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Abstract

For long document summarization, discourse
structure is important to discern the key content
of the text and the differences in importance
level between sentences. Unfortunately, the in-
tegration of rhetorical structure theory (RST)
into parameter-efficient fine-tuning strategies
for long document summarization remains un-
explored. Therefore, this paper introduces RST-
LoRA and proposes four RST-aware variants
to explicitly incorporate RST into the LoRA
model. Our empirical evaluation demonstrates
that incorporating the type and uncertainty of
rhetorical relations can complementarily en-
hance the performance of LoRA in summariza-
tion tasks. Furthermore, the best-performing
variant we introduced outperforms the vanilla
LoRA and full-parameter fine-tuning models,
as confirmed by multiple automatic and human
evaluations, and even surpasses previous state-
of-the-art methods1.

1 Introduction

The advent of pre-trained large language models
(LLMs), such as LLaMA-2 (Touvron et al., 2023),
Vicuna (Zheng et al., 2023), and GPT-related mod-
els from OpenAI (OpenAI, 2023), has greatly ac-
celerated research progress of Natural Language
Processing (NLP). With the continual growth in the
scale of LLMs, the requirements for both software
and hardware in order to fully fine-tune LLMs to
adapt to downstream tasks, especially in process-
ing long sequence data, will become increasingly
demanding (Gu et al., 2022; Pu et al., 2024).

Parameter-Efficient Fine-Tuning (PEFT) strate-
gies are noteworthy in mitigating the aforemen-
tioned problem by reducing the number of param-
eters that need to be adjusted (Chen et al., 2022;
AkbarTajari et al., 2022; Mao et al., 2022; Gheini
et al., 2023; Badola et al., 2023; Zhang et al., 2023b;

1The project information is available at https://dongqi.
me/projects/RST-LoRA.

Lawton et al., 2023). Some studies have high-
lighted that by updating only 0.01–1% of the (addi-
tional) parameters and freezing all other parameters
of LLMs, PEFT methods can match or even ex-
ceed the performance of vanilla full-parameter fine-
tuning (Li and Liang, 2021; Hu et al., 2022; Asai
et al., 2022; Yang et al., 2022; Gu et al., 2023; Liao
et al., 2023; Zhang et al., 2023b; Li et al., 2023; Lei
et al., 2023; Zhang et al., 2023a; Chen et al., 2023;
Lawton et al., 2023). Among these methods, LoRA
algorithm (Low-Rank Adaptation, Hu et al., 2022)
has achieved state-of-the-art (SOTA) performance
due to its ability to circumvent the latency associ-
ated with adapter tuning (Houlsby et al., 2019) as
well as the input length constraints of prefix/prompt
tuning (Li and Liang, 2021; Lester et al., 2021) dur-
ing model training and inference (He et al., 2022;
Ghazvininejad et al., 2022; Dettmers et al., 2023;
Zhang et al., 2023a; Whitehouse et al., 2023; Ding
et al., 2023).

Recent investigations (Üstün and Cooper Stick-
land, 2022; Ponti et al., 2023; Zhao et al., 2023;
Zeng et al., 2023; Zhang et al., 2023b; Wan et al.,
2023; Liu et al., 2023a) have revealed that PEFT
strategies face challenges in distinguishing latent
text relations and determining the importance level
of different sentences during fine-tuning. This issue
arises because such distinctions are not a primary
focus in PEFT’s learning process and are not ex-
plicitly represented in the input data. However, this
is essential for the task of long document summa-
rization since generating a good summary often
requires natural language generation (NLG) mod-
els to have the ability to discern salient information
within the text and comprehend the intricate inter-
relations among different text components.

Our approach proposed here takes inspiration
from Ishigaki et al. (2019); Xiao et al. (2020); Dong
et al. (2021); Cao and Wang (2022); Guo et al.
(2022); Pu et al. (2023), who have advised that
explicitly integrating document structure and/or
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discourse knowledge can enhance the performance
of neural summarization models when fully fine-
tuning the NLG models. This motivates us to in-
vestigate the following research questions: Can
the Rhetorical Structure Theory (RST, Mann and
Thompson, 1987) improve the performance of
LoRA strategy in summarizing lengthy documents?
Specifically, we want to explore and verify whether
infusing RST knowledge into LoRA can improve
the performance of long document summarization.
To answer this question, this paper will propose,
introduce, and integrate four RST structure variants
to guide the training of LoRA. These variants in-
clude (i) binary (ii) probability RST distribution,
both with (w) and without(w/o) relation labels.

In summary, our contributions are as follows:
• We introduce a method for injecting discourse

knowledge into the training of the LoRA model.
Our approach is compatible with both Seq2Seq
and GPT transformer-based architectures, allow-
ing for its easy adoption across different LLMs.

• Our empirical findings demonstrate that dis-
course uncertainty and relation labels are comple-
mentary, and both can contribute to the improve-
ment of final performance. Notably, our model
also outperforms current SOTA full-parameter
fine-tuning (FFT) models in specific evaluation
metrics.

• We offer quantitative and qualitative analyses
showing that our model surpasses baseline mod-
els in factual consistency checking. Moreover,
the results of human evaluation and GPT-4 exami-
nation reveal that our model produces summaries
that are closer in quality to those generated by
humans.

2 RST Prerequisite Knowledge

Rhetorical Structure Theory (RST) is a discourse
framework that is helpful for determining which
sentences in a document should or should not
be included in a summary (Marcu, 1997, 1999,
2000; Kikuchi et al., 2014; Goyal and Eisenstein,
2016; Pu et al., 2023). To be specific, RST de-
lineates a set of coherence relations between text
segments, known as Elementary Discourse Units
(EDUs), at the document level (e.g., one segment
might provide clarification for another, or con-
versely, two segments could present contrasting
viewpoints). Moreover, RST categorizes EDUs
based on their discourse importance, labeling cen-
tral EDUs as ‘nuclei’, and less central EDUs as

Figure 1: An example of RST tree: [Utilizing dis-
course structure to enhance text summarization is ben-
eficial.]EDU1 [This technique can be used to identify
key ideas and capture often overlooked nuances.]EDU2

[Accurate capture of these complex structures facilitates
the generation of good summaries.]EDU3

‘satellites’ (Marcu, 1999; Bosselut et al., 2018; Ison-
uma et al., 2019; Xu et al., 2020).

For example, consider an RST tree as depicted in
Figure 1. In this instance, EDU1 serves as the most
pivotal component within the entire example, thus
constituting the nucleus for both EDU2 and EDU3.
EDU2 is tasked with elucidating and providing sup-
plementary information to EDU3, positioning it as
a satellite unit in relation to EDU3. Given the rel-
atively diminished importance of EDU2, merging
EDU1 and EDU3 while pruning EDU2, the seman-
tic essence of the example would remain intact. In
a more extreme scenario, retaining only EDU1 as
the summary sentence and omitting both EDU2
and EDU3, the primary information conveyed by
the entire example would still preserved. As has
also been argued by, e.g., Marcu (1997); Louis et al.
(2010); Cohan et al. (2018); Liu et al. (2019); Li
et al. (2020); Xu et al. (2020); Dong et al. (2021);
Chen and Yang (2021) that ‘satellite’ EDUs play
a subordinate role in summarization, with most
summary sentences deriving from ‘nuclei’.

3 Related Work

3.1 Document Summarization with RST

RST is a linguistic discourse framework that pro-
vides a way to organize text into a hierarchical
tree structure, which helps to better understand the
overall organization and inter-part relations of text.
Early research by Marcu (1997) and Louis et al.
(2010) uncovered that human-written summaries
often align with the nucleus EDUs in RST trees.
This correlation underscores the validity of RST as
a theoretical motivation for summarization tasks.
Building on this insight, subsequent studies have
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demonstrated the value of explicitly incorporating
RST trees into neural summarization models. For
example, Kikuchi et al. (2014) boosted the summa-
rization performance of the RNN-based model by
constructing RST trees, where satellite EDUs were
pruned to retain only the nucleus EDUs, thus fo-
cusing on the document’s key content. Pre-trained
language models have a noted tendency to cap-
ture some superficial aspects of discourse relations
without explicit training (Miaschi et al., 2020; Qian
et al., 2021; Schuster and Linzen, 2022), but the la-
tent discourse information is often not captured cor-
rectly. To alleviate this challenge, Xu et al. (2020)
and Dong et al. (2021) enhanced summarization
models by incorporating discourse structure within
transformer-based and graph neural network mod-
els, respectively.

More recently, Pu et al. (2023) proposed an ap-
proach that incorporates the uncertainty of RST
structures into the attention mechanisms of summa-
rization models and achieved SOTA results on mul-
tiple datasets. However, all the above approaches
require full fine-tuning of NLG models, which is
very expensive. As the model parameters increase,
this issue will be further amplified. Incorporating
RST into PEFT might potentially lower the barrier
to fine-tuning by structuring the learning process
around the inherent rhetorical patterns in the data.

3.2 Document Summarization with LoRA
LoRA, presented by Hu et al. (2022), is a low-rank
approximation strategy that reduces the number
of trainable parameters by freezing the pre-trained
model weights and injecting trainable rank decom-
position matrices into each layer of the transformer
architecture. The initial research also demonstrated
through summarization tasks that applying LoRA
on the GPT-3 model (Brown et al., 2020) with less
than 1% of the parameters could even outperform
FFT. Expanding on this, studies by Dettmers et al.
(2023), Xu et al. (2024), and Li et al. (2024) en-
hanced generalization ability in downstream sum-
marization tasks by quantifying LoRA matrices
and adopting mixed-precision techniques. Further-
more, Zhu et al. (2023) combined LoRA with layer
pruning, achieving notable improvements in spe-
cialized applications like medical report summa-
rization. Recently, Liao et al. (2023) validated the
feasibility of using task-neutral sparse masks to im-
prove the performance in text summarization with
LoRA.

In a similar work, Ghazvininejad et al. (2022) in-

tegrated hierarchical document structure (i.e. block-
ing structure) into prefix-tuning to simulate the
high-level discourse relation and achieved improve-
ments in the task of text generation. However, there
is still an unexplored potential in explicitly integrat-
ing fine-grained RST structures into the summa-
rization process with PEFT methods, since com-
prehending the coherence of discourse elements
could positively impact the quality of generated
summaries (Li et al., 2016; Liu and Chen, 2019;
Huang and Kurohashi, 2021), particularly in the
context of summarizing long documents (Cohan
et al., 2018; Xu et al., 2020; Li et al., 2020; Gabriel
et al., 2021; Dong et al., 2021; Balachandran et al.,
2022; Pu et al., 2023).

4 Proposed Approach

A limitation observed with LoRA and other PEFT
methods during the fine-tuning phase is that, while
their primary function is to act as a low-rank ap-
proximation of the weight matrices in LLMs, they
do not adequately capture textual context relations
(He et al., 2022; Ghazvininejad et al., 2022; Wan
et al., 2023; Zhang et al., 2023b). One of the
reasons is that LoRA is not driven or guided by
discourse knowledge during the training phase,
because this part of knowledge is not explicitly
present in the input data (Üstün and Cooper Stick-
land, 2022; Zhao et al., 2023). In addition, the ma-
trices obtained by low-rank approximation strate-
gies may have more difficulty in capturing complex
textual discourse relations due to the smaller se-
mantic space that can be expressed when compared
to LLMs’ weight matrices (Wan et al., 2023; Zhang
et al., 2023b; Tomanek et al., 2021). Hence, we
propose a method that directly and explicitly in-
corporates discourse architecture into LoRA. This
approach allows LoRA’s adaptation mechanism for
downstream tasks to discern intricate text relations
through soft guidance, which can leverage contex-
tual discourse connections and steer the learning
trajectory toward a discourse-informed summariza-
tion process.

4.1 RST Distribution

Our approach builds upon prior practice (Chen
et al., 2017; Xiao et al., 2020; Bugliarello and
Okazaki, 2020; Pu and Sima’an, 2022; Pu et al.,
2023; Zhao et al., 2023) of integrating linguistic
structures (such as syntactic structure, discourse
structure, etc.) into neural NLG models. To in-
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Figure 2: RST distribution

fuse discourse structure into LoRA, we begin by
converting RST structures, generated by an RST
parser2 into a compact matrix representation. Fig-
ure 2 exemplifies how to transmute the full po-
tential RST structures (n-best RST forests) into
a three-dimensional discourse matrix (Pu et al.,
2023). In this matrix, the x and y axes correspond
to the elementary discourse units (EDUs) within
the source document, while the z-axis denotes the
discourse relation label3. Each point of the matrix
indicates the probability value p(edui, eduj , rk) ∈
[0, 1] ⊆ R that edui is the nucleus of eduj with
discourse relation rk. It should be noted that
∀i = j, p(edui, eduj , rk) = 0, since no unit
is self-dependent. Next, we average and merge
the y-axis of the matrix, and the merged value
c(edui, eduj , rk) is called the importance index
of edui with relation rk. The RST distribution is
then obtained by combining all c(edui, eduj , rk).
Based on this, we propose four fine-grained RST
matrix distributions:
• RST b

wo: A binary, label-agnostic representation
collapsing probabilities into a simple 1-or-0 re-
garding discourse connections.

• RST b
w: An extension of the binary distribution

that includes relation labels, enriching the binary
decisions with relational types.

• RST p
wo: A probabilistic representation that omits

labels, focusing instead on the probabilities to
2https://github.com/seq-to-mind/DMRST_Parser
3Appendix A details the grouping of discourse relations.

express uncertainty in discourse connections.
• RST p

w: The most granular representation, retain-
ing both types of discourse relations and their
probabilistic weights for a full-fledged represen-
tation of discourse nuances.
The inclusion of the relation label is contingent

on whether we perform average-and-merge along
the relation dimension (z-axis). Whether the ap-
proach is binary or based on uncertainty hinges
on whether we replace the probability value with
1 or 0. In the binary cases, probabilities equal to
or above 0.5 are replaced with 1, else with 0. Pre-
vious researchers (such as Xu et al. (2020) and
Dong et al. (2021)) considered the 1-best tree, rep-
resenting binary relations outputted from parsers
into summarization models (also the case of our
first two variants). The latter two variants utilize
the parser’s output probabilities as confidence indi-
cators for discourse connections (Pu et al., 2023).
This probabilistic approach softens the impact of
potential errors or ambiguities in the parser’s out-
put, blending its uncertainty into the model.

4.2 RST-Aware Injection
In the process of vanilla LoRA fine-tuning, let
W fine−tuned

A×B denote the fine-tuned LLM’s param-
eters, and W pre−trained

A×B represent the parameters
before fine-tuning. The change in parameters is rep-
resented by ∆WA×B , where A and B correspond
to the dimensions of the parameter matrix:

W fine−tuned
A×B = W pre−trained

A×B +∆WA×B

In other words, the parameters after fine-tuning
can be obtained by adding a matrix representing
the variation to the parameters of the original, pre-
fine-tuned model.

∆WA×B ≃ Φ[(W down
A×r W up

r×B)]

r ≪ min(A,B)

The objective of the LoRA strategy aims to learn
the mapping method Φ that can provide an approx-
imation of the matrix representing parameter varia-
tions (Hu et al., 2022). Typically, the rank value r is
considerably smaller than both A and B, so that the
total number of parameters of W down

A×r and W up
r×B is

significantly smaller than WA×B . For a given input
document X to the linear projection in the model’s
hidden layer, LoRA modifies the projection output
(hidden representation) h as follows:
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Figure 3: Model architecture: The diagram illustrates the integration of the RST matrix into the LoRA model. The
left side is the original LoRA, while the right side depicts our proposed method RST-LoRA.

h← h+X(W down
A×r W up

r×B)

In its current form, LoRA treats both satel-
lite and nucleus EDUs in documents equally and
only recognizes their difference during the back-
propagation process. This issue is also noted in
the analyses by Ghazvininejad et al. (2022); Zhao
et al. (2023), who also discovered that PEFT faces
challenges in understanding the complex relations
between sentences and the differences in impor-
tance level between text segments during its learn-
ing process. Therefore, we soft-guide the learning
process by injecting the RST structure (i.e., the
matrix presentation mentioned above) into the text
embedding matrix of LoRA, as shown in Figure 3.
Specifically:

h← h+ [(X ⊙ (1 + γ))(W down
A×r W up

r×B)]

Here, γ denotes the weight coefficient matrix, or
more precisely, the RST distribution matrix. The
operation ⊙ signifies element-wise multiplication,
and the motivation behind employing element-wise
multiplication is that it can significantly amplify the
impact of probability values on the input X matrix,
creating an RST-injected matrix with greater distri-
butional variance, in contrast, element-wise addi-
tion would exert a lesser impact on X . It should be
noted that RST parser operates at the EDU level,
meaning that sub-word units within the same EDU
share the same multiplication factor, embedding the
same probability value across the entire EDU into
X . The estimates of learned parameters W down

A×r

and W up
r×B are adjusted to match the utility of dis-

course knowledge for the ultimate summarization
purpose. Each element of γ is constrained to be
non-negative. The operation of 1+γ functions as a

residual connection, allowing discourse knowledge
to exert a subtle influence on the adjustment of the
low-rank weight matrix. If we set all elements of
γ to a uniform value δ, including zero, the adjust-
ment to the low-rank matrices would revert to the
conventional LoRA approach.

5 Experiments and Analysis

5.1 Experimental Settings
Datasets Our experiments are conducted on three
recent long document summarization datasets:
Multi-LexSum (ML, Shen et al., 2022), eLife
(Goldsack et al., 2022) and BookSum Chapter (BC,
Kryscinski et al., 2022). These datasets are sourced
from the fields of legal documents, scientific papers,
and books, respectively. We select these datasets
because they exhibit a high degree of heterogene-
ity, and we want to test whether our proposed ap-
proach could maintain sufficient generalization per-
formance across different data domains. Statistics
of these datasets are provided in Appendix B.

Parser For automatic parsing of source docu-
ments, we employ DMRST parser (Liu et al., 2020,
2021) which enables us to extract probabilities or
uncertainties of discourse relations and type labels
from its final logits layer.

Automatic Metrics Aligning with previous work
for evaluating summarization systems (Narayan
et al., 2018; Liu et al., 2023c; Blinova et al., 2023),
we use F1 scores of Rouge-1 (R1), Rouge-2 (R2),
Rouge-L (RL), and Rouge-Lsum (RLsum) (Lin,
2004), BERTScore (Zhang et al., 2020), METEOR
(Banerjee and Lavie, 2005), sacreBLEU (Post,
2018) and NIST (Lin and Hovy, 2003) for model’s
performance evaluation. A description of these
metrics can be found in Appendix C.
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Training & Inference We operate Longformer
(Beltagy et al., 2020) and Vicuna13B-16k (Zheng
et al., 2023) as our baseline backbone mod-
els. Longformer is a state-of-the-art, open-source
model optimized for handling long documents un-
der Seq2Seq architecture. Meanwhile, Vicuna is an-
other SOTA model based on GPT architecture. Our
objective in using these models is to demonstrate
the generalizability of our strategy across different
architectural frameworks. We also include GPT-4
(OpenAI, 2023) as one of our comparative models.
It should be noted that for GPT-4, we use both zero-
shot learning (ZS) and in-context learning (ICL)
with demonstrations from two randomly selected
samples from the training datasets4. Besides, we
compare our results with both the original full pa-
rameter fine-tuning (FFT) and the vanilla LoRA
fine-tuning. All open-source models, including the
baseline, proposed, and ablation models, adhere to
identical hyperparameter settings. These settings
are elaborated in Appendix D.

5.2 Experimental Results

General Results The differences in performance
of different RST variants are shown in Table 1.
Among our proposed RST-injected variants, mod-
els integrating discourse relation labels generally
outperformed those without this integration. Sim-
ilarly, models considering the uncertainty in dis-
course relations fare better than those disregarding
it. This suggests that integrating parser uncertainty
and coherence labels into the model improves the
robustness of the model against potential misinfor-
mation to a certain extent when compared to the
parser’s 1-best binary decisions.

Table 2 shows the performance differences be-
tween our final strategy (the best RST variant) and
other comparative models. Specifically, GPT-4 ex-
hibits the poorest overall performance, attributable
to a lack of parameter tuning. The performance of
the models based on Vicuna as backbone is over-
all better than the models based on Longformer
due to the larger number of parameters. Regarding
parameter-efficient settings, vanilla LoRA’s perfor-
mance is marginally lower than FFT across most
datasets, except eLife. However, LoRA achieves
comparable results to FFT while only requiring ad-
justments of 0.25% of parameters for Longformer
and 0.05% for Vicuna, highlighting LoRA’s effi-
ciency.

4Prompts can be found in Appendix E.1 and E.2.

Data Model R1f1↑ R2f1↑ RLf1↑ RLsumf1↑

M
ul

ti-
L

ex
Su

m

LongformerRST b
wo−LoRA 45.82 21.32 23.81 43.40

LongformerRST b
w−LoRA 46.02 21.34 23.87 43.39

LongformerRST p
wo−LoRA 46.21 21.54 24.09 43.37

LongformerRST p
w−LoRA 46.33 21.86 24.11 43.58

VicunaRST b
wo−LoRA 46.32 21.64 24.22 43.32

VicunaRST b
w−LoRA 47.33 22.70 24.25 43.31

VicunaRST p
wo−LoRA 47.39 22.79 24.35 43.33

VicunaRST p
w−LoRA 47.45 23.19 24.39 44.02

eL
if

e

LongformerRST b
wo−LoRA 49.34 14.24 21.34 46.74

LongformerRST b
w−LoRA 49.41 14.39 21.29 46.79

LongformerRST p
wo−LoRA 49.87 14.49 21.83 47.15

LongformerRST p
w−LoRA 49.89 14.68 22.11 47.64

VicunaRST b
wo−LoRA 48.73 14.68 21.89 47.11

VicunaRST b
w−LoRA 49.72 14.72 22.03 47.02

VicunaRST p
wo−LoRA 49.87 14.79 22.21 48.10

VicunaRST p
w−LoRA 49.92 14.92 22.41 48.21

B
oo

kS
um

C
ha

pt
er

LongformerRST b
wo−LoRA 34.70 10.22 20.39 34.21

LongformerRST b
w−LoRA 34.72 10.19 20.41 34.87

LongformerRST p
wo−LoRA 35.29 11.38 21.62 35.11

LongformerRST p
w−LoRA 35.40 11.76 21.88 35.27

VicunaRST b
wo−LoRA 37.28 12.35 22.13 38.33

VicunaRST b
w−LoRA 37.41 12.66 22.51 38.40

VicunaRST p
wo−LoRA 37.87 13.10 22.77 39.69

VicunaRST p
w−LoRA 37.92 13.24 22.93 40.31

Table 1: Performance of different RST variants

We also observe consistent performance im-
provements in LoRA when integrating RST struc-
ture into its training process without increasing
the number of fine-tunable parameters, and in most
cases even exceeds the FFT model. Our final model
RSTp

w-LoRA, integrates both discourse relation
types and uncertainty into LoRA’s training, achiev-
ing the best experimental outcomes. It also defeats
SOTA models (fully fine-tuned with complicated
strategies) on some metrics, including the current
most advanced model (Pu et al., 2023) that incor-
porates RST structure to improve summarization
performance.

Ablation Results To further assess the impact of
the RST matrix on model performance, we specify
three additional control conditions:
• RSTEven: In the RST matrix, we set values to 1

at even positions and 0 at odd positions.
• RSTOdd: We assign values of 1 at odd positions

and 0 at even positions in the RST matrix.
• RSTRandom: We assign random values ∈
[0, 1] ⊆ R to the RST matrix without considering
the probability of discourse relations.
In ablation experiments, we use Vicuna as back-

bone for testing. The motivation behind setting
these three ablation conditions is to simulate the
extreme scenario where the RST parser completely
fails to deliver valuable discourse information. Ta-
ble 3 indicates that different ablation integration
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Dataset Model # Trainable Parameters R1f1↑ R2f1↑ RLf1↑ RLsumf1↑ BERTscoref1↑ Meteor↑ sacreBLEU↑ NIST↑

M
ul

ti-
L

ex
Su

m
LongformerFFT 0.44B 45.81 21.32 23.71 43.25 87.21 33.30 12.06 2.23
LongformerLoRA 1.13M 45.78 21.30 23.65 43.12 87.31 33.31 12.00 2.28
LongformerRST p

w−LoRA 1.13M 46.33†‡ 21.86†‡ 24.11†‡ 43.58†‡ 92.01†‡ 34.55†‡ 13.11†‡ 3.21†‡

VicunaFFT 13B 46.40 21.88 24.15 43.28 90.02 33.19 13.56 3.32
VicunaLoRA 6M 46.32 21.76 24.09 43.14 89.45 33.22 13.44 3.31
VicunaRST p

w−LoRA 6M 47.45‡ 23.19†‡ 24.39†‡ 44.02 †‡ 93.89†‡ 35.31†‡ 14.02†‡ 4.11†‡
GPT-4ZS - 38.74 13.39 18.26 37.67 60.91 24.24 7.43 1.55
GPT-4ICL - 42.14 15.27 20.37 40.12 71.32 28.14 10.22 1.90
Pu et al. (2023) - 46.42 22.89 - 43.98 86.70 33.94 - -
Shen et al. (2022) - 53.73 27.32 - 30.89 42.01 - - -

eL
if

e

LongformerFFT 0.44B 47.59 13.58 20.75 45.25 85.50 28.21 6.86 2.90
LongformerLoRA 1.13M 48.31 13.69 21.10 45.80 85.63 28.18 7.05 3.12
LongformerRST p

w−LoRA 1.13M 49.89†‡ 14.68†‡ 22.11†‡ 47.64†‡ 87.64†‡ 31.23†‡ 7.78†‡ 3.79†‡
VicunaFFT 13B 48.32 14.06 21.31 45.57 85.71 30.28 7.00 2.91
VicunaLoRA 6M 48.41 14.32 21.40 46.01 86.06 31.00 6.62 2.88
VicunaRST p

w−LoRA 6M 49.92†‡ 14.92†‡ 22.41†‡ 48.21†‡ 87.81†‡ 33.22†‡ 8.15†‡ 3.42†‡

GPT-4ZS - 42.73 9.05 17.93 40.15 61.21 25.13 3.47 2.32
GPT-4ICL - 44.62 11.35 20.03 44.09 73.23 27.36 5.66 2.45
Tang et al. (2023) - 35.22 9.73 - 32.33 - - - -
Pu et al. (2023) - 48.70 14.84 - 46.13 84.70 29.53 - -

B
oo

kS
um

C
ha

pt
er

LongformerFFT 0.44B 34.68 10.02 20.35 33.71 81.02 27.30 3.32 1.62
LongformerLoRA 1.13M 34.63 9.96 20.22 33.79 81.33 27.32 3.55 1.86
LongformerRST p

w−LoRA 1.13M 35.40†‡ 11.76†‡ 21.88†‡ 35.27†‡ 83.99†‡ 29.03†‡ 5.94†‡ 2.02†‡

VicunaFFT 13B 37.21 12.38 22.07 38.21 82.31 28.01 3.45 1.70
VicunaLoRA 6M 37.30 12.26 21.84 38.23 82.23 27.83 3.34 1.68
VicunaRST p

w−LoRA 6M 37.92†‡ 13.24†‡ 22.93†‡ 40.31†‡ 84.12†‡ 29.22†‡ 5.48†‡ 2.32†‡
GPT-4ZS - 35.25 7.46 17.52 34.23 58.56 26.50 3.36 1.54
GPT-4ICL - 37.42 10.06 19.49 36.11 79.56 27.56 3.52 1.72
Pu et al. (2023) - 34.02 10.28 - 32.87 85.30 27.47 - -
Cao and Wang (2023) - 41.11 10.63 - 40.20 - - - -
Scirè et al. (2023) - 42.13 10.53 16.75 - - - - -

Table 2: Model performance. The bold numbers represent the best results concerning the given test set. † and ‡

indicate statistical significance (p<0.05) of our final model (RSTp
w-LoRA) against the FFT and LoRA model via

paired t-test based on the same backbone respectively. FFT for full fine-tuning, ZS for zero-shot learning and
ICL for in-context learning. Each result of the SOTA models is directly replicated from their original papers.

Dataset Model R1f1↑ R2f1↑ RLf1↑ RLsumf1↑

ML
RSTEven 46.21 21.39 23.66 42.55
RSTOdd 46.26 21.37 23.82 42.90
RSTRandom 46.30 21.73 24.07 43.10

eLife
RSTEven 47.10 14.28 20.86 45.33
RSTOdd 47.04 14.20 20.98 45.31
RSTRandom 47.32 14.29 21.36 45.71

BC
RSTEven 37.09 12.20 21.75 38.06
RSTOdd 37.01 12.18 21.72 38.10
RSTRandom 37.27 12.23 21.80 38.19

Table 3: F1 scores for ablation study

strategies not only fail to enhance the model’s per-
formance but even detract from it. Experiments
by introducing random noise exhibit that these ar-
bitrary values reduce the model’s performance to
a level marginally lower than the original LoRA.
Furthermore, this also implies that when the RST
parser fails to provide meaningful knowledge (as
in the case of random noise), the impact of noise
on the performance of the model is limited.

5.3 Analysis
Hallucination Checking We delve deeper into
the level of factual consistency of the generated

summaries, which we test using the SummaC
method (Laban et al., 2022). The score of SummaC
ranges from 0 to 1, and the higher the score, the bet-
ter the consistency. The results of the assessment
using Vicuna as backbone are depicted in Figure
4. We observe that GPT-4 exhibits the weakest
factual consistency, while the original LoRA also
shows a comparatively lower level of factual accu-
racy than FFT. However, explicitly incorporating
RST structure into LoRA mitigates the issue of hal-
lucinations/inaccuracies in generated summaries,
achieving better results than FFT model.

Impact of Different Rank r Figure 5 and Fig-
ures 6, 7 in Appendix F illustrate the impact of dif-
ferent ranks on model performance (Vicuna back-
bone). Across different datasets, the RST-aware
model consistently outperforms the original LoRA
at various ranks and achieves similar performance
as the FFT model at lower ranks. Furthermore,
a larger rank r will help to improve the perfor-
mance of the model, which is also aligned with the
findings of He et al. (2022); Zhang et al. (2023a).
However, a higher rank correlates with an increased
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Figure 4: Factual consistency analysis

number of parameters requiring adjustment. Im-
portantly, r = 8 is a trade-off point between perfor-
mance gain and computational cost, when r con-
tinues to increase, the gain rate of performance
improvement begins to slow down.
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Figure 5: Impact of different r on ML dataset

Impact of Parser Capability To rigorously eval-
uate the parser’s impact on our method, we conduct
an experiment that involves intentionally altering
the RST parser’s output. This is designed to simu-
late varying levels of parser performance instability,
thereby allowing us to observe its influence on our
model’s efficacy. Specifically, we introduce ran-
dom masking to the parser’s output at incremental
thresholds of 10%, 20%, 40%, and 80%, assign-
ing random values within the range of 0 to 1 to
portions of the RST matrix. Table 4 presents the
findings from this experiment, with Vicuna serv-
ing as backbone for RSTp

w-LoRA model on the
Multi-LexSum dataset.

These results illustrate the direct correlation be-
tween the RST parser’s performance and the per-
formance of our model’s output. Notably, even
under conditions of compromised parser perfor-
mance (with up to 20% of the information being

Model R1f1↑ R2f1↑ RLf1↑ RLsumf1↑
RST_10% 47.33 23.01 24.33 43.45
RST_20% 47.09 22.78 24.23 43.37
RST_40% 46.52 21.76 24.13 43.20
RST_80% 46.32 21.75 24.06 43.15

Table 4: Impact of random masking on the parser

randomly masked), our model still demonstrates
a good capacity to enhance summary generation
quality by leveraging the learned discourse struc-
ture knowledge. However, it is observed that when
the level of induced noise surpassed 40%, the neg-
ative impact became pronounced, relegating the
model’s performance to levels akin to that of the
original vanilla LoRA.

Human Evaluation To better analyze the qual-
ity of the summaries generated by the models, we
randomly select 10 instances from the BookSum
dataset and conduct a human evaluation. The eval-
uators we have recruited are graduate and doctoral
candidates with specializations in Computer Sci-
ence or Computational Linguistics, each possess-
ing advanced proficiency in English. They receive
compensation at the University’s established hourly
rate. Evaluators are asked to read the correspond-
ing original document, as well as five candidate
summaries (from FFT, LoRA, and RSTp

w-LoRA
with Vicuna backbone, GPT-4 and human). The hu-
man evaluators are blind to the condition, i.e. they
do not know which summary comes from which
system (or human author). Each sample is inde-
pendently evaluated by three distinct human raters
(thus 150 evaluation samples in total). Evaluators
should rate the candidate summaries on a scale of 1
to 5 for relevance (R), informativeness (I), concise-
ness (C), and faithfulness (F), with a higher score
indicating better quality. They also need to give
an overall ranking of the five summaries. The de-
tailed guidelines for human evaluation are available
in Appendix F. The results, presented in Table 5,
show the average values for each metric, as well
as the proportions of times each model’s output is
considered the best or worst among the candidates.
The scores of Fleiss’ Kappa coefficient for R, I, C,
and F are 0.812, 0.705, 0.683, and 0.688, respec-
tively, with an average score of 0.722, indicating
substantial agreement.

From Table 5, it is evident that human-generated
summaries surpass all neural summarization mod-
els in terms of quality. Among the four neural
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Candidate R I C F Best |Worst
Human 4.70 4.83 4.53 4.67 83.3% | 0.0%
GPT-4ICL 3.76 2.27 3.25 2.33 0.0% | 56.7%
VicunaLoRA 4.03 2.37 3.20 2.50 0.0% | 20.0%
VicunaFFT 4.27 2.57 3.67 2.77 6.67% | 13.3%
VicunaRST p

w−LoRA 4.53 3.90 4.03 3.17 13.3% | 10.0%

Table 5: Human evaluation results

models, GPT-4 shows the least performance, with
LoRA coming in second, having a 20% probabil-
ity of being rated as the worst. The FFT model
fares slightly better than the LoRA model. The
RSTp

w-LoRA model outperforms other neural sum-
marization systems across all metrics, and its aver-
age scores on some indicators approach the level of
human performance. Moreover, compared to other
neural summarization systems, the RSTp

w-LoRA
model is more likely to be recognized for produc-
ing the highest quality summaries and less likely
to be considered as generating the poorest quality
summaries.

GPT-4 Evaluation Inspired by Liu et al. (2023b),
we engage GPT-4 to assess our candidate models
using the same guidelines as our human evalua-
tors. To ensure experimental consistency, all exper-
iments use the identical hyper-parameters settings
detailed in Appendix D. To avoid potential biases
from previous interactions, we reset the conversa-
tion history prior to each query and abstain from
making any further modifications. In our initial in-
vestigation, we aim to explore the extent to which
GPT-4 evaluations5 generally concur with human
assessments in terms of both relative ranking and
average scores within the same subset of 10 sam-
ples delineated in human evaluations. We then
extend the evaluation to include all samples from
the test sets6.

The outcomes for these tests are shown in Table
6, as well as in Table 9, 10 in Appendix H. We find
that in GPT-4 evaluation, GPT-4 tends to assign the
lowest scores to its own answers compared to those
generated by other fine-tuned models. Summaries
written by humans receive the highest scores and
are generally regarded as the highest quality. In
line with human evaluation findings, GPT-4 also
recognizes LoRA as yielding inferior outcomes.
In addition, the RSTp

w-LoRA model scored higher

5Utilizing the same iteration of the GPT-4 model as em-
ployed in prior summary generation tasks.

6Prompt can be found in Appendix E.3.

Candidate R I C F Best |Worst
Human 4.89 4.76 4.67 4.72 96.8% | 0.0%
GPT-4ICL 4.02 3.81 4.47 3.12 0.0% | 35.3%
VicunaLoRA 4.20 3.82 4.43 3.37 0.0% | 29.5%
VicunaFFT 4.31 4.04 4.49 3.55 0.0% | 25.5%
VicunaRST p

w−LoRA 4.46 4.44 4.60 4.12 3.2% | 9.7%

Table 6: GPT-4 evaluation results on BC dataset

than both LoRA and FFT. We further discuss the
error analysis (case study) in Appendix I.

6 Conclusion

We present RST-LoRA, a novel discourse-aware
LoRA model tailored for long document sum-
marization. Our approach primarily incorporates
rhetorical knowledge into the LoRA training pro-
cess by transforming RST structures into RST dis-
tributions. We develop four RST-LoRA variants,
examining the impact of uncertainty in RST rela-
tional connections and discourse labels on overall
performance. Empirical evidence from our stud-
ies demonstrates a consistent improvement in the
performance of the standard LoRA model. By fine-
tuning less than 0.5% of the LLMs parameters,
our best RST-LoRA variant not only surpasses the
performance of LoRA and FFT but also exceeds
previous state-of-the-art methods. Furthermore,
our analysis underscores the efficacy of our ap-
proach in leveraging discourse knowledge, which
strengthens LoRA’s capabilities in producing more
factually consistent and better-quality summaries.

7 Ethics Considerations

The datasets employed in our research are acces-
sible to the public. Throughout the stages of data
processing, experimental analysis, and model train-
ing/evaluation, our approach detects no violations
of privacy. Regarding human evaluation, all par-
ticipants engage voluntarily and are appropriately
compensated. Additionally, we guarantee a safe
and supportive setting during the evaluation period,
following the ACM Code of Ethics in our experi-
mentation and analysis.

8 Limitations

Data All long document summarization datasets
we use are open-source and peer-reviewed datasets.
While these data sources are of high quality, in-
herent bias may exist within them. Exploring bias
falls outside the scope of our study. In addition,
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the datasets we selected are from different fields
(books, scientific publications, legal documents),
and the heterogeneity between datasets is relatively
high, but it is important to note that these data only
represent a small fraction of real-world data and do
not cover all possible long document summariza-
tion fields. Furthermore, although the RST parser
we chose is multilingual, the exclusivity of English
in our dataset can be seen as a limitation because
it does not contain data for other languages, and
we have not discussed RST-LoRA for non-English
languages.

Model In our experiments, we employ two state-
of-the-art long document pre-trained LLMs: Long-
former and Vicuna. These models may carry bi-
ases from their pre-training phase. However, eval-
uating the extent of bias in these models has not
been conducted, as it also lies outside the scope
of this study. Additionally, the substantial cost
of requesting GPT-4 (non-open source) API for
generating summaries poses considerable financial
barriers. We acknowledge this as a limitation and
designate it as a potential space to explore in our
future research. Furthermore, in our experiments,
we compare the performance differences of dif-
ferent scales of LLMs (Longformer and Vicuna)
and demonstrate that RST-LoRA can improve the
summarization performance of LLMs at different
scales. However, the number of potential LLMs is
infinite, we have not tested on other models, and
we leave the exploration of how the performance of
RST-LoRA changes with different sizes of LLMs
to future research.

Automated Evaluation Although we apply a
range of widely used automated evaluation met-
rics in our experiments to systematically assess
candidate models from multiple perspectives on
the test set. While these metrics provide a multi-
faceted view of model performance, we are aware
of their inherent limitations and the possibility that
they may not fully encapsulate the models’ com-
prehensive performance.

Parser In line with prior research integrating dis-
course structures into summarization models, our
work also needs an RST parser. In addition, manu-
ally annotated RST trees are extremely costly, we
are unable to compare the summarization differ-
ence between RST parser output against human-
annotated RST trees. Furthermore, incorporating
RST into the LoRA training process does not signif-

icantly increase the amount of calculation or time
complexity (just one more element-wise multipli-
cation operation), but using a parser to generate
the discourse structure still requires corresponding
calculations. Our paper argues that discourse struc-
ture aids in summarization, which is orthogonal to
the use of a specific discourse parser. We recog-
nize that similar or greater improvements would be
observed when employing a better parser.

Generalizability Since the main research scope
of this paper is long document summarization, we
have not delved deeply into applying our proposed
method to other NLP tasks, such as machine trans-
lation, question answering, or text simplification.
Although our method could potentially be adapted
to other NLP tasks involving LLMs without consid-
erable modification, this aspect remains unexplored
and is earmarked for subsequent research studies.

Human Assessment The sample size for human
evaluation in our study is constrained due to the
nature of the extensive length of the original doc-
uments, which often extends over multiple pages.
Scaling up the evaluation process through meth-
ods such as crowd-sourcing becomes challenging.
Therefore, similar to many preceding studies (Atri
et al., 2023; Tang et al., 2023; Phang et al., 2023),
we evaluate only a set of 10 documents, which may
not provide a fully representative view of the entire
dataset. All human evaluators we recruit are Mas-
ter’s or Ph.D. students, not all are experts in the
field of text summarization domain, nor are they
necessarily proficient in reading across diverse do-
mains. As such, their assessments, while valuable,
should not be the sole basis for judgment.
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RST type RST label

Temporal Asynchronous, Synchronous
Contingency Cause, Condition
Comparison Contrast, Concession
Expansion Explanation, Elaboration, Conjunction

Table 7: RST relation category

A RST Relation Category

B Datasets Statistics

Table 8 shows the statistics of the datasets. Within
the table, Coverage measures how much of the sum-
mary directly utilizes tokens from the source ma-
terial. A higher coverage score suggests a greater
proportion of the summary’s tokens originate from
the source document. Density calculates the aver-
age length of source text segments each summary
token is associated with. A higher density score
could imply the inclusion of longer continuous text
segments in the summary (Segarra Soriano et al.,
2022). The compression ratio represents the rela-
tionship between the source document’s length and
that of the summary. A lower compression ratio
indicates a summary that is comparatively more
concise.

C Automatic Evaluation Metrics

• ROUGE (Lin, 2004) evaluates the overlap of
n-grams between the machine-generated sum-
maries and human-crafted references. Our anal-
ysis includes the F1 scores for Rouge-1 (R1),
Rouge-2 (R2), Rouge-L (RL), and Rouge-Lsum
(RLsum).

• BERTScore (Zhang et al., 2020) uses BERT em-
beddings to analyze semantic similarity.

• METEOR (Banerjee and Lavie, 2005) computes
the harmonic mean of uni-gram precision and
recall, placing additional emphasis on recall for
a balanced assessment.

• sacreBLEU (Post, 2018) measures linguistic
alignment and the fluidity between generated and
reference summaries.

• NIST (Lin and Hovy, 2003) appraises the n-
grams’ informativeness by assigning weights
based on the novelty of information they contain,
as determined by their frequency in the corpus.

D Hyper-parameters Settings

All experiments are optimized using the Adam
(Kingma and Ba, 2015) optimizer (with β1 = 0.9,
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Dataset Training Validation Test Avg. Doc Tokens Avg. Summary Tokens Coverage Density Compression Ratio

Multi-LexSum 3177 454 908 75543.21 646.14 0.93 3.39 96.4
eLife 4346 241 241 10132.12 382.58 0.82 1.77 27.65

BookSum Chapter 9600 1431 1484 5339.62 505.42 0.78 1.69 15.97

Table 8: Datasets statistics

β2 = 0.999, ϵ = 10−9, and weight decay = 0.1) and
Adafactor (Shazeer and Stern, 2018), with a warm-
up ratio of 0.2. The initial learning rate is set to
5e-5, with a cosine learning rate schedule.

Additionally, within the LoRA strategy, we set
a constant rank r to 8, the scaling α to 32, and
the dropout rate to 0.1. During training, we save
checkpoints that achieve the highest Rouge-2 F1
score on the validation set as the final model. All
experiments are run for 50 epochs with a batch
size of 16, and early stopping is implemented to
prevent over-fitting (all models converged before
50 epochs). For model inference, we employ a
beam search of size 4 with a length penalty of 3.0
and set a no-repeat n-gram size of 3.

For GPT-47, we employ GPT-4 Turbo version
(gpt-4-1106-preview), which is, at the time of exper-
imentation (between 10 October 2023 and 15 De-
cember 2023), the best-performing publicly acces-
sible version provided by OpenAI. For the hyper-
parameters setting, we set temperature=1, top_p=1,
frequency penalty=0.2, and presence penalty=0.2.
The remaining hyper-parameters are set to their
default values as recommended by OpenAI.

E GPT-4 Prompts

E.1 Prompt for Zero-shot Summaries
Generation

Document: {Document}
Summary:

E.2 Prompt for In-context Summaries
Generation

Document: {Document}
Summary: {Summary}

Document: {Document}
Summary: {Summary}

Document: {Document}
Summary:

7https://platform.openai.com/docs/models/

E.3 Prompt for Summaries Evaluation

Source Document: {Document}
Summary of Candidate1: {Candidate1}
Summary of Candidate2: {Candidate2}
Summary of Candidate3: {Candidate3}
Summary of Candidate4: {Candidate4}
Summary of Candidate5: {Candidate5}

Note: The summaries are presented in
order, with their respective candidate numbers
from 1 to 5.

Please review the following evaluation
guidelines to assess the quality of the above
five candidate summaries, and rank them from
best to worst:

Evaluation Guidelines: {Guidelines}

Please use the following format for your
output (scores ONLY):

Relevance of Candidate1:
Informativeness of Candidate1:
Conciseness of Candidate1:
Faithfulness of Candidate1:
Relevance of Candidate2:
Informativeness of Candidate2:
Conciseness of Candidate2:
Faithfulness of Candidate2:
Relevance of Candidate3:
Informativeness of Candidate3:
Conciseness of Candidate3:
Faithfulness of Candidate3:
Relevance of Candidate4:
Informativeness of Candidate4:
Conciseness of Candidate4:
Faithfulness of Candidate4:
Relevance of Candidate5:
Informativeness of Candidate5:
Conciseness of Candidate5:
Faithfulness of Candidate5:
Ranking (using candidate number):
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Figure 6: Impact of different r on eLife dataset
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Figure 7: Impact of different r on BC dataset

G Human Evaluation Guideline

Here, we offer a more detailed explanation of the
metrics and evaluation criteria used for our human
evaluation process.

Prerequisites: Eligibility for this evaluation re-
quires simultaneous fulfillment of two conditions:
(1) being a master’s or Ph.D. student in Com-
puter Science or Computational Linguistics, and (2)
demonstrating greater than or equal to C2 English
proficiency8. If you do not meet both criteria, we
respectfully ask you to refrain from participating
in this task. Those who qualify are encouraged to
proceed and follow the instructions below.

8https://en.wikipedia.org/wiki/C2_Proficiency

We invite you to carefully review the follow-
ing long document along with five candidate
summaries. After a thorough examination of
each summary, please rate them based on the
following four criteria, using a Likert scale
from 1 (worst) to 5 (best), where a higher score
denotes better quality:
• Relevance: This metric assesses the extent

to which the summary content accurately
reflects the source text. A relevant sum-
mary should encompass topics pertinent to
the source document.

• Informativeness: This metric assesses the
extent to which the summary provides a com-
prehensive understanding of the key points
and essential details from the source text.
An informative summary should encapsulate
the core ideas, facilitating a clear and precise
comprehension of the main arguments and
findings of the source document.

• Conciseness: This metric assesses the ex-
tent to which the summary excludes less im-
portant information from the source text. A
concise summary should effectively elimi-
nate non-essential content from the source
document during the generation process.

• Faithfulness: This metric assesses the ex-
tent to which the candidate is incorrect in
that it contradicts the information from the
source document. A faithful summary ad-
heres strictly to the information provided in
the source document, avoiding the inclusion
of unverified facts.
Next, you are also expected to rank the can-

didates from best to worst based on overall
quality.
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H GPT-4 Evaluation Results

Candidate R I C F Best |Worst
Human 4.67 4.70 4.52 4.83 94.2% | 0.0%
GPT-4ICL 4.43 3.88 3.62 3.19 0.0% | 43.3%
VicunaLoRA 4.52 4.03 4.20 3.40 0.0% | 28.4%
VicunaFFT 4.52 4.06 4.28 3.58 0.0% | 21.6%
VicunaRST p

w−LoRA 4.57 4.33 4.31 4.22 5.8% | 6.7%

Table 9: GPT-4 evaluation results on ML dataset

Candidate R I C F Best |Worst
Human 4.80 4.81 4.72 4.78 96.3% | 0.0%
GPT-4ICL 4.22 3.91 4.35 3.45 0.0% | 45.2%
VicunaLoRA 4.47 4.12 4.41 3.58 0.0% | 30.1%
VicunaFFT 4.59 4.23 4.47 3.82 0.2% | 16.3%
VicunaRST p

w−LoRA 4.62 4.49 4.63 4.39 3.5% | 8.4%

Table 10: GPT-4 evaluation results on eLife dataset

I Error Analysis

The passage discusses a comparison between RST-
LoRA and GPT-4 in generating summaries using
two samples from the eLife test set, as shown in
Tables 11 and 12. It is observed that the summaries
generated by GPT-4 tend to be overly general, lack-
ing relevance and informativeness to the source
document, and often include the model’s own judg-
ments or inferences. For instance, in the example
provided, GPT-4 deviates from the main discussion
topic and fails to align the generated summary with
factual consistency from the source document. This
comparison also aligns with the findings of Atri
et al. (2023) suggesting that general-purpose LLMs
like GPT-4, without task-specific fine-tuning, still
tend to focus more on language fluency but strug-
gle to maintain fidelity to factual information and
consistency with the source document.
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Model Output

Target-1 Imagine a gymnastics competition in which participants take turns to cartwheel and somersault
across the floor. The routines on display comprise sequences of precisely timed movements
learned through practice. This is also true for many of the actions we perform every day, such as
reaching for a cup of coffee. A region of the brain called the cerebellum helps us learn sequences
of movements. But how does it do this? To find out, Khilkevich et al. came up with a new
version of an old experiment. Rabbits were first trained to blink their eye in response to a specific
external cue. This type of learning, called associative learning, has been shown before in the
cerebellum. But Khilkevich et al. wondered whether the cerebellum could also use internal
feedback signals from the eye-blink as a cue to learn the next movement. If so, this might explain
how the cerebellum can chain movements together in a sequence. As predicted, Khilkevich et al.
found that rabbits could learn to blink their eye in response to an initial signal, and then blink
again in response to the first blink. Control experiments confirmed that the second eye-blink was
coupled to the first, and not to the original cue. Moreover, on many trials, the rabbits showed
a third and even fourth eye-blink. This is because feedback signals from the first, second, or
third blink were the same. Thus, the feedback signals from the first blink triggered the second
blink, feedback from the second triggered the third, and so forth. Rabbits could also learn to
use a blink of the left eye as a cue for a blink of the right eye. Similar patterns of neuronal
activity accompanied each blink, suggesting that the same mechanism generated them all. The
cerebellum can thus use feedback from one movement as a cue to learn the proper timing of the
next movement in a sequence. A key question is whether this mechanism of sequence learning
extends beyond movement. The cerebellum has extensive connections to the brain’s outer layer,
the cortex, including many areas involved in cognition. Future experiments should test whether
the cerebellum might help guide sequences of cortical activity during cognitive tasks.

GPT-4ICL In a recent study, researchers explored the idea of using rabbits to understand human movement,
focusing on how the cerebellum, a brain part, might be involved. They looked at how rabbits
respond to various light and sound cues, seemingly to understand if these animals could learn
complex dance-like moves. The study, which seemed to have a loose structure, suggested that
the rabbits’ performance in these tasks could somehow be linked to human learning of sequences,
like playing a musical instrument or participating in sports. However, the connection between
the rabbits’ activities and human motor skills was not established, leaving the real impact of the
study on human neuroscience quite ambiguous. Additionally, the research didn’t delve deeply
into the differences between rabbit and human brains, making its applicability to human subjects
questionable.

VicunaRST
p
w−LoRA The cerebellum’s role in movement and learning was explored in a study by Khilkevich et

al., where rabbits were trained to blink in response to cues. This research investigated the
cerebellum’s capacity for associative learning and its ability to use internal feedback from one
movement as a cue for the next. Findings revealed that rabbits could learn sequential blinking,
with each blink triggering the subsequent one. This suggests that the cerebellum not only
coordinates simple movements but can also chain complex sequences of movements together. The
study provides insights into the cerebellum’s broader role in learning and cognition, particularly
in understanding how it processes and coordinates the timing of sequential movements.

Table 11: Comparison of target summary with the summary generated by RST-LoRA and GPT-4
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Model Output

Target-2 To grow and multiply, a living cell must take a variety of factors into account, such as its own
energy levels and the availability of nutrients. A protein called mTOR sits at the core of a
signaling pathway that integrates these and other sources of information. Problems with the
mTOR pathway contribute to several diseases including diabetes and cancer. The mTOR protein
occurs in two distinct protein complexes, called mTORC1 and mTORC2. These complexes
contain a mix of other proteins – known as accessory proteins. They also sense different cues and
act upon distinct targets in the cell. Recent research reported the structure of mTORC1, which
provided clues about how this complex works. Yet, much less was known about the mTORC2
complex. Stuttfeld, Aylett et al. have now used a technique called cryo-electron microscopy to
reveal the three-dimensional architecture of the human version of mTORC2. Comparing the new
mTORC2 structure to the existing one for mTORC1 showed that they have many features in
common but important differences too. The overall shape of both complexes is similar and each
complex contains two copies of mTOR arranged similarly. Also, the main accessory proteins
in each complex interact with almost the same parts of mTOR, but the accessory proteins in
mTORC2 are organized differently from those of mTORC1. The different accessory proteins
also have distinct shapes. These differences could help to explain why the complexes respond
to different cues and recognize different targets. These new findings provide an entry point for
further studies on how mTORC2 works in cells. The next step is to get a higher-resolution image
of the structure of this complex to see the finer details of all the components. This may in the
future help scientists to develop drugs that inhibit mTORC2 to treat cancer and other diseases.

GPT-4ICL In this paper, researchers delve into the intriguing world of cellular biology, focusing on a protein
known as the mammalian target of rapamycin (mTOR). This protein, often likened to a cellular
conductor, orchestrates a symphony of biological processes, guiding cells through complex
growth and metabolic pathways. The study particularly highlights the dual roles of mTOR in
different cellular complexes, drawing attention to its versatile nature. Interestingly, the paper
touches upon the enigmatic behavior of mTOR in various diseases, hinting at its Jekyll and Hyde
personality in cellular functioning. This study provides a glimpse into the intricate ballet of
molecular interactions, painting a picture of mTOR as a pivotal figure in the dance of life.

VicunaRST
p
w−LoRA The cells of animals, yeast, and other eukaryotes all contain a wide range of proteins that carry

out different roles. A protein called mTOR sits at the core of this protein, where one letter of the
protein sits at one end and the other at the other. The number of mRNAs is so small that it is
thought that mTOR is only recently shown to be present in living cells. However, mTOR has
only been studied in the laboratory in the form of single-celled structures called human cells.
This has made it impractical for researchers to dissect the structure of the mTOR protein and
its corresponding protein. Now, Wassagano et al. have used a technique called cryo-electron
microscopy to reveal the three-dimensional architecture of mTOR proteins. The experiments
reveal that this complex contains a small region called the ‘active’ site that is responsible for
producing mTOR. This complex is also involved in the release of energy from blood sugar in
cells and is also responsible for many of the processes that occur in the pancreas and immune
responses in cells. In particular, the active state of the innermost mTOR complex is activated
when the cell is starved for nutrients. Further experiments showed that the active site is involved
in both the production and the activity of a protein called sIN1. Wassagoni et al al.’s findings
show that both mTOR and SIN1 have a similar active site to each other in human cancers. These
findings shed new light on the role of how mTOR interacts with other proteins in human cells,
which may help to identify new targets for developing treatments against these kinds of cancer.

Table 12: Comparison of target summary with the summary generated by RST-LoRA and GPT-4
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