaMA | 59.28 6391 76.00 9240 | 40.62 71.88 | 66.66 70.18 2145 40.62
SIM (1) LLaMA | 72.20 9240 9443 9472 | 87.10 90.58 | 86.87 82.15 9228 7432

ENT (J) LLaMA | 224 192 1.00 0.76 1.93 2.00 1.44 1.54 2.85 217

ECE(}]) LLaMA | 0.06 0.08 0.08 0.06 0.11 0.17 | 0.06 0.05 0.12 0.14

LLaMA2-13B ACC (1) LLaMA | 27.0 3434 564 81.6 3437 53.12 | 48.24 50.41 6.67 2555
SIM (1) LLaMA | 766 933 932 95.3 89.8 88.6 | 79.5 84.2 740 9232

ENT (J) LLaMA | 2.83 249 152 0.85 243 247 | 223 2.06 242 3.06

ECE(]) OpenAl | 0.04 003 0.29 0.02 020 0.06 0.19 0.11 0.15 0.07

text-davinci-003 | ACC (1) OpenAl | 65.65 7649 59.21 98.00 67.23 93.75 | 60.70 72.35 2395 71.27
SIM (1) OpenAl | 90.5 978 99.1 99.8 96.2 98.2 | 924 97.4 898 979

ENT (J) OpenAl | 127 079 036 0.02 1.38 044 | 0.71 0.64 231 081

ECE(}) OpenAl | 0.05 0.03 0.38 0.03 0.18 0.6 | 0.17 0.13 0.13 0.05

gpt-3.5-turbo ACC (1) OpenAl | 84.00 82.40 8240 9720 | 56.25 68.75 | 61.51 77.23 5521 6291
SIM (1) OpenAl | 9440 97.80 99.10 98.60 | 97.70 97.90 | 95.3 97.6 90.60 95.40

ENT (J) OpenAl | 0.57 049 0.59 0.048 1.15 0.35 | 0.50 0.36 1.65 2.43

Table 2: Comparison of Expected Calibration Error (ECE ({)) , Accuracy (ACC (1)) , Cosine Similarity (SIM (1))
and Answer Entropy (ENT ({)) across datasets. The darker blue shade highlights better performing prompting

technique.

the significance of varying the prompting strategy
while controlling for accuracy as a confounding
factor.

Upon analyzing the results in Table 3, we ob-
serve that, when treating the prompting style as
a fixed effect, PAL exhibits a negative coefficient
of -0.103 (p=0.0) for OpenAl models, which is
statistically significant with a threshold of p=0.05.
This implies that PAL contributes to the reduction
in ECE and has a positive impact on calibration.
On the contrary, for LLaMA models, we did not
find that PAL had a statistically significant effect on
ECE after controlling for accuracy. Across LLaMA
models and OpenAl models, PAL has a statistically
significant (p=0.02) correlation of -0.067 with ECE,
indicating that PAL helps increase calibration on
the whole even when controlling for accuracy.

To summarize, we see that PAL prompting has
better calibration than COT prompting (-RQI) .
While PAL has improved calibration in all settings
for OpenAl models, this trend is less consistent for
LLaMA models (-RQ?2).

Model Type LLaMA models OpenAl models Both
Fixed Effect
(ECE vs Prompting Style) PAL :-0.010 PAL:-0.103 PAL:-0.067
p-value 0.961 0.000 0.002

Table 3: Statistical analysis using mixed linear models,
keeping ECE vs Prompting Style as a fixed effect and
accuracy as a random effect.

4.2 Effect of generation diversity on
calibration

In this section, we look at the third research ques-
tion: RQ 3: Does the consistency of LLM genera-
tions affect calibration?

Qualitative analysis of the generations reveals

that PAL generations adhere to a consistent struc-
ture that divides the problem-solving process into
three distinct parts. This is depicted in Figure 4. In
the first part, the model initializes the variables and
sets up their initial values required for the calcu-
lation. This part is straightforward due to syntac-
tic constraints and remains largely similar across
generations. In the second part, the model gener-
ates the required logic by applying formulas and
utilizing various operations to derive the desired
result. Finally, in the third part, the model gener-
ates the answer by assigning the calculated result
to a variable and returning it, which, again, doesn’t
vary much across generations. Hence, the diversity
of the generation is mainly limited to the second
part, making code more constrained in its genera-
tion space compared to text. Therefore, there is a
standardized structure in the code generated by
language models with PalL prompts.

Lower generation diversity and answer entropy
observed in prompting strategy with better cali-
bration To quantitatively analyze if code-based
generations have lower generation diversity and
lead to a narrower answer space, we computed
aggregated cosine similarity scores for all the gen-
erations and entropy over the answer space. For
OpenAl models, we note that the cosine similarity
scores with PAL are higher than the correspond-
ing scores for COT. This observation suggests that
code-based generations display a higher degree of
similarity from a semantic perspective. Moreover,
the answer entropy for PAL is lower than COT.
This implies that similar generations that cluster to-
gether in the semantic space (Li et al., 2022a) also
converge to the equivalent solution space. This

2266

5

CoT
. Reliability Plot
----- Perfect Reliability
—a— Reliability Plot
0.8
xS,
0.6
Qs
[
= 3
I Qoas
w <
0.2
0,04
00 01 02 03 04 05 06 07 08 09 10
Confidence
o Reliability Plot
----- Perfect Reliability
Y] —=— Reliability Plot
c 0.8
g
S Jos
o O
Y 3
“ Qo4
V<
()
o
0.2
o
0.0+~

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Confidence

0.7 0.8 0.9 10

PaL

10 Reliability Plot

----- Perfect Reliability
—m— Reliability Plot
0.8
Jos
©
=
=]
S o4
g0
0.2
0.0+~
60 01 02 03 04 05 06 07 08 09 10
Confidence
Y Reliability Plot
————— Perfect Reliability
—=— Reliability Plot
0.8
3 o6
©
=
3
" Joa
go
0.2
0.0+~

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Confidence

0.7 0.8 0.9 1.0

Figure 3: Reliability Plots for various structured reasoning tasks for the model gpt-3.5-turbo. The x-axis
represents confidence, and the y-axis represents accuracy.

def solution ()
Part 1: Initialize
num_glasses = 16
first_glass_price = 5
second_glass_discount = 0.6
Part 2: Calculate
second_glass_price = first_glass_price =
second_glass_discount
pair_price = first_glass_price +
second_glass_price

num_pairs = num_glasses // 2
total_cost = num_pairs * pair_price
Part 3: Result Generation

result = total_cost
return result

Figure 4: Typical output structure with PalL

leads to lower uncertainty in the probability dis-
tribution of the answer space and, hence, lower
entropy. From Table 2, we thus can see that PAL
helps produce similar generations that converge to
the same answer space, which is also consistently
correct. Hence, it achieves better performance and
provides more confidence in its predictions.

For LLaMA models, we don’t see this trend of
PAL having higher generation similarity and lower
answer entropy for all datasets. However, for al-
most all settings for LLaMA models and OpenAl
models, the prompting strategy that produces more
similar generations and lower answer entropy is

also more calibrated.

To summarize, it is evident that lower generation
diversity and lower answer entropy are correlated
with higher calibration. (-RQ3)

Better calibration observed for PAL when induc-
ing similarity in generations for LLaMA models
We observe that for OpenAl models, PAL is not
only more accurate but also more calibrated than
CoOT. Consequently, we explore whether the re-
duction in generation diversity, achievable through
lower temperatures, can contribute to improved cal-
ibration for LLaMA models.

We perform a parameter sweep across tempera-
ture values between 0.1 and 0.7 with a step size of
0.2. We show the variation of accuracy, calibration,
generation similarity, and answer entropy for two
datasets in Figure 5. The plots for the remaining
datasets are available in Appendix B, Figure 6. We
can see that we obtain better calibration for both
the LLaMA models in both PAL and COT for tem-
peratures below 1.0. From Tables 4 and 5, we note
that in the majority of runs with T < 1.0, PAL is
better calibrated than COT. Considering accuracy
and calibration, optimal performance is achieved
at different temperatures for each dataset. For most
T values, the similarity scores are higher while cor-
responding answer entropy values are lower for
PAL compared to COT. This mirrors the pattern

2267

6

Temp GSMS8K Object-Counting Repeat-Copy Date-Understanding GSMS8K Hard
CoT PalL CoT PalLL CoT PaLL CoT PalL CoT PaL.

ECE | 0.101 0.07 | 0.076 0.03 0.14 0.12 0.12 0.09 0.18 0.03

07 ACC | 66.03 679 77.6 93.2 53.1 75.0 74.5 76.42 27.14 52091
’ SIM | 85.07 97.47 | 9853 9942 | 93.78 94.81 | 89.62 96.16 83.28 97.29
ENT | 1.60 1.48 0.55 0.21 1.46 1.35 0.88 0.80 2.43 1.72

ECE | 0.049 0.036 | 0.103 0.059 | 0.112 0.075 | 0.114 0.063 0.139 0.104

05 ACC | 6694 67.24 | 77.23 92.4 593 68.75 | 73.44 77.2 277 51.63
SIM | 88.69 9825 | 99.17 99.85 | 97.09 96.81 | 92.49 97.97 87.65 98.2

ENT | 135 1.19 0.39 0.12 1.09 0.99 0.60 0.52 2.18 1.39

ECE | 0.057 0.097 | 0.140 0.064 | 0.194 0.113 | 0.153 0.139 0.230 0.206

03 ACC | 6489 6338 | 78.8 91.2 53.12 71.87 | 72.62 76.42 26.16 49.28
’ SIM | 9191 98.75 | 99.51 99.94 | 97.73 9827 | 95.18 99.02 91.14 98.75
ENT | 1.087 0.960 | 0.238 0.056 | 0.780 0.504 | 0.420 0.317 1.866 1.076

ECE | 0.219 0.257 | 0.188 0.07 0.278 0.156 | 0.233 0.176 0.418 0.380

01 ACC | 58.6 5837 | 77.2 90.4 53.12 68.75 | 69.91 78.32 235 45.87
SIM | 95.79 99.37 | 99.82 99.98 | 99.28 99.64 | 98.21 99.68 9531 99.35

ENT | 0.661 0.526 | 0.085 0.026 | 0.288 0.173 | 0.195 0.137 1.179 0.540

Table 4: Results of temperature scaling for LLaMA2-70B. The darker blue shade highlights better performing

prompting technique.

observed for OpenAl models. For LLaMA-2 13b,
PAL displays better calibration than COT at lower
temperatures. However, the optimal temperature
for obtaining the best performance for calibration
and accuracy is still T=1.0.

For LLaMA-2 7@b, optimal temperature values in
our runs for calibration are either 0.5 or 0.7, while
extreme values (0.1, 1.0) yield lower calibration
and accuracy performance. We can, therefore see
that scaling temperatures in the LLaMA models
can help us to obtain better calibration for PAL,
specifically for the LLaMA-2 7@b, which already
performs better than COT on these reasoning tasks.
Thus, we do see that lower generation diversity and
lower answer entropy lead to higher calibration up
to a certain point, after which it negatively affects
the calibration. (-RQ3)

5 Related Work

5.1 Prompting Strategies for Reasoning

Recent developments in language models have in-
troduced various methods to enhance their reason-
ing abilities. One such method is CoT (Wei et al.,
2022), which helps models generate a series of
intermediate steps to solve problems. CoT has
demonstrated improved performance in arithmetic,
common sense, and symbolic reasoning tasks.
There are approaches such as PaL. (Gao et al., 2022)
and Program-of-thoughts (PoT) (Chen et al., 2022),
which go a step further by generating programs
as intermediate steps and using an interpreter to
process them. Code as a medium of reasoning has
shown considerable promise, evidenced by better
performance over chain-of-thought style prompting

strategies in several recent studies (Madaan et al.,
2022; Gao et al., 2022; Lyu et al., 2023; Zhang
et al., 2023a,b). Unlike these works, our primary
goal in this paper is to understand the effect of code
prompts on calibration.

5.2 Calibration in Language Models

Calibration has been extensively studied in struc-
tured prediction problems, such as named entity
recognition and part of speech tagging (Jagannatha
and Yu, 2020), as well as in natural language un-
derstanding tasks, like question answering and text
classification (Kamath et al., 2020; Kong et al.,
2020; Desai and Durrett, 2020). More recently,
studies have focused on calibrating language mod-
els when used as generators (Jiang et al., 2021;
Zhao et al., 2021). Additionally, the study by Ka-
davath et al. (2022) explored the likelihood of a
model knowing the answer before proposing a re-
sponse. However, these approaches typically rely
on access to the model’s logits.

In contrast, the work by (Tian et al., 2023) inves-
tigates verbalized probability estimates to assess
the calibration of large language models without
needing access to logits. This involves querying
the model about its confidence in the answers it
generates. Furthermore, (Xiong et al., 2023b) in-
troduced self-consistency-based methods for cali-
bration, demonstrating their superior performance
compared to verbalized methods. In our research,
we adopt self-consistency as the method of choice
for measuring calibration.

2268
7

GSM8k

Accuracy

Calibration

Object Counting

Accuracy

Calibration

088 T g paL
0.66 cor
L 064

025

0.20

Y 015

010

0.05

—e— PAL
ot

~

/”\Q

—a— PAL
coT

02 04 06

Temperature

038

Similarity

02

0.4 06
Temperature

Answer Entropy

08

10

02 0.4 06

Temperature

038 10

Similarity

02 04 06

Temperature

08

Answer Entropy

—

—e— PAL
coT

15

SiM

10

—e— PAL
ot

05

—e— PAL
ot

—a— PAL
ot

02 o4 06

Temperature

08 10 02 0.4 06

Temperature

o8 10

02 0.4 0e

Temperature

08 10 0z 04 0o

Temperature

[ek:] 190

Figure 5: Trends seen in temperature scaling for the model LLaMA2-70B. Across datasets, the accuracy and
calibration improve upon lowering the temperature to a certain extent. This is in line with having lower generation
similarity and lower answer entropy. The optimal temperatures seen are 0.5 and 0.7 across datasets. For other

datasets, refer Appendix, Figure 6.

5.3 Utilizing Language for Code Generation

The exploration of using natural language for code
generation has taken diverse approaches in research.
Initial efforts involved rule-based, predictive and
deep-learning variations (Gulwani and Marron,
2014; Woods, 1973; Zelle and Mooney, 1996; Lin
et al., 2017; Rabinovich et al., 2017). However,
performance enhancements were observed using
pre-trained models trained on code-based datasets
(Chen et al., 2021; Nijkamp et al., 2022; Gao et al.,
2022; Li et al., 2023). Employing pre-trained lan-
guage models (LMs) for code generation as a way
to solve tasks that require step-by-step structuring
and various forms of reasoning has proven to be
particularly effective (Ni et al., 2023a; Gao et al.,
2022; Ni et al., 2023b).

Intermediate execution results from code have
been used for training (Chen et al., 2018) and in-
ference (Wang et al., 2018). Majority-based voting
on the results of code executions (which is the self-
consistency-based methodology we employ) has
also been shown to be an effective technique for se-
lecting the right candidate (Li et al., 2022b; Cobbe
et al., 2021; Shi et al., 2022).

6 Conclusion

In this study, we explore the impact of two distinct
prompting styles, namely PAL and COT, on the
calibration of OpenAl models and LLaMA mod-
els. Our investigation spans 5 reasoning datasets,
employing self-consistency as the methodology for
eliciting calibration. We analyze four different met-
rics - calibration (ECE) , accuracy (ACC) , average

similarity in generations (SIM) , and answer en-
tropy (ENT) . Our findings are as follows:

* RQ 1: Does one prompting style result in
significantly better calibration than the other?
Empirical results show that PAL generally has
higher calibration and accuracy for 82.5% of
the cases across OpenAl and LLaMA models
for a varied range of temperatures.

* RQ 2: Are the observed calibration trends
different across OpenAl models and LLaMA
models? We observed that OpenAl models are
in general better calibrated for the reasoning
tasks with up to 19% improvement in ECE.

* RQ 3: Does the consistency of LLM genera-
tions affect performance? PAL prompting
shows a general trend of having greater simi-
larity in the generation over COT, which we
hypothesize could be due to the inherent struc-
ture present in the code. We see that greater
generation similarity is accompanied by lower
answer entropy and lower ECE.

We hope that this study will catalyze additional
research aimed at holistically evaluating and gain-
ing deeper insights into the role of prompts in vari-
ous tasks and domains.

7 Limitations

Access to OpenAl models is only available through
an API which limits the ability to exactly con-
trol the hyperparameters influencing the genera-

2269
8

tions. Moreover, OpenAl models are not transpar-
ent, which limits the ability to study these models.
Because of this lack of transparency it is also hard
to draw conclusive insights about any comparisons
between OpenAl models and LLaMA models In
our study, we report the results from a single run
but due to combination of utilizing temperature
value of 1.0 and hardware induced stochasticity, it
is possible to get varying results for a given model.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. ArXiv,
abs/2211.12588.

Xinyun Chen, Chang Liu, and Dawn Xiaodong Song.
2018. Execution-guided neural program synthesis.
In International Conference on Learning Representa-
tions.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168.

Shrey Desai and Greg Durrett. 2020.
tion of pre-trained transformers.
arXiv:2003.07892.

Calibra-
arXiv preprint

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Sumit Gulwani and Mark Marron. 2014. Nlyze: Inter-
active programming by natural language for spread-
sheet data analysis and manipulation. In Proceedings
of the 2014 ACM SIGMOD international conference
on Management of data, pages 803-814.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017a. On calibration of modern neural net-

works. In International conference on machine learn-
ing, pages 1321-1330. PMLR.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017b. On calibration of modern neural
networks. In International Conference on Machine
Learning.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration.

Abhyuday Jagannatha and Hong Yu. 2020. Calibrat-
ing structured output predictors for natural language
processing. In Proceedings of the conference. As-
sociation for Computational Linguistics. Meeting,
volume 2020, page 2078. NIH Public Access.

Zhengbao Jiang, J. Araki, Haibo Ding, and Graham
Neubig. 2020. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962-977.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962-977.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-
lective question answering under domain shift. arXiv
preprint arXiv:2006.09462.

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-
brated language model fine-tuning for in-and out-of-
distribution data. arXiv preprint arXiv:2010.11506.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Haotong Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. Proceedings of the 29th
Symposium on Operating Systems Principles.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022a. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, RéEmi Leblond, Tom, Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de,

2270

9

https://api.semanticscholar.org/CorpusID:53317540
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361

Masson d’ Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey, Cherepanov, James Molloy, Daniel Jaymin
Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. 2022b. Competition-level code gener-
ation with alphacode. Science, 378:1092 — 1097.

Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin
Vu, and Michael D Ernst. 2017. Program synthe-
sis from natural language using recurrent neural net-
works. University of Washington Department of Com-
puter Science and Engineering, Seattle, WA, USA,
Tech. Rep. UW-CSE-17-03-01.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of
code are few-shot commonsense learners. ArXiv,
abs/2210.07128.

Robert A McLean, William L Sanders, and Walter W
Stroup. 1991. A unified approach to mixed linear
models. The American Statistician, 45(1):54—64.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023a. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106-26128.
PMLR.

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Rid-
dell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu,
Semih Yavuz, Caiming Xiong, Shafiq R. Joty, Yingbo
Zhou, Dragomir R. Radev, and Arman Cohan.
2023b. L2ceval: Evaluating language-to-code gener-
ation capabilities of large language models. ArXiv,
abs/2309.17446.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis.

OpenAl. 2023. Openai documentation.
https://platform.openai.com/docs/
model-index-for-researchers.

John Platt et al. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. Advances in large margin classifiers,
10(3):61-74.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gen-
eration and semantic parsing. arXiv preprint
arXiv:1704.07535.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution. ArXiv,
abs/2204.11454.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022a. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin
Chi, Denny Zhou, and Jason Wei. 2022b. Challeng-
ing big-bench tasks and whether chain-of-thought
can solve them. ArXiv, abs/2210.09261.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. arXiv preprint arXiv:2305.14975.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
text-to-sql generation with execution-guided
decoding. arXiv: Computation and Language.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Huai hsin Chi, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in
language models. ArXiv, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. ArXiv,
abs/2201.11903.

William A Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
Proceedings of the June 4-8, 1973, national computer
conference and exposition, pages 441-450.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023a. Can
Ilms express their uncertainty? an empirical eval-
uation of confidence elicitation in llms. ArXiv,
abs/2306.13063.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023b. Can llms
express their uncertainty? an empirical evaluation
of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

2271

10

https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:263310373
https://api.semanticscholar.org/CorpusID:263310373
https://api.semanticscholar.org/CorpusID:263310373
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050—-1055.

Li Zhang, Liam Dugan, Hai Xu, and Chris Callison-
Burch. 2023a. Exploring the curious case of code
prompts. ArXiv, abs/2304.13250.

Li Zhang, Hai Xu, Yue Yang, Shuyan Zhou, Weiqiu
You, Manni Arora, and Chris Callison-Burch. 2023b.
Causal reasoning of entities and events in procedural
texts. In Findings.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-

ternational Conference on Machine Learning, pages
12697-12706. PMLR.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Huai hsin
Chi. 2022. Least-to-most prompting enables com-
plex reasoning in large language models. ArXiv,
abs/2205.10625.

2272
11

A Prompts

The following sections display one example of
the few-shot prompts used for each dataset across
prompting styles.

A.1 PAL Prompts

A.1.1 GSMSK/GSMS8K-Hard

def solution ()
"""0livia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result

A.1.2 Object Counting

Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a cabbage, two
< onions, and three fridges. How many vegetables do I have?

def solution ()
note: I'm not counting the chair, tables, or fridges
vegetables_to_count = {{'potato': 2,'cauliflower': 1, 'lettuce head': 1, 'cabbage":
— 1,'onion': 2}}
return sum (vegetables_to_count.values ())

A.1.3 Date Understanding

Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
If 2015 is coming in 36 hours, then today is 36 hours before.

today = datetime (2015, 1, 1) - relativedelta (hours=36)

One week from today,

one_week_from_today = today + relativedelta (weeks=1)

The answer formatted with %m/%d/%Y is

one_week_from_today.strftime ('%m/%d/%Y")

A.1.4 Repeat Copy

Q: Repeat the word duck four times, but halfway through also say quack
def solution ()
result = []
for i in range (1, 5) :
result.append ("duck™)
if i ==2:
result.append ("quack”)
.join (result)

non

return

2273
12

A.2 CoT Prompts
A.2.1 GSMSK/GSMSK-Hard

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 -
15 = 6. The answer is 6.

A.2.2 Object Counting

Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a cabbage, two onions, and three fridges. How
many vegetables do I have?

A: Chair, tables and fridges are not vegetables, so we are not counting them. Two potatoes, cauliflower, lettuce head,
cabbage and two onions are vegetables, so they will be counted The total number of vegetables are 2+ 1+ 1 + 1 + 2 The
answer is: 7

A.2.3 Date Understanding

Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
A: If 2015 is coming in 36 hours, then it is coming in 2 days. 2 days before 01/01/2015 is 12/30/2014, so today is
12/30/2014. So one week from today will be 01/05/2015. So the answer is 01/05/2015.

A.2.4 Repeat Copy

Q: Repeat the word duck four times, but halfway through also say quack
A: On repeating the word duck four times we get: duck duck duck duck Halfway through if we say quack, we have to
say quack in between the 2nd word and the 3rd word The answer is: duck duck quack duck duck

2274
13

B Temperature Scaling Experiments -
Line Plots

GSM8k Hard Date Understanding
Accuracy Calibration Accuracy calibration
s 04 —e— PAL —e— PAL —e— PAL
coT 0.75 ot 020 ot
03
o V41 e PAL w w 070 w015
] ot o0z g
0.65
03 01 010
080
02
0z 04 06 08 10 02 o4 06 08 10 0z 04 06 08 10 02 04 06 08 10
Temperature Temperature Temperature Temperature
Similarity Answer Entropy Similarity Answer Entropy
100 100
—e PAL —e— PAL 15 { —a— PAL
095 25 T cor T
0.95
0.90 20 10
= = =
& oes 715 EREN &
080 05
—a— PAL 10 085
075 T
05
02 0.4 06 08 10 0z 0.4 06 08 10 02 04 06 08 10 0z 0.4 0.6 08 10
Temperature Temperature Temperature Temperature
Repeat Copy
Accuracy Calibration
07 /\v/’\ 025
o 06 w 020
4 4
015
05
—&— PAL —&— PAL
010
T T
04
02 o4 06 08 10 02 04 086 11} 10
Temperature Temperature
Similarity Answer Entropy
1000
’\.\ —— PAL 201 o paL A
0.975 - T T
15
0950
=
@ 0925 @ 10
09500 0s
0.87%
02 o4 06 08 10 02 04 086 08 10
Temperature Temperature

Figure 6: Trends seen in temperature scaling for the datasets - GSM8K-Hard, Date-Understanding and Repeat-Copy

2275
14

C Results of temperature scaling for

LLaMA2-13B
Temp GSM8K Object-Counting Repeat-Copy Date-Understanding ~ GSMS8K Hard
CoT PaL | CoT PaL CoT PaL. CoT PaL CoT PaL

0.7 ECE | 0.052 0.046 | 0.12 0.108 0.175 0.181 | 0.108 0.107 0.125 0.087
ACC | 36.16 39.27 | 61.60 80.80 34.37 5937 | 50.60 56.63 1091 30.32
SIM | 8540 97.48 | 98.65 99.33 95.07 94.02 | 86.81 96.03 8348 97.37
ENT | 2405 2.222 | 0970 0.303 2.048 1.949 | 1.505 1.330 2.892 2.332
0.5 ECE | 0.099 0.093 | 0.171 0.135 0.131 0.106 | 0.134 0.183 0.177 0.1381
ACC | 36.08 37.07 | 60.80 82.00 34.37 5930 | 53.92 55.00 10.80 29.87
SIM | 88.70 98.10 | 99.21 99.83 97.12 97.74 | 89.94 97.63 87.37 98.03
ENT | 2.144 1976 | 0.722 0.158 1.455 1.311 | 1.141 0.942 2.694 2.074
03 ECE | 0160 0.108 | 0.231 0.154 0200 0.206 | 0.219 0.304 0.246 0.231
ACC | 33.81 30.72 | 62.40 81.20 37.50 65.63 | 55.28 50.40 10.16 ~ 27.97
SIM | 91.51 98.54 | 99.56 99.93 97.62 96.81 | 93.02 98.41 90.48 98.44
ENT | 1.826 1.618 | 0.475 0.080 0.967 1.19 | 79.04 63.78 2.389 1.716
0.1 ECE | 0372 0.334 | 0.311 0.174 0.4969 0.1812 | 0.341 0.423 0.372 0.334
ACC | 3025 32.14 | 62.80 81.20 37.50 46.80 | 54.47 49.32 3025 32.14
SIM | 95.12 99.19 | 99.80 99.98 97.24 98.68 | 97.00 99.32 95.12 99.19
ENT | 1.145 0.84 | 0.204 0.014 0.286 0.283 | 0.373 0.261 1.1458 0.840

Table 5: Results of temperature scaling for LLaMA2-13B. The darker blue shade highlights better performing
prompting technique.

2276
15

D Reliability Plots for LLaMA2-70B

10 Reliability Plot . Reliability Plot
----- Perfect Reliability ----- Perfect Reliability
—=— Reliability Plot —=— Reliability Plot
0.8 0.8
a 0.6 3 0.6
© ©
e e
3 =1
8 0.4 8 0.4
< <7
0.2 0.2
00k 0,07
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Confidence
(a) GSM8k CoT (b) GSM8k PaL
10 Reliability Plot 10 Reliability Plot
————— Perfect Reliability - Perfect Reliability
—=— Reliability Plot —=— Reliability Plot
0.8 0.8
a 0.6 5 0.6
© ©
e 4
3 =]
8 0.4 8 0.4
< L
0.2 0.2
0.0 = 004"
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0
Confidence Confidence
(c) Date Understanding CoT (d) Date Understanding PalL
10 Reliability Plot 10 Reliability Plot
----- Perfect Reliability ----- Perfect Reliability
—=— Reliability Plot —=— Reliability Plot
0.8 0.8
3 0.6 3 0.6
© ©
e c
= =1
B 0.4 8 0.4
< <
0.2 0.2
0.0k | | | | | | ! 0,04 v
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Confidence
(e) Object Counting CoT (f) Object Counting PalL
1o Reliability Plot 10 Reliability Plot
————— Perfect Reliability ,,/" ----- Perfect Reliability
—=— Reliability Plot —=— Reliability Plot
0.8 0.8
5 0.6 3 0.6
© ©
e s
3 =]
S oa Sos
< <7
0.2 0.2
0,0+~ 0,0+
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0
Confidence Confidence
(g) Repeat Copy CoT (h) Repeat Copy PaL
10 Reliability Plot 10 Reliability Plot
----- Perfect Reliability ----- Perfect Reliability
—=— Reliability Plot —=— Reliability Plot
0.8 0.8
a 0.6 a 0.6
© ©
c c
3 =]
B 0.4 8 0.4
< <
0.2 0.2
0,0 F° 0,0+
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Confidence

(i) GSM8k Hard CoT (j) GSM8k Hard PaL

Figure 7: Reliability plots for all the datasets using COT and PAL prompting for the model LLaMA2-70B

2271
16

E Reliability Plots for gpt-3.5-turbo

10 Reliability Plot
----- Perfect Reliability
—=— Reliability Plot
0.8
30,6
©
e
3
S 0.4
go
0.2
0.0+~
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(a) GSM8k CoT
10 Reliability Plot
***** Perfect Reliability .
—a— Reliability Plot
0.8
306
©
s
=1
8 0.4
go
0.2
0.0 - -l
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(c) Date Understanding CoT
1o Reliability Plot
----- Perfect Reliability
—=— Reliability Plot
0.8
30,6
©
e
3
S 0.4
go
0.2
0.0+
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(e) Object Counting CoT
Reliability Plot
1.0 —_—
————— Perfect Reliability
—=— Reliability Plot
0.8
50.6
o
3
8 0.4
Qo
0.2
0.0
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(g) Repeat Copy CoT
10 Reliability Plot
----- Perfect Reliability
—=— Reliability Plot
0.8
30,5
©
e
=
B 0.4
o
0.2
00 r . | | } | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Confidence

(i) GSM8k Hard CoT

. Reliability Plot
----- Perfect Reliability
—=— Reliability Plot
0.8
3 0.6
©
e
=1
8 0.4
geo
0.2
0,07
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(b) GSM8k PaLL
10 Reliability Plot
————— Perfect Reliability
—=— Reliability Plot
0.8
5 0.6
©
4
=]
8 0.4
Qo
0.2
00k
0.0 0.1 0.2 03 0.4 0‘.5 0.6 0.7 0.8 0.9 1.0
Confidence
(d) Date Understanding PalL
. Reliability Plot
----- Perfect Reliability
—=— Reliability Plot
0.8
3 0.6
©
e
=]
8 0.4
geo
0.2
00"
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence
(f) Object Counting PalL
10 Reliability Plot
————— Perfect Reliability
—=— Reliability Plot
0.8
5 0.6
©
4
=]
8 0.4
go
0.2
0.0
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0
Confidence
(h) Repeat Copy PaL
Lo Reliability Plot
----- Perfect Reliability
—a— Reliability Plot
0.8
3 0.6
©
c
=1
8 0.4
geo
0.2
0,0+ - | ; !
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Confidence

(j) GSM8k Hard PaL

Figure 8: Reliability plots for all the datasets using COT and PAL prompting for the model gpt-3.5-turbo

2278
17

