
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 2112–2121

June 16-21, 2024 ©2024 Association for Computational Linguistics

Quantum-inspired Language Model with Lindblad Master Equation and
Interference Measurement for Sentiment Analysis

Kehuan Yan, Peichao Lai, Yilei Wang * B

College of Computer and Data Science, Fuzhou University, Fuzhou, China
yilei@fzu.edu.cn

Abstract

Quantum-inspired models have demonstrated
superior performance in many downstream lan-
guage tasks, such as question answering and
sentiment analysis. However, recent models
primarily focus on embedding and measure-
ment operations, overlooking the significance
of the quantum evolution process. In this work,
we present a novel quantum-inspired neural
network, LI-QiLM, which integrates the Lind-
blad Master Equation (LME) to model the evo-
lution process and the interferometry to the
measurement process, providing more phys-
ical meaning to strengthen the interpretability.
We conduct comprehensive experiments on six
sentiment analysis datasets. Compared to the
traditional neural networks, transformer-based
pre-trained models and quantum-inspired mod-
els, such as CICWE-QNN and ComplexQNN,
the proposed method demonstrates superior per-
formance in accuracy and F1-score on six com-
monly used datasets for sentiment analysis. Ad-
ditional ablation tests verify the effectiveness
of LME and interferometry.

1 Introduction

The rapid advancement of deep learning has sig-
nificantly boosted the performance of Natural Lan-
guage Processing (NLP) tasks. However, a key
limitation of deep learning models is their lack
of interpretability (Wei et al., 2022). Recently,
there has been a promising trend toward harnessing
quantum theory to augment expressive capabilities
and enhance interpretability (Li et al., 2019). The
similarities between quantum systems and natu-
ral languages have been widely explored (Zhang
et al., 2018b). In linguistics, a word is given dif-
ferent meanings. Such polysemy phenomenon is
analogously compared to the superposition state in
quantum mechanics. In this sense, sentences are
analogous to a multiparticle system. Besides, as
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particles in quantum mechanics collapse to defined
states upon observation, language users assign spe-
cific meanings to words or sentences based on
contexts. Meanwhile, studies (Bruza et al., 2015;
Busemeyer and Wang, 2015) conducted within the
realm of cognitive science have demonstrated that
human cognition, encompassing sentiment analysis
tasks in NLP, often exhibit quantum-like behaviors,
which can be more precisely elucidated through
quantum theory.

Building upon these foundational ideas,
Quantum-inspired Language Models (QiLMs)
are actively explored and designed to augment
the performance of traditional language models
(Zhang et al., 2018a; Li et al., 2019; Lai et al.,
2023). A quantum-inspired multimodal sentiment
analysis framework named QMSA (Zhang et al.,
2018c) applied interference experiments to
sentiment analysis by comparing emotion labels
to photons and data types to interference slits.
Motivated by the complex word embedding, an
embedding method called ICWE (Shi et al., 2023)
is proposed to use the amplitude and phase of
quantum as the real and imaginary part of the
word embedding respectively, which improves
the feature extraction ability of the model. A
quantum-inspired multimodal fusion framework
(Li et al., 2021) converts real-valued inputs of
different modalities into complex-valued pure
quantum states and induces the different modalities
to interact in a non-separable way for encoding
cross-modal information. Their study showcased
the superior performance of this novel approach
compared to conventional transformer-based
models (Kenton and Toutanova, 2019; Liu et al.,
2019). This groundbreaking fusion of domains is
expected to make significant contributions to the
evolution of quantum machine learning and play a
pivotal role in practical use.

The Lindblad Master Equation (LME) (Man-
zano, 2020), a crucial instrument in the exploration
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of open quantum systems, remains neglected by
contemporary models. It stands as an indispensable
complement to the Schrödinger equation, providing
a highly versatile framework for depicting Marko-
vian dynamics in quantum systems. Specifically,
this equation provides a comprehensive portrayal
of the temporal evolution of the density matrix, in-
corporating the interactions with the surrounding
environment. Taking advantage of LME, a more
appropriate density matrix representation can be
learned for language sentences in an end-to-end
manner.

Simultaneously, current models usually use pro-
jection measurement, which demands an extensive
amount of operations. This is because the proba-
bility distribution on each basis is derived through
statistical averaging, leading to an augmented time
expenditure and uncertainty. In contrast, interfer-
ometry solely necessitates the utilization of an in-
terferometric operator to imitate the collapse pro-
cedure of the superposition state. Consequently, it
swiftly attains dependable outcomes with enhanced
precision.

In this work, we propose a quantum-inspired
language model with Lindblad Master Equation
and interferometry (LI-QiLM) to introduce a ro-
bust quantum evolution process, a more accurate
measurement process, and an improved expressive
capacity through the inclusion of additional learn-
able parameters. Our contributions are:

• We propose the LI-QiLM and detail its pivotal
components. Chief among these is the LME
module, which emphasizes the quantum evo-
lution process, enhancing both performance
and transparency. Additionally, the IM mod-
ule mitigates uncertainties inherent in quan-
tum systems, bolstering the dependability of
model outputs.

• We validate the effectiveness of LI-QiLM on
six sentiment analysis datasets and conduct a
comprehensive comparison with seven repre-
sentative models. The results show that the
LI-QiLM has 15% improved accuracy com-
pared with traditional models.

We organize the paper as follows. Section 2
presents the fundamentals of quantum theory. Sec-
tion 3 provides an overview of related works. In
Section 4, we introduce the proposed model. Sec-
tion 5 details the experiments carried out. In Sec-
tion 6, we draw our conclusions. Additionally,

Section 7 discusses the limitations of our work.

2 Preliminary

Quantum computing represents a revolutionary
computing paradigm that follows the laws of quan-
tum mechanics to regulate quantum information
units to calculate. In the open quantum system, it is
imperative to employ the density matrix as a means
to accurately portray the system’s state. Delving
into the system’s evolutionary process necessitates
the utilization of the quantum master equation. Ul-
timately, precise quantum measurement techniques
allow us to obtain unequivocal results regarding the
system’s evolution. The specific process is shown
in Fig. 1.

2.1 Quantum State
In quantum mechanic, the basic state |ψ⟩, named
qubit, is denoted by the Dirac notation as,

|ψ⟩ = α|0⟩+ β|1⟩, (1)

where |·⟩ is the bra-ket notation. Note that |α|2 and
|β|2 represent the probability that the superposition
will be |0⟩ and |1⟩, respectively, and satisfy |α|2 +
|β|2 = 1.

2.2 Quantum Master Equation
Complex quantum systems defy description by a
single Dirac notation. In contrast, one can use
the density matrix representation to describe the
system by

ρ =

m∑

i=1

pi|ψi⟩⟨ψi|, (2)

where |ψi⟩ is the state of the subsystems.
In fact, real physical systems inevitably interact

with the surrounding environment. Thus, it is nec-
essary to consider the dissipation and decay. Lind-
blad Master Equation (LME) (Manzano, 2020) is
a common method to study the quantum evolution
versus time t, denoted by

ρ(t) = − i

ℏ
[H, ρ(t)]

+
∑

i

(
Liρ(t)L

†
i −

1

2

{
L†
iLi, ρ(t)

})
,

(3)

where {x, y} = xy + yx is the anticommuta-
tor, X† is the conjugate transpose of X , H is the
Hamiltonian of the system and Li is the opera-
tor describing the interaction between the system
and the environment. Specifically, the initial term
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Figure 1: The process of quantum computation.

corresponds to the Schrödinger equation, which
delineates the temporal evolution of a quantum sys-
tem within a sealed, isolated environment. The
second term describes the impact of the interaction
between the system and the environment. Such in-
teractions result in the dissipation of energy and the
degradation of information, causing the evolution
of the quantum system to become irreversible.

2.3 Quantum Measurement

Quantum measurement enables the state of a quan-
tum system to collapse from an uncertain superposi-
tion to a deterministic result. One commonly used
measurement is interferometry, which is used to ob-
serve the interaction of quantum states in different
paths or branches. For a particular interferometric
operator, the expected value can be expressed by

⟨ρ⟩ = Tr(ρH), (4)

where Tr means tracing the product of the density
matrix and the interferometer operator, i.e. the
sum of the diagonal elements of the matrix, and H
represents the interferometric operator.

3 Related Works

The development of quantum computing has been
ongoing since 1982 (Feynman, 1982). With the
surge in machine learning, the integration of ma-
chine learning and quantum theory has drawn
closer attention. A pivotal landmark in the field
of NLP was the introduction of the quantum lan-
guage model by Sordoni et al. (2013). (Sordoni
et al., 2013), which applied the probabilistic frame-
work of quantum theory to information retrieval
tasks. This model utilized the density matrix to
create a nuanced text representation, showing sub-
stantial gains in performance compared to the tra-
ditional bag-of-words models (Santner et al., 2003;
Spärck Jones, 2004).

Zhang et al. (2018). (Zhang et al., 2018a) intro-
duced the Neural Network Based Quantum-Like
Language Model (NNQLM), marking a notable ad-
vancement in the field. NNQLM pioneers a unique
strategy with the use of a tailored density matrix

that ingeniously captures the relationship between
questions and answers, significantly improving the
representation of sentence similarity. It is seam-
lessly integrated into a two-dimensional neural net-
work architecture designed for matching. Li et al.
(2018). (Li et al., 2018) noticed a striking parallel
between the way a word’s meaning is influenced
by its companions and the behavior patterns of mi-
croscopic particles. Drawing from this observation,
they proposed a complex embedding mixture net-
work (CE-Mix) that employs word embedding in
the complex domain. CE-Mix deduces the signif-
icance of phrases using the principle of quantum
interference. In evaluations, it surpassed the lead-
ing non-quantum models in sentence classification
tasks.

Shi et al. (2021). (Shi et al., 2023) intro-
duced the Convolutional Complex-Valued Neural
Network Based on Interpretable Complex-Valued
Word Embedding (CICWE-QNN). This model uti-
lizes the amplitude and phase of quantum to re-
spectively represent the real and imaginary parts
of word embeddings. This approach improves fea-
ture extraction capabilities while also guaranteeing
the model’s interpretability. Zhang et al. (2022).
(Zhang et al., 2022) proposed a complex-valued
neural network-based QLM (C-NNQLM), which
employs an end-to-end methodology for construct-
ing and refining density matrices in a differentiable
way. This approach facilitates the incorporation
of well-trained word vectors and supervised la-
bels. Furthermore, C-NNQLM incorporates com-
plex value word embedding, with its phase vec-
tor adeptly encoding the sequential or positional
information of words. Wei et al. (2023). (Lai
et al., 2023) presented the Quantum-Inspired Fully
Complex-Valued Neutral Network, ComplexQNN.
This model employs complex-value CNN through-
out the processing pipeline, aligning more closely
with quantum computing theory and offering the
potential for future acceleration on quantum com-
puters.

In sharp contrast to conventional neural net-
works, quantum-inspired models present the dis-
tinct advantage of offering explanations grounded
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Figure 2: The pipeline of LI-QiLM.

in physical significance. Furthermore, they exhibit
the unique capability to incorporate microscopic
particle phenomena into the model, which serves
to augment their learning capacity. However, the
quantum evolution process is rarely considered
in recent quantum-inspired models and projection
measurements require more actions to ascertain the
probability distribution. Therefore, in this work,
we focus on that and propose to use LME in the
learning process and interferometry in the measure-
ment process.

4 Method

Fig. 2 shows the proposed framework, which con-
sists of the alterations and operations performed on
the data at every stage of the process.

4.1 Preprocessing

The data preprocessing initializes with a series of
tasks such as case normalization, removal of invalid
tokens, and truncation. Following this, the data
is randomly divided into training and validation
subsets. Subsequently, we employ a pre-trained
transformer tokenizer to the sentences, thereby gen-
erating distributed representations for each word.
These representations are then utilized as input for
our model.

4.2 Embedding

In the embedding module, we process the dis-
tributed representation of each word by feeding
it into both a real embedding module and an imagi-
nary embedding module. These embedding mod-
ules collaborate to map vectors from the real num-
ber domain into a complex-valued Hilbert space,
enabling a more intricate and nuanced representa-
tion. This transformation makes the text informa-
tion more compatible with quantum computation.
In practice, the real and imaginary parts can encode
diverse information, like the amplitude and phase
of qubits, or the directionality of text sequences.

4.3 Projection

After embedding, each word is represented by a
pure state as Eq. 1 with multiple bases. During pro-
jection, we employ a trainable complex-valued vec-
tor to ascertain the weight parameters pi in Eq. 2
to obtain the density matrix that corresponds to
the input sentence. The initial setting assigns an
equal value to all words, signifying the weight as-
signed to each word within the sentence. As train-
ing progresses, words that are more representative
for sentiment analysis will receive higher weights,
reflecting their increased importance in the task.

4.4 Evolution

This step is crucial for simulating the quantum
system’s evolution and forms the backbone of LI-
QiLM. Fig. 3 shows the evolution process. We
follow a multi-layered strategy to process the den-
sity matrix. The dimensions of the input and output
of the overall evolution module will not be changed
after learning the features inside the sentence. At
the outset, we employ a two-layered GRU archi-
tecture to handle the density matrix. This enables
the capturing of long-range dependencies within
the text and helps to alleviate issues such as van-
ishing or exploding gradients that can occur dur-
ing backpropagation. In the subsequent round of
processing, we apply the LME as Eq. 3, which en-
capsulates the entanglement relationships between
contextual words and signifies the interference ef-
fects of other words in the vocabulary on the cur-
rent text, demonstrating the potential to help solve
natural language processing tasks. Additionally,
we construct a complex-valued inception module
(Szegedy et al., 2017) that encompasses convolu-
tion kernels of varying sizes and pooling operations.
This design aims to obtain a richer representation
during the evolution.

4.5 Measurement

Leveraging the wave-particle duality principle in-
herent in quantum mechanics, we utilize the in-
terference phenomenon among quantum states to
facilitate the collapse of the superposition state to-
ward the ground state. To observe the interplay
between quantum states traversing distinct paths
or branches, we employ the Hadamard Gate, as
delineated in Eq. 5, as the interferometric operator
in Eq. 4. This enables us to conduct interferometric
measurements on a designated portion of the den-
sity matrix, which subsequently undergoes splin-
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Figure 3: The evolution process.

Figure 4: The interference measurement process. The
dashed blue curve shows that the relative position of the
submatrix is constant before and after calculation. The
ground state matrix is finally composed of many ground
state submatrices, derived by the product of the different
parts of the density matrix and the Hadamard gate.

tering to yield the desired measurement outcome.
Fig. 4 shows the simplified interference measure-
ment process. Firstly, submatrices of the same size
as the interferometric operator are selected from
the density matrix. Subsequently, each of these sub-
matrices and the interferometric operator are cal-
culated using Eq. 4. The resulting calculations are
then placed back into their corresponding positions.
Once all submatrices have undergone this process,
the ground state matrix after the interferometry is
obtained. Subsequently, we compute the output by
passing the data through a fully connected layer
followed by the application of the softmax func-
tion. In text classification tasks, the output layer of
the fully connected layer is designed to have nodes
corresponding to the number of distinct category
labels.

Hadamard =
1√
2

[
1 1
1 −1

]
(5)

5 Experiments

5.1 Datasets

We have conducted a series of experiments across
five binary classification datasets, including Cus-
tomer Review (CR) (Hu and Liu, 2004), Opin-
ion polarity dataset (MPQA) (Wiebe et al., 2005),
Movie Review (MR) (Nivre et al., 2016), Sen-
tence Subjectivity (SUBJ) (Nivre et al., 2016), Stan-
ford Sentiment Treebank-2 (SST-2) (Socher et al.,
2013), and a multi-classification dataset named
Stanford Sentiment Treebank-5 (SST-5) (Socher
et al., 2013) for sentiment analysis. The dataset
statistic is shown in Table 1.

Table 1: Dataset statistics.

Dataset Train Test Total Labels Max Len

CR 2641 1134 3775 pos/neg 105
MPQA 7423 3183 10606 pos/neg 43
MR 7462 3200 10662 pos/neg 61
SUBJ 7000 3000 10000 subj/obj 121
SST-2 67349 1821 69170 pos/neg 56
SST-5 8544 2210 10754 five labels 56

5.2 Settings

5.2.1 Comparison Methods
We employ seven representative models, namely
TextCNN (Kim, 2014), Gate Recurrent Unit (GRU)
(Chung et al., 2014), Embeddings from Language
Models (ELMo) (Peters et al., 2018), Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Kenton and Toutanova, 2019), Ro-
bustly Optimized BERT Pretraining Approach
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(RoBERTa) (Liu et al., 2019), CICWE-QNN (Shi
et al., 2023) and ComplexQNN (Lai et al., 2023)
as the baselines in our experiments.

TextCNN is a convolutional model for text clas-
sification. In our experiments, We employ the most
effective pattern of the TextCNN, named CNN-non-
static, whose word vector matrix is initialized with
a pre-trained word vector file. GRU is a refined vari-
ant of the Recurrent Neural Network (RNN) archi-
tecture, characterized by its streamlined structure,
reduced parameter count, and accelerated training
efficiency, offering notable advantages over other
recurrent architectures.

ELMo is an innovative algorithm for generating
dynamic word vectors, which leverages a bidirec-
tional LSTM to encapsulate the nuanced and com-
plex characteristics of words within a language.
BERT uses a bidirectional Transformer encoder to
capture rich contextual information. RoBERTa, a
variation of BERT, fine-tunes key hyperparameters
to learn even more extensive language informa-
tion, resulting in superior performance compared
to BERT.

CICWE-QNN is a quantum-inspired model that
combines GRU and convolution layer, which fully
considers the text characteristics of the projection
matrix. ComplexQNN is a variation of Complex-
CNN (Trabelsi et al., 2018), which additionally
carries out word embedding and measurement op-
erations in the complex number domain.

5.2.2 Implementation Details
We conducted our experiments using the PyTorch
platform (Paszke et al., 2019) on an NVIDIA TI-
TAN Xp GPU. During training, we use the cross-
entropy loss function and employ the Adam opti-
mizer. In the complex-valued inception module, we
employed different kernel sizes of 1, 3 and 5. The
specific parameters used in different models and
the relevant computational budget are displayed
in Table 2. We directly choose the experimental
results of CE-Mix shown in Ref. (Shi et al., 2023).

For text encoding, we used a common method
RoBERTa, which consistently demonstrated supe-
rior performance in NLP tasks. A grid search
is conducted using batch size in {8, 16, 32, 64},
learning rate in {10−4, 10−5, 10−6}, dropout rate
in {0.1, 0.15, 0.2, 0.25}. Regarding the indispens-
able parameters H and Li of Eq. 3, we adopt the
method of random initialization. During model
verification, we employed accuracy and F1-score
as evaluation metrics to gauge the performance of

these models.

5.3 Results
We conducted a thorough comparison between
LI-QiLM and various models, including classical
models, pre-trained models, and other quantum-
inspired models. The results from Table 3 for ac-
curacy and Table 4 for F1-score are the best of 10
epochs, which demonstrate that our model consis-
tently outperforms all datasets used.

The performance improvements when contrast-
ing LI-QiLM with CNN-non-static under the accu-
racy metric are significant: CR (+15.18%), MPQA
(+15.33%), MR (+13.72%), SUBJ (+6.41%),
SST-2 (+12.31%), SST-5 (+19.14%), average
improvement (+13.68%). Comparisons of LI-
QiLM and CNN-non-static for the F1-score met-
ric are: CR (+16.48%), MPQA (+22.69%), MR
(+13.75%), SUBJ (+6.4%), SST-2 (+12.52%), SST-
5 (+19.71%), with an average improvement of
(+15.26%). These notable advancements primar-
ily derive from the underlying principles of quan-
tum theory, which embrace the intricate complex-
valued word embedding, quantum evolution, and
interferometry.

Despite the benchmark set by pre-trained models
in the NLP domain, LI-QiLM consistently achieves
superior results across a range of tasks. Take
RoBERTa for example, LI-QiLM exhibits an ad-
vantage under the accuracy metric in CR (+0.88%),
MPQA (+0.79%), MR (+0.66%), SUBJ (+0.31%),
SST-2 (+0.27%), SST-5 (+0.34%), with an aver-
age improvement of (+0.54%). Notably, LI-QiLM
holds a comprehensive advantage on all sentiment
analysis datasets compared to CICWE-QNN and
ComplexQNN.

5.4 Ablation Test
We conduct ablation analysis experiments to inves-
tigate the impact of the core modules, including the
complex-valued inception module, LME, interfer-
ence measurement module and GRU. The results
are shown in Table 5.

The removal of the complex inception module
with diverse convolution kernels diminishes the ca-
pacity to capture global information, which can
be inferred from the role of the inception mod-
ule according to Szegedy et al. (2017). and Heb-
bian learning rule (Szegedy et al., 2017; Hebb,
2005). Dropped results in the second row of Ta-
ble 5 demonstrate the crucial role of this module in
enhancing sentiment classification ability.
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Table 2: Model parameter settings.

LI-QiLM ComplexQNN RoBERTa BERT ELMo GRU CNN-non-static

Max epochs 10 10 10 10 10 10 10
Batch size 8 32 32 32 32 32 32
Embedding dim 768 128 768 768 1024 128 64
Output dim 128 128 128 128 128 64 64
Learning rate 8e-6 1e-3 1e-5 1e-5 1e-3 1e-3 1e-3
Dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Random seed 42 42 42 42 42 42 42
Params 8.31M 8.28M 0.59M 0.59M 0.59M 1.78M 0.05M
FLOPs 77.54G 76.42G 18.87M 18.87M 246.22M 342.29M 7.21M

Table 3: Experimental results of eight models on six sen-
timent classification datasets evaluated with accuracy.

CR MPQA MR SUBJ SST-2 SST-5

CNN-non-static 78.28 76.34 75.62 90.66 82.11 35.69
GRU 79.96 84.82 74.90 92.16 83.60 37.60

ELMo 83.31 90.16 81.9 93.6 88.41 47.41
BERT 89.58 91.20 86.75 96.60 93.00 49.13

RoBERTa 92.58 90.88 88.68 96.76 94.15 54.49
CICWE-QNN∆ 83.3 87.2 78.3 93.2 85 -
ComplexQNN 91.87 90.63 87.40 96.57 92.54 50.40

LI-QiLM(Ours) 93.46 91.67 89.34 97.07 94.42 54.83

The best results of each dataset are highlighted in bold.
The signal ∆ denotes that the data is directly chosen from
the model author’s experimental results.

Table 4: Experimental results of eight models on six sen-
timent classification datasets evaluated with F1-score.

CR MPQA MR SUBJ SST-2 SST-5

CNN-non-static 76.39 67.53 75.59 90.66 81.89 33.96
GRU 78.15 81.24 74.89 92.16 83.54 35.99

ELMo 82.14 87.98 81.76 93.59 88.40 44.41
BERT 88.95 89.69 86.74 96.59 92.99 48.48

RoBERTa 91.95 89.35 88.68 96.76 94.14 52.58
CICWE-QNN∆ 86.7 78.2 76.1 92 83.6 -
ComplexQNN 91.14 88.86 87.39 96.57 92.53 49.51

LI-QiLM(Ours) 92.87 90.22 89.34 97.07 94.42 53.67

The best results of each dataset are highlighted in bold.
The signal ∆ denotes that the data is directly chosen from
the model author’s experimental results.

Removing the LME module may lead to a de-
cline in its ability to understand polysemous groups.
It can be seen from Fig. 5 that for the same sen-
tence, LI-QiLM and other models give completely
opposite emotional judgments on the meaning of
the sentence, which shows that other models do
not fully understand the important phrases in the
sentence that affect emotions.

When excluding the GRU module, the model
ignores taking the positional relationships of words
into account, potentially leading to inaccuracies
in word order judgments. Besides, the removal
of IM module also results in a slight decline in
performance. Further, the performance drops dra-

matically when we remove all four modules. These
suggest that each of these four design elements
plays a crucial role in shaping the performance.

Although we chose the optimal value of 10
epochs LI-QiLM runs on the MR, the performance
of the IM module remained less than satisfactory.
This might be due to certain perturbations that were
unavoidably introduced throughout the evolution
of the density matrix, subsequently impacting the
precision of measurements in an adverse manner.

5.5 Case Study
We provide a qualitative analysis of LI-QiLM on
the SST-5. Fig. 5 shows the sentiment polarities
and probabilities of the ground-truth label predicted
by different models. We can see that LI-QiLM
gives the correct polarities while both RoBERTa
and GRU give wrong predictions in some cases.

Take the first sentence as an example, it is diffi-
cult to infer the sentiment polarities for its mislead-
ing words “entertained” and the multiple-meaning
phrase “put off”, considering these two pieces of in-
formation, LI-QiLM can still give the correct label
“negative”, while both RoBERTa and GRU even
give the opposite answer. Additionally, the GRU
exhibits almost 100% confidence in the answers it
identifies, so the probability that the label should
be correct is very low. As the sentence example 1
in Fig. 5 shows, it has a value of only 9.2× 10−6.
This justifies the effectiveness of the proposed mod-
ule’s ability to capture the context in sentences and
the interaction with the surrounding environment.

6 Conclusions

In this study, we propose LI-QiLM, a quantum-
inspired neural network, built on quantum evolu-
tion and interferometry. We have provided detailed
principles, highlighting key implementation mod-
ules, including the complex-valued inception mod-
ule, LME module and interferometry module. Fur-
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Table 5: Ablation results evaluated with accuracy and f1-socre.

ACCURACY

Model / Dataset CR MPQA MR SUBJ SST-2 SST-5

LI-QiLM 93.46 91.67 89.34 97.07 94.42 54.83
w/o Complex Inception 92.49(-0.97%) 90.73(-0.94%) 88.46(-0.88%) 96.4(-0.67%) 94.15(-0.27%) 51.31(-3.52%)
w/o Linblad Master Equation 92.67(-0.79%) 90.7(-0.97%) 89.03(-0.31%) 96.73(-0.34%) 93.92(-0.50%) 53.04(-1.79%)
w/o Interference Measurement 93.38(-0.08%) 91.45(-0.22%) 89.96(+0.62%) 96.90(-0.17%) 94.38(-0.04%) 54.04(-0.79%)
w/o GRU 92.93(-0.53%) 91.2(-0.47%) 89.06(-0.28%) 96.13(-0.94%) 94.15(-0.27%) 52.50(-2.33%)
w/o All 91.34(-2.12%) 90.32(-1.35%) 86.96(-2.38%) 95.33(-1.74%) 91.74(-2.68%) 44.95(-9.88%)

F1-SCORE

Model / Dataset CR MPQA MR SUBJ SST-2 SST-5

LI-QiLM 92.87 90.22 89.34 97.06 94.41 53.67
w/o Complex Inception 91.89(-0.98) 89.09(-1.13) 88.44(-0.9) 96.39(-0.67) 94.14(-0.27) 50.05(-3.62)
w/o Linblad Master Equation 92.12(-0.75) 89.23(-0.99) 89.02(-0.32) 96.73(-0.33) 93.91(-0.50) 49.44(-4.23)
w/o Interference Measurement 92.80(-0.07) 89.85(-0.37) 89.96(+0.62) 96.89(-0.17) 94.37(-0.04) 51.04(-2.63)
w/o GRU 92.32(-0.55) 89.78(-0.44) 89.06(-0.28) 96.13(-0.93) 94.14(-0.27) 48.15(-5.53)
w/o All 90.93(-1.94) 88.39(-1.83) 86.96(-2.38) 95.34(-1.72) 91.73(-2.68) 43.18(-10.49)

The best score of each dataset is in bold.

Figure 5: Examples from the SST-5 with their polarities predicted by different models(i.e., LI-QiLM, RoBERTa and
GRU). The green background denotes that the result is correct while the red background means an error.

thermore, we conducted evaluations of LI-QiLM
on six varied datasets and the proposed model con-
sistently outperformed the existing popular meth-
ods. Finally, ablation tests were conducted to ap-
praise the effectiveness of the key modules.

In the future, we will aim to augment the ca-
pacity of the model to extract profound linguistic
insights by integrating dynamic word embedding.
Furthermore, few of the current QiLMs have quan-
titatively evaluated the effectiveness of the quan-
tum concepts employed within them. Therefore,
greater efforts must be directed towards assessing
the efficacy of various components within QiLMs.
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7 Limitations

Compared to the traditional neural networks,
transformer-based pre-trained models, and other

quantum-inspired models, LI-QiLM boasts supe-
rior performance and uses formulas and methods
that are more consistent with quantum theory to
deal with sentiment analysis tasks with quantum-
like behavior, which makes "black box" neural net-
work models explainable by quantum theory, thus
providing a new possible way to enhance the inter-
pretability that aims at revealing the actual working
principles. However, we are encountering some ob-
stacles that need to be addressed. Firstly, LI-QiLM
utilizes traditional neural networks to simulate the
process of quantum computing, which necessitates
much more parameters. Meanwhile, high dimen-
sional matrix calculation caused by density matrix
leads to higher floating point operations (FLOPs).
The specific data are shown in the last two lines
of Table 2. Secondly, utilizing quantum comput-
ers is an expensive proposition, which leads to the
uncertainty surrounding the feasibility of running
quantum-inspired models on quantum computers.
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