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Abstract

Modern Neural Machine Translation systems
exhibit strong performance in several different
languages and are constantly improving. Their
ability to learn continuously is, however, still
severely limited by the catastrophic forgetting
issue. In this work, we leverage a key property
of encoder-decoder Transformers, i.e. their gen-
erative ability, to propose a novel approach to
continually learning Neural Machine Transla-
tion systems. We show how this can effectively
learn on a stream of experiences comprising dif-
ferent languages, by leveraging a replay mem-
ory populated by using the model itself as a
generator of parallel sentences. We empirically
demonstrate that our approach can counteract
catastrophic forgetting without requiring ex-
plicit memorization of training data. Code will
be publicly available upon publication1.

1 Introduction

Neural Machine Translation (NMT) systems have
achieved remarkable performance on numerous
language pairs, particularly those with abundant
resources. The substantial growth in model pa-
rameters and the availability of large crawled cor-
pora have greatly contributed to the adoption of
advanced techniques like back-translation (Edunov
et al., 2018; Sennrich et al., 2016) and denoising
pre-training (Liu et al., 2020; Song et al., 2019;
Xue et al., 2021), further increasing the transla-
tion quality of these models. Consequently, even
low-resource languages have benefited from the
increased multilingual capabilities of these models
(Arivazhagan et al., 2019; Fan et al., 2021).

Despite their impressive quality, modern NMT
systems exhibit limited Continual Learning (CL)
capabilities and are susceptible to catastrophic for-
getting (CF, McCloskey and Cohen, 1989; French,
2006). While the CL community has extensively
investigated this phenomenon over the years, it has

1https://github.com/m-resta/sg-rep

Figure 1: A scheme of the CILL setting. A model is
trained incrementally on a stream of experiences com-
prising training data for various language pairs.

received relatively less attention from the Natural
Language Processing (NLP) community. Previous
works in this area have primarily focused on Do-
main Adaptation, and only recently have turned to
different continual learning settings such as incre-
mental language learning (Zhang et al., 2022a).

In this paper, we present SG-Rep: a novel ap-
proach to continually train an NMT system on a
stream of experiences comprising several language
pairs while mitigating the detrimental effects of
catastrophic forgetting. Our method leverages a
replay memory populated by synthetic parallel sen-
tences generated by the model itself. We evaluate
the effectiveness of our approach across different
translation directions and demonstrate its ability to
alleviate CF without the need for explicit memo-
rization of the training data. This aspect is crucial
where is not possible to store real training samples
for privacy reasons or data retention policies.

2 Related Works

Continual Learning or Lifelong Learning (LL) re-
search focuses on developing computational sys-
tems that can gradually acquire, refine, and transfer
knowledge over extended periods, imitating biolog-

175

https://github.com/m-resta/sg-rep


ical systems. The primary challenge arises from the
inherent plasticity of neural networks, which leads
to catastrophic forgetting. This refers to a situation
where performance on previously learned tasks de-
teriorates as the network parameters are updated,
resulting in the loss of acquired knowledge.

In addition to mitigating CF, lifelong learning
methods should also promote knowledge transfer
across tasks in both forward and backward direc-
tions. Research work in the field can be broadly cat-
egorized into architecture, regularization, or data-
based approaches.

Architecture-based Methods
The central idea of this category of approaches

is to allow the network architecture to change ei-
ther by adding new parameters for specific tasks or
by maintaining a fixed network size while allocat-
ing a different capacity to each task. Progressive
networks (Rusu et al., 2016) maintain a pool of pre-
trained models throughout training and learn lateral
connections to leverage useful features for the new
task. Sodhani et al., 2020 combine Net2Net (Chen
et al., 2016) (a network growing approach) together
with a gradient episodic memory to enable RNNs to
dynamically expand if they fail to learn the current
task.

PathNet (Fernando et al., 2017) presents an
evolutionary-based algorithm that identifies which
parts of the network to reuse for new tasks. By
preserving parameters along a learned path from
task A and evolving new paths for task B, acceler-
ated learning is achieved compared to starting from
scratch or fine-tuning.

Examples of architectural methods in NLP in-
clude instantiating a new decoder module for learn-
ing new translation directions in NMT (Escolano
et al., 2019). Another approach is the use of small
task-specific modules called "adapters" (Rebuffi
et al., 2017; Houlsby et al., 2019; Pfeiffer et al.,
2021) to avoid finetuning of large pre-trained mod-
els.

Berard, 2021 focuses on learning a set of
language-specific embeddings to be used at infer-
ence time to boost translation quality. Other works
(Liang et al., 2021; Gu et al., 2021) have explored
pruning as a parameter partition strategy.

In contrast, Cao et al., 2021. propose a
vocabulary-based approach to address CF, utilizing
a vocabulary adaptation scheme that leverages the
token overlap in the vocabulary of M-NMT sys-
tems that support multiple languages. When a new

language is introduced, a new vocabulary is created,
encompassing all the data. Embeddings for tokens
in the intersection of the old and new vocabularies
are reused, and training continues.

We identify two main limitations: first, training
a new vocabulary requires storing all data up to the
current experience, second, the starting vocabulary
must support a large number of languages (24 in
the paper) to achieve significant token overlap with
the newly trained vocabulary.

Regularization-based Methods
This family of methodologies is based on theo-

retical neuroscience models that suggest synapses
with varying levels of plasticity can protect ac-
quired knowledge. In computational terms, this
is implemented by adding a regularization term to
the loss function of a neural network, leading to
constrained weight updates. Elastic Weight Consol-
idation (EWC) (Kirkpatrick et al., 2017) prevents
catastrophic forgetting by slowing down learning
on important weights for old tasks, using the Fisher
information Matrix to estimate their importance.

Memory Aware Synapses (MAS) (Aljundi et al.,
2018) computes parameter importance in an un-
supervised manner so that they approximate the
sensitivity of the learned function to a parame-
ter change. For domain adaptation, Thompson
et al., 2019 employs EWC as a regularizer, while
Li et al., 2022 propose an approach based on esti-
mating the domain shift. Khayrallah et al., 2018
use a Knowledge Distillation (KD) inspired regu-
larization approach. Shao and Feng, 2022 presents
Online Knowledge Distillation (COKD) with com-
plementary training and KD, distilling knowledge
from n teachers to the student. Cao et al., 2021
proposes Dynamic KD, optimizing a weighted sum
of translation and distillation loss, tested with fixed
language pairs in both domain and time incremen-
tal fashions. Both COKD and Dynamic KD are
resource-intensive, relying on external models for
distillation, in contrast to our approach. Addition-
ally, Cao et al., 2021 tested on fewer experiences.

Data-based Methods
Data-based methods retain a small number of

training samples from previous tasks to limit
weight updates based on the data distribution of
past experiences. These samples can be either real
or pseudo samples.

In the case of real samples, the work of Chu et al.,
2017 demonstrates the use of a mixture of old and
new data during domain adaptation. Additionally,
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the incorporation of replay data and retrieval mech-
anisms has been shown to improve performance in
neural machine translation (Bapna and Firat, 2019;
Xu et al., 2020). GEM (Lopez-Paz and Ranzato,
2017) and A-GEM (Chaudhry et al., 2019) utilize
real samples from previous tasks to constrain gradi-
ent updates within a favorable region for the current
task, leading to better performance.

Other approaches closer to our proposed meth-
ods, leverage generative models to create pseudo
samples: LAMOL (Sun et al., 2020) and (Zhang
et al., 2022b; Qin and Joty, 2022) are among the
methods that adopt this strategy.

3 The Self-Generated Replay Method

The goal of our method,which we abbreviate as SG-
Rep, is to incrementally learn a single model that is
able to translate into many directions. The training
data is not available as a whole but is presented
to the model in incremental steps, as a stream of
experiences that comprises one or more language
directions. The key challenge is preserving transla-
tion performance on past experience while adapt-
ing effectively to new data. To this end, we use the
encoder-decoder model learned in a given experi-
ence as a generator of synthetic training samples.
The obtained pseudo-samples will populate a fixed-
size replay memory that will be used in future tasks
to mitigate catastrophic forgetting.

3.1 Continual Incremental Language
Learning

Similarly to other works from the CL community,
we design a setting where the learning process is di-
vided into E learning experiences. In each ei ∈ E
the model is exposed to a pair of languages li1, l

i
2

and has access to a training set Ti and a validation
set Vi comprising a single or both translation di-
rections. In the Continual Incremental Language
Learning (CILL) scenario (Figure 1) the model is
trained across all experiences: we want to model
P (y|x) for all the languages of interest, with x and
y being the source and target sentence respectively.
The model architecture and the number of param-
eters are kept fixed, together with the sub-word
vocabulary which is built in advance. We design
a set of experiments to quantify the amount of
catastrophic forgetting occurring during the sub-
sequent experiences and the effectiveness of our
proposed replay strategy. We employ a fixed-size
memory (the replay buffer) that is filled at the end

of each ei experience. We experimented with dif-
ferent buffer sizes and performed also experiments
without memory, to assess the amount of catas-
trophic forgetting. In all the experiments the replay
buffer size is fixed and it is not allowed to grow.

3.2 Self-generated Replay Memories
SG-Rep generates pseudo samples following three
main steps: 1) generation of samples, 2) filtering,
and 3) samples translation.

Encoder input. Consider ls → lt as translation
direction, and a model M capable of translating in
both directions: ls ↔ lt.

In the initial stage, our method generates a sen-
tence in language lt by using as encoder input a
short text te that contains a special token indicat-
ing the translation direction <2lang>. Here, "lang"
represents a 2-letter language code that identifies
the target language lt. We experimented with con-
catenating te with random words to improve input
diversity but we observed a detrimental effect on
the overall performance.

Generation and Filtering. We generate n
pseudo sentences in language lt iteratively by top-k
sampling with k equal to vocabulary size. At each
step, we process the sentences by 1) eliminating
duplicates and 2) filtering out low-quality ones.

The filtering criterion considers morphological
correctness. We use the PyEnchant2 spellchecker
to identify the number of misspelled words ŵ in
each sentence and filter out those with ŵ ≥ 2.

Translation. The pseudo sentences are then
translated into language ls by using the same
model, obtaining a set of self-generated samples
R = {(xi, yi)}ni=1 with x, and y in language ls and
lt respectively.

The last step populates the replay memory R∗

by reservoir sampling from R. The total amount
of samples in the replay buffer is constant during
all the experiences, while their proportions vary for
the effect of the sampling. The training samples
for the next experience ei will then be Ti ∪ R∗.
We repeat the process for each translation direction
present in the current experience. The pseudo-code
of SG-Rep is reported in Algorithm 1.

4 Experimental Setting

4.1 Multilingual Translation Model
A single Transformer model (Vaswani et al., 2017)
was chosen as the architecture of the multilingual

2https://github.com/pyenchant/pyenchant
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Algorithm 1 SG-Rep pseudocode
Input:

M : NMT model
n: # samples to generate
ls, lt: source and target language

Output: R: list of source-target pairs
1: procedure GENERATE_REPLAY_DATA

2: R← [ ]
3: te ←GET_ENCODER_INPUT(lt)
4: src← [ ] ▷ Pseudo-source sentences
5: tgt← [ ] ▷ Translated sentences
6: while length(src) < n do
7: out← GENERATE(te, M )
8: out← FILTER(out)
9: tgt← tgt + out

10: tgt← DEDUPLICATE(tgt)
11: end while
12: src← TRANSLATE(tgt, ls, M ) ▷

Translate src into source language ls
13: R← [src, tgt]
14: return R
15: end procedure

NMT system. We started from the T5 small v1.1
described by Google (Raffel et al., 2020) and avail-
able via Huggingface’s Transformer library. We
reduced the number of encoder and decoder blocks
to 6, and the number of attention heads to 8 in
both the encoder and decoder. The total amount of
parameters with this configuration is 54.15 · 106.
Before training all weights were reinitialized.

We prepend language tokens to the source sen-
tences to denote the desired translation direction as
in (Arivazhagan et al., 2019). The SentencePiece
(Kudo and Richardson, 2018) tokenizer is trained
with a minimum merge frequency of 5 and a vo-
cabulary size of 32k tokens by using HuggingFace
(Wolf et al., 2019). We trained in advance a total
of 3 tokenizers: two for the two sets of languages
from IWSLT17 and one for those from UNPC.

4.2 Datasets and experiences

We run experiments with both small and large-scale
datasets. In the small scale setting we employ a sub-
set of the IWSLT17 (Cettolo et al., 2017) dataset
while for the large scale one we resort to the United
Nation Parallel Corpus (UNPC) (Ziemski et al.,
2016). For all the experiments the chosen language
pairs are organized into four bidirectional experi-
ences. In each experience, the model is exposed
to a language pair and learns to translate from the

IWSLT17
Exp. Direction # Train # Dev # Test

1 Fr↔ En 465,650 1,780 17,194
2 It↔ Nl 466,830 2,002 3,338
3 En↔ Ro 441,076 1,828 3,356
4 It↔ Ro 435,102 1,828 3,268
1 Ar↔ En 463,426 1,776 17,166
2 En↔ Fr 465,650 1,780 17,194
3 Ko↔ En 460,480 1,758 17,028
4 It↔ Nl 466,830 2,002 3,338

UNPC
1 Ar↔ En 20,040,478 4,000 4,000
2 Es↔ Ru 22,290,106 4,000 4,000
3 En↔ Fr 30,336,652 4,000 4,000
3 En↔ Es 25,223,004 4,000 4,000

Table 1: Summary of the different streams of experi-
ences. IWSLT17: the first one (top) is composed of
European-only languages while the second one (bot-
tom) contains also non-European ones. UNPC: The
four experiences contain European and non-European
languages. We report the total size of train, validation,
and test datasets. In a single experience, each direction
has the same amount of samples for each split.

source language to the target language and vice
versa. This choice is motivated by two main rea-
sons. Firstly, the inherent bidirectionality of the
translation task. Secondly, in principle, in future
steps, we may not have access to the training sam-
ples of a particular experience. Therefore, by alter-
nating the roles of source and target languages in
the training samples, we aim to ensure the model
receives as much relevant information as possible.

IWSLT17. To create the first stream we focus on
the following translation directions: French↔ En-
glish, Dutch↔ Italian, English↔ Romanian, and
Italian↔ Romanian. The second stream contains
also non-European languages: Arabic↔ English,
English↔ French, Korean↔ English, and Italian
↔ Dutch.

UNPC. In this dataset we focus on a mix of
European and non-European languages: Arabic
↔ English, Spanish ↔ Russian, and English ↔
French.

Table 1 summarizes the experiences and their
corresponding data sizes for all streams.

4.3 Systems

We evaluate different systems against our proposed
self-replay approach (SG-Rep). Each system fol-
lows the architecture described in Section 4.1 and
has been implemented using the Transformers li-
brary (Wolf et al., 2019) except where explicitly
indicated.

• SG-Rep (ours). We fix top-k sampling tem-
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perature at T = 0.93. The translation phase is
conducted with a beam search approach with
a beam size of 12. The replay buffer size is al-
ways computed based on the total training data
for the first IWSLT17 stream (the one with
European-only languages). This allows us to
have a relatively small memory also for ex-
periments with large corpora and to compare
results. We varied both the buffer sizes and
the amount of generated samples. The latter
is indicated with a superscript. SG-REP100

0.05

denotes a buffer size of 5% of the data ran-
domly filled using 100K generated translation
pairs. Once set, the buffer size is not allowed
to increase and stays constant throughout the
experiences. We explicitly report the different
sizes of the memory in Appendix D.

• Incremental Training. The model is directly
trained on each experience, one after another.

• Multitask (Joint training). The classical up-
per bound for CL: the model is trained on data
from all experiences simultaneously.

• Replay. The model has a fixed memory buffer.
At the end of each experience, the memory is
randomly populated with examples from the
training set of the current experience using
reservoir sampling. We tested different mem-
ory sizes, expressed as a percentage as we did
for SG-Rep. We indicate the buffer percent-
age with a subscript: Replay0.05 denotes a 5%
replay memory buffer.

• EWC. The model uses Elastic Weight Con-
solidation as a regularization strategy. EWC
computes the importance of the parameters
using the Fisher information matrix and pe-
nalizes changes to important ones so that they
stay close to the original ones. The regular-
ized loss function is:

L(θ) = LCE(θ) +
λ

2

∑

i

Fi(θi − θ∗0,i)
2 (1)

with λ controlling the relevance of the old
task compared to the new one. We follow the
implementation from the Avalanche library
(Lomonaco et al., 2021).

• A-GEM. This GEM followup (Lopez-Paz and
Ranzato, 2017) uses a small episodic memory
to store a subset of the examples from each ex-
perience. When training on subsequent tasks,

a random batch is sampled from the memory,
and the losses on the episodic memories are
treated as inequality constraints. A-GEM tries
to ensure that the average episodic memory
loss over the previous tasks does not increase,
and improves on GEM computational require-
ments. We set the batch size equal to 150
when sampling from the memory. The imple-
mentation follows the one from the Avalanche
library (Lomonaco et al., 2021).

• LAMOL. A language model is treated as both
the learner and the generator. The model is
trained by casting different tasks to question
answering (QA) in a SQuaD (Rajpurkar et al.,
2016) format. During training, each example
is formatted into both the QA format and the
language modeling (LM) format. The total
loss optimized by the model is a weighted sum
of the QA loss, and the classical LM loss:

L(θ) = LQA(θ) + λLLM (θ). (2)

We use the authors’ original implementation
after pre-processing the IWSLT17 dataset in
the required format. We ran experiments with
both GPT and GPT-2 (Radford et al., 2019)
models with a total of 116M and 124M train-
able parameters, respectively.

4.4 Training Details

We train all configurations for a maximum of 50
epochs with early stopping (patience = 10) using
the Adam optimizer (β1 = 0.9, β2 = 0.99). We
adjust the learning rate with a cosine scheduler (
warmup_steps = 16k). We evaluate the models
every 5k steps, starting with an initial learning rate
of 5 · 10−4 and apply a dropout rate of 0.1. For
decoding, we use beam search (size 12) with a max-
imum length of 128 tokens. We train all systems
on a single A100 GPU, with a batch size of 150
in FP16 precision.For LAMOL, we train both the
GPT and GPT-2 models using the author’s code
and the hyperparameters reported as the best in
their paper. We train for 9 epochs on 8 H100 GPUs
with a batch size of 310.

5 Experimental Results

The translation output of the models is scored using
the 4-gram case-sensitive BLEU (Papineni et al.,
2002) with the SacreBLEU tool (Post, 2018) using
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the default tokenization scheme3 based on mosesto-
kenizer4. COMET scores are reported in Appendix
G.

Each model is evaluated at the end of training
on the last experience on all translation directions.
In addition to the average BLEU, we also report a
metric for comparative analysis to compensate for
the diversity of the different test sets for each lan-
guage. It quantifies the performance delta between
the chosen system and the upper bound (i.e. joint
training) for each language pair. Specifically, we
define the language pair delta as

∆Lp∗ =
n∑

i=0

Ui − Si

where Ui and Si denote the BLEU scores for lan-
guage pair i under the upper bound and the system
under consideration, respectively and n is the num-
ber of language pairs. We indicate with ’*’ the
system representing the upper bound. Additionally,
we conducted an analysis on data leakage and gen-
erated pseudo samples that we report in Section 5.7
and Appendix H, respectively.

5.1 IWSLT17 European Languages only

Our main results are summarized in Table 2. As
can be seen, incremental training results in extreme
catastrophic forgetting causing the model to com-
pletely lose its translation capabilities with the ex-
ception of languages present in the last experience.
EWC brings only a slight performance improve-
ment over fine-tuning in this training scenario.

All data-based methods perform better than
EWC. Surprisingly, in this experimental setting,
A-GEM surpasses LAMOL. We hypothesize that
this result is due to the difficulty of the task as
LAMOL was originally designed to deal with train-
ing data cast as QA. Compared to the original set-
ting, casting a translation task as QA will yield
longer answers, and consequently, increased gener-
ation difficulty. Thus the external memory used by
A-GEM proves advantageous.

SG-Rep has the best overall performance among
all tested methods and is the one getting closer to
both joint training and replay using real samples.

Figure 2 shows the forgetting curve of the var-
ious baselines: we compute the averaged BLEU

3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.2.3.1

4https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

scores on the first experience at the end of each sub-
sequent one. SG-Rep exhibits more forgetting with
respect to A-GEM but has a significantly better
BLEU when considering the whole stream of expe-
riences. To investigate whether the order of the ex-
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Figure 2: Forgetting curve of the different approaches.
Average BLEU score on the first task evaluated at the
end of the training process of each experience.

periences has an effect on the different approaches
compared, we ran additional experiments under
3 different permutations of the experiences. We
found SG-Rep to be quite resilient in this setting
showing lower variations for the average BLEU
score and ∆Lp than those exhibited by EWC and
AGEM. We report full data for these additional
experiments in the Appendix B

5.2 Sub-word Tokens Overlap
In this particular setting, we observed that utilizing
EWC regularization leads to subpar performance
and fails to effectively mitigate catastrophic for-
getting. We attribute this outcome to the inherent
characteristics of this CL scenario, where the model
must learn distinct target distributions that often ex-
hibit minimal overlap, despite the utilization of a
shared sub-word vocabulary.

To validate our hypothesis, we performed tok-
enization on the labels within each training set of
the individual experiences. Subsequently, we com-
puted the token frequencies and selected the top
k most frequent tokens for each experience. By
measuring the intersection between these selected
tokens, we quantified the overlap as a percentage.
The results of this analysis, presented in Table 3,
highlight the degree of overlap for various values
of k. The findings demonstrate that while there is
a higher overlap percentage between experiences
that share the same target language, even for larger
values of k, the overlap remains relatively low.
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Systems Fr→En En→Fr Nl→It It→Nl En→Ro Ro→En It→Ro Ro→It Avg. ∆Lp∗ ↓
Incremental train 0.44 0.82 1.58 1.05 17.92 0.97 24.14 23.11 8.75 20.48

EWC 1.32 1.12 12.41 1.08 22.02 1.12 20.60 22.18 10.23 19.00

LAMOLGPT-2 11.69 5.54 3.14 1.93 9.66 12.83 6.52 6.24 7.19 22.04

LAMOLGPT 15.27 12.55 6.20 4.89 18.39 18.97 12.37 10.81 12.43 16.80

A-GEM0.2 33.81 31.06 1.48 0.95 23.69 4.63 21.36 23.51 17.56 11.67

SG-Rep1800.1 24.70 20.84 16.74 13.18 26.48 23.00 24.44 23.51 21.61 7.62

SG-Rep1000.2 28.65 25.35 17.08 15.13 24.68 26.04 21.41 23.04 22.67 6.56

SG-Rep1800.2 27.51 24.92 18.01 14.94 26.81 25.71 24.57 23.38 23.23 6.00

SG-Rep2500.2 29.00 26.65 18.11 15.06 28.00 24.91 24.36 23.17 23.66 5.57
Replay0.1 36.06 33.92 19.94 19.45 29.79 31.59 24.27 23.34 27.30 1.94

Joint Training* 40.60 39.47 21.98 22.03 28.17 35.10 21.95 23.66 29.12 –

Table 2: Scores of the different methods evaluated at the end of the last experience. The Avg column is the average
BLEU score across all translation directions. Joint training and Replay are shown as upper bounds at the bottom.

Exp. Overlap % of k most frequent tokens
k = 102 k = 5 · 102 k = 103 k = 5 · 103

1-2 20.20 26.45 26.22 26.74
1-3 57.57 57.51 55.65 55.47
1-4 16.16 22.22 23.52 26.02
2-3 17.17 27.65 28.22 27.74
2-4 50.50 55.71 56.65 58.75
3-4 47.47 58.31 58.95 61.43

Table 3: Overlap percentage between the top-k tokens
of different experiences for several values of k.

For a visual insight into the token distribution,
we provide Figure 3, which presents a plot com-
paring the top-200 sub-word tokens in Experience
1 with their occurrences in the top-200 tokens of
Experience 2. In the CILL setting, the token dis-
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Figure 3: In light blue, frequencies of the top-200 sub-
word tokens of exp. 1. The green bars represent the
frequency of the same tokens that also appear in the 200
most frequent tokens of exp 2.

tribution affects the output layer in a manner akin
to a class-incremental scenario, albeit to a lesser
extent. Consequently, it is normal to expect a
degradation of the performance: in such scenar-
ios, EWC performs on par with fine-tuning (Lesort

et al., 2019) and the effectiveness of regularization
methods is generally acknowledged to be relatively
low (van de Ven and Tolias, 2019). Although A-
GEM demonstrates a relatively smaller decline in
performance compared to other methods, its per-
formance remains suboptimal. Under a task order
that simulates a Domain Incremental setting (e.g.
with subsequent tasks sharing a language), EWC
has a stronger performance. We report the scores
for both EWC and AGEM in Appendix C.

5.3 Effects of The Different
Hyper-parameters

We investigated the impact of various hyper-
parameters on the performance of our models.

In SG-Rep, we examined the effects of different
memory sizes, specifically 5%, 10%, and 20%. Ad-
ditionally, we maintained a fixed memory size of
20% and varied the number of self-generated sam-
ples, exploring values of n = [100k, 180k, 250k].

For the A-GEM method, we utilized different
memory sizes, namely 5%, 10%, and 20% . To
investigate the impact of regularization strength,
we varied the values of λ for the EWC method,
specifically using λ = [0.25, 2, 200, 2000]. Figure
4 presents a comparison between A-GEM and our
proposed approach across different memory sizes.
Notably, increasing the memory size from 10%
to 20% had a negligible effect on A-GEM, while
it resulted in a relative improvement of nearly 1
BLEU for the self-generated replay approach.

By maintaining a fixed memory size and increas-
ing the quantity of generated pseudo-samples, we
obtain a larger initial population for reservoir sam-
pling, leading to increased diversity within the
memory. This diversity proved to be beneficial
for the overall performance. Figure 5 illustrates the
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Systems Ar→En En→Ar En→Fr Fr→En Ko→En En→Ko Nl→It It→Nl Avg. ∆Lp∗ ↓
Incremental train 0.01 0.06 0.48 0.56 0.03 0.16 21.29 21.59 5.52 17.60
EWC 29.79 12.37 1.15 14.68 2.64 0.38 0.07 0.11 7.65 15.47
A-GEM0.2 13.8 3.91 0.83 0.63 0.17 0.25 20.73 21.61 7.74 15.38
SG-Rep2500.2 16.53 6.74 21.12 28.21 9.65 3.41 21 21.47 16.02 7.11
Replay0.1 26.53 10.19 33.7 35.19 14.66 4.83 20.85 21.38 20.92 2.21
Joint training* 30.98 12.7 37.69 39.5 17.29 5.74 20.33 23.12 20.55 –

Table 4: BLEU scores for experiments with non-European languages. The scores are computed at the end of the last
experience (after training on Nl↔ It pair) on the corresponding IWSLT17 test sets.

Systems Ar→En En→Ar Es→Ru Ru→Es En→Fr Fr→En En→Es Es→En Avg. ∆Lp∗ ↓
Incremental train 6.74 5.08 6.42 6.53 7.85 11.56 49.93 57.31 18.93 27.01
EWC 53.84 36.31 2.64 5.05 4.79 9.26 8.49 9.02 16.18 29.76
A-GEM0.2 45.02 22.81 5.92 5.03 7.93 11.92 49.07 57.32 25.63 20.31
SG-Rep2500.2 29.07 13.53 19.39 30.81 16.42 15.78 49.95 57.45 29.05 16.89
Replay0.1 39.84 18.96 26.55 39.04 22.4 32.39 47.04 55.51 35.22 10.73
Joint training* 52.41 34.9 39.15 44.82 45.02 50.77 45.01 55.46 45.94 –

Table 5: BLEU scores for experiments with UNPC. The scores are computed at the end of the last experience (after
training on Es↔ En pair) on the corresponding UNPC test sets.
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Figure 4: Effect of different memory sizes for A-GEM
and SG-Rep.

average BLEU score at the conclusion of each expe-
rience, considering various values of self-generated
samples while keeping a fixed replay buffer size
of 20%. We report a plot of the forgetting trend in
Appendix E.

5.4 IWSLT17 with Eastern Languages

Table 4 summarizes the results on the stream of ex-
periences containing also non-European languages.
In this setting, both AGEM and EWC perform
poorly, with the latter being able to retain most
translation proficiency for Ar↔En but failing to
learn in other directions. SG-Rep outperforms both
AGEM and EWC by a larger margin with respect
to the setting containing only European languages.

5.5 UNPC

We ran additional experiments on the United Na-
tions Parallel Corpus in a high-resource context.
Informed by the previous experiments on IWSLT
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Figure 5: Average BLEU score on all language direc-
tions at the end of each training experience.

and given the high computational costs we avoid to
train low scoring approaches such as LAMOL. We
keep EWC as an instance of regularization-based
approaches. Table 5 summarizes the results. EWC
maintains the strongest performance on the Ar↔
En but impairs model learning in subsequent expe-
riences. AGEM0.2 is slightly better. SG-Rep has
a larger gap with the classical Replay compared
with the IWSLT setting, but it’s still the strongest
performer scoring more than 3 BLEU points higher
than AGEM and having lower ∆Lp with the jointly
trained model.

5.6 Pseudo-samples Analysis

We conducted an analysis of generated pseudo sam-
ples, covering duplicate counts and length statistics,
to assess their characteristics and compare them
with the original data. For diversity assessment, we
utilized self-BLEU scores (Alihosseini et al., 2019).
Due to computational constraints, self-BLEU was
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IWSLT17
Fr-En Nl-It En-Ro Fr-En Nl-It En-Ro

Generated data Generated data Generated data Buffer exp 1 Buffer exp 2 Buffer exp 3 Buffer exp 2 Buffer exp 3 Buffer exp 3
% of leaked source 0.23 (623) 0.32 (887) 0.29 (760) 0.13 (487) 0.076 (276) 0.05 (211) 0.08 (302) 0.06 (227) 0.09 (325)
% of leaked target 0.26 (666) 0.30 (790) 0.26 (693) 0.19 (710) 0.14 (520) 0.11 (430) 0.20 (743) 0.174 (629) 0.18 (654)
Avg. length of leaked source 14.5 14.83 14.81 13.03 12.21 11.62 13.72 13.12 12.32
Avg. length of leaked target 13.64 13.31 11.79 11.78 1.51 11.14 12.66 11.98 9.9

Ar-En En-Fr Ko-En Ar-En Fr-En Ko-En
Generated data Generated data Generated data Buffer exp 1 Buffer exp 2 Buffer exp 3 Buffer exp 2 Buffer exp 3 Buffer exp 3

% of leaked source 0.1 (264) 0.21 (560) 0.20 (557) 0.05 (208) 0.04 (153) 0.03 (123) 0.12 (461) 0.12 (449) 0.03 (136)
% of leaked target 0.24 (630) 0.005 (13) 0.30 (764) 0.15 (542) 0.11 (419) 0.09 (349) 0.13 (498) 0.21 (786) 0.088 (319)
Avg. length of leaked source 7.70 12.73 6.88 6.92 6.451 6.15 12.67 13.13 6.74
Avg. length of leaked target 13.04 4.08 14.34 6.5 6.39 5.77 8.74 11.14 4.83

UNPC
Ar-En Es-Ru En-Fr Ar-En Es-Ru En-Fr

Generated data Generated data Generated data Buffer exp 1 Buffer exp 2 Buffer exp 3 Buffer exp 2 Buffer exp 3 Buffer exp 3
% of leaked source 5.63 (14517) 5.55 (14177) 6.54 (16607) 3.68 2.21 1.86 2.38 2.07 3.07
% of leaked target 5.74 (14635) 4.44 (11361) 7.12 (18011) 4.62 3.21 2.8 3.25 2.98 4.24
Avg. length of leaked source 12.48 13.87 11.86 11.55 10.73 10.21 11.25 10.44 10.3
Avg. length of leaked target 10.62 11.91 11.97 10.62 9.86 9.4 9.82 9.37 9.42

Table 6: Data leakage stats for IWSLT17 and UNPC datasets. Left: leakage in generated data before populating
replay buffers. Right: data leaked into replay buffers. Stats are computed without mitigation.

calculated with a sampling approach, evaluating
5k sentences and reporting the average over 10
runs. Results are provided in Appendix H for both
IWSLT17 data (Table 16) and UNPC (Table 17). In
general, generated data exhibit higher self-BLEU
scores, indicating lower diversity compared to the
original data, except for the Arabic-English lan-
guage pair. Conversely, for UNPC, generated sam-
ples are more diverse than the original ones. Pseudo
samples for both UNPC and IWSLT17 are shorter
than the original data.

5.7 Data leakage Analysis
Table 6 summarizes the analysis quantifying train-
ing data leakage during model generation. For
IWSLT17, the leaked data proportion is extremely
low, below 0.5%. It generally decreases for a single
language pair when examining buffers and across
experiences. English leakage consists of very short,
common sentences with simple grammatical con-
struction, like "Thank you" or "I am." Compara-
tively, UNPC has a larger data leakage, but the
percentage remains low. Also for UNPC the leaked
sentences are short and frequent names (e.g., coun-
try names) and section titles (e.g., "Introduction,"
"B. Text").

6 Conclusions

We proposed a simple yet effective continual learn-
ing method for NMT that uses a replay memory to
mitigate catastrophic forgetting. Differently from
other data-based approaches, we do not memo-
rize training samples explicitly and instead use the
model itself as a generator of parallel sentences.
The experimental results prove that our method
can achieve significant improvement over several

strong continual learning baselines.

Limitations. Our method has a computational
overhead to standard replay due to pseudo-sample
generation. However, the overall training time for a
stream of experiences is comparable to other base-
lines. To assess the performance of SG-Rep in
challenging scenarios, we choose a model archi-
tecture with a relatively low number of parameters
compared to state-of-the-art M-NMT systems.

Ethics Statement. Our work pertains to the con-
tinual training of NMT systems to adapt them with
low forgetting. In this work, we use only publicly
available data.
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A Self-Generated Sentences

Self-Generated Sentences
English Dutch
It has been something that most of them do. Ik zou het kunnen zijn..
It kind of leads in the back of the way Ik hoorde het, oké, maar ik was er niet bij.
It’s counterintuitive and heart failure. Waarom?? Het was niet zo?
They would turn to their concretes. Dus ik ga het hebben over een bepaald soort ding.
At least the very same thing.
French Italian
puisqu’il s’agit de construire des courantes. È fantastico.
Et voici ce qu’il faut. Così ho fatto una cosa come il gruppo di bambini
Leurs biens étaient engendrés par le passé. Eppure, si tratta di piccole specie.
C’est simplement la homme qui fait le charge. Quelli che lo provoquono.
Romanian Filtered Sentences in English
Arena Pahăriări!’ It turns out, ates are "w gravk."
Iată. It’s called a c l’homme-afour.
Cu Cuvântul!’ fourn fourn économied the question –
Wet,ea with that It’s sort ofky knifery to us.

Table 7: Generated samples for several languages and filtered-out English sentences (bottom right) in the self-
generation process. Underlined words indicate errors detected by PyEnchant.

B IWSLT17 Score Under Different Task Order

Systems
Permutation 1 Avg. ∆Lp∗ ↓It→Ro Ro→It Fr→En En→Fr Nl→It It→Nl En→Ro Ro→En

EWC 20.32 22.29 13.1 4.74 3.92 0.73 0.15 0.92 8.27 20.97

A-GEM0.2 15.99 18.02 10.74 24.65 1.65 1.12 40.88 39.96 19.12 10.11

SG-Rep2500.2 15.14 17.62 18.96 28.99 16.98 15.7 40.77 39.62 24.22 5.02
Permutation 2

En→Ro Ro→En It→Ro Ro→It Fr→En En→Fr Nl→It It→Nl
EWC 20.81 22.36 4.14 3.23 1.28 1.01 1.53 0.91 6.90 22.33

A-GEM0.2 18.7 19.0 4.55 1.13 3.47 0.99 28.41 35.6 13.98 15.26

SG-Rep2500.2 18.4 18.23 34.08 28.98 16.31 15.87 27.51 35.11 24.31 4.93

Permutation 3
En→Ro Ro→En It→Ro Ro→It Fr→En En→Fr Nl→It It→Nl

EWC 7.67 10.48 2.05 0.48 2.91 0.87 0.04 0.35 3.10 26.13

A-GEM0.2 20.23 26.37 3.06 14.31 7.76 1.09 21.77 21.99 14.57 14.67

SG-Rep2500.2 19.96 25.63 14.73 19 30.38 24.5 21.69 22.13 22.25 6.99
Joint training* 28.13 35.11 22.10 23.58 40.90 39.77 22.22 22.10 29.24 --

Table 8: Performance scores on IWSLT17 test set computed at the end of the fourth experience under different task
permutations.
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C AGEM and EWC Scores Different Task Order

Exp. Fr→En En→Fr En→Ro Ro→En It→Ro Ro→It Avg.
1 39.49 38.07 0.95 0.85 0.45 0.18 13.33
2 33.50 27.70 27.98 34.36 1.01 0.74 20.88
3 29.22 26.16 22.06 8.33 21.14 23.40 21.71

Table 9: A-GEM0.1 performance under a different experience order. Training data of the various experiences is
from IWSLT17 dataset.

Exp. Fr→En En→Fr En→Ro Ro→En It→Ro Ro→It Avg.
1 39.63 38.32 1.04 0.54 0.18 0.13 13.30
2 28.43 1.15 27.14 34.01 0.89 0.82 15.40
3 1.22 1.07 22.04 0.92 20.19 21.48 11.15

Table 10: EWC performance under a different experience order. Training data of the various experiences is from the
IWSLT17 dataset. λ = 2k
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D Sizes of the Replay Buffer

Memory size Num. samples
5% 90433
10% 180866
20% 361732
100% 1,808,658

Table 11: Total sizes of the replay buffer. A size of 100% is the sum of all the training samples across the four
experiences created out of the IWSLT17 dataset (European-only languages).

E Forgetting curve for different sizes of generated samples
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Figure 6: Forgetting curve of SG-Rep for different numbers of self-generated samples. Average BLEU score on the
first task evaluated at the end of the training process of each experience.

F Training time of the different methodologies

Time (h) for Dataset
Method UNPC IWSLT17 non-Europ.
Incremental 62.45 6.21
EWC 128.13 29.08
AGEM 67.81 14.43
SG-Rep 64.03 11.74
Replay 57.66 14.84
Joint 62.66 11.94

Table 12: Total training time measured in hours for the different approaches. SG-Rep is faster than AGEM and
EWC and very close to pure replay.
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G COMET Scores

Systems Fr→En En→Fr Nl→It It→Nl En→Ro Ro→En It→Ro Ro→It Avg. ∆Lp∗ ↓
Incremental train 0.33 0.51 0.33 0.67 0.69 0.7 0.82 0.81 0.61 0.20
EWC 0.83 0.79 0.37 0.39 0.56 0.53 0.23 0.3 0.5 0.31
A-GEM0.2 0.75 0.69 0.32 0.67 0.76 0.69 0.82 0.81 0.69 0.12
SG-Rep2500.2 0.75 0.68 0.71 0.68 0.79 0.77 0.82 0.81 0.75 0.06
Replay0.1 0.81 0.76 0.74 0.74 0.82 0.82 0.82 0.81 0.79 0.02
Joint training* 0.84 0.8 0.77 0.78 0.83 0.84 0.82 0.81 0.81 –

Table 13: COMET scores for experiments on IWSLT17 with non-European languages. Scores are computed at the
end of the last experience. The Avg column is the average COMET score across all translation directions. Joint
training and Replay are shown as upper bounds at the bottom.

Systems Ar→En En→Ar En→Fr Fr→En Ko→En En→Ko Nl→It It→Nl Avg. ∆Lp∗ ↓
Incremental 0.23 0.28 0.31 0.29 0.29 0.33 0.77 0.78 0.41 0.32
EWC 0.77 0.78 0.27 0.57 0.46 0.24 0.25 0.26 0.45 0.28
A-GEM0.2 0.69 0.69 0.52 0.33 0.3 0.46 0.77 0.78 0.57 0.16
SG-Rep2500.2 0.66 0.64 0.61 0.74 0.67 0.67 0.77 0.78 0.69 0.04
Replay0.1 0.74 0.75 0.76 0.8 0.73 0.77 0.77 0.77 0.76 -0.02
Joint training* 0.73 0.74 0.75 0.8 0.72 0.74 0.69 0.71 0.73 –

Table 14: COMET scores for experiments on IWSLT17 with non-European languages. The scores are computed
at the end of the last experience (after training on Nl↔ It pair) on the corresponding test sets. Joint training and
Replay are shown as upper bounds at the bottom.

Systems Ar→En En→Ar Es→Ru Ru→Es En→Fr Fr→En En→Es Es→En Avg. ∆Lp∗ ↓
Incremental train 0.61 0.53 0.5 0.73 0.74 0.77 0.87 0.89 0.7 0.12
EWC 0.87 0.84 0.45 0.3 0.6 0.76 0.63 0.73 0.65 0.18
AGEM0.2 0.77 0.63 0.51 0.73 0.73 0.77 0.86 0.89 0.74 0.09
SG-Rep2500.2 0.76 0.56 0.56 0.77 0.74 0.8 0.88 0.9 0.74 0.08
Replay0.1 0.77 0.61 0.66 0.79 0.73 0.81 0.87 0.89 0.77 0.06
Joint training* 0.83 0.81 0.83 0.82 0.81 0.86 0.84 0.87 0.83 –

Table 15: COMET scores for experiments with UNPC. The scores are computed at the end of the last experience
(after training on Es↔ En pair) on the corresponding UNPC test sets.Joint training and Replay are shown as upper
bounds at the bottom.
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H Statistics of Original and Pseudo-samples

We conducted an analysis of generated pseudo samples, covering duplicate counts and length statistics, to
assess their characteristics and compare them with the original data.

For diversity assessment, we utilized self-BLEU scores (Alihosseini et al., 2019). Due to computational
constraints, self-BLEU was calculated with a sampling approach, evaluating 5k sentences and reporting
the average over 10 runs. Results are provided for both IWSLT17 data in Table16 and UNPC in Table 17.

In general, generated data exhibit higher self-BLEU scores, indicating lower diversity compared to the
original data, except for the Arabic-English language pair. Conversely, for UNPC, generated samples are
more diverse than the original ones. Pseudo samples for both UNPC and IWSLT17 are shorter than the
original data.

Fr-En Nl-It En-Ro Ar-En Ko-En
Original data Generated Original Generated Original Generated Original data Generated Original Generated

Avg. length source 105.62 ± 74.88 24.74 ± 12.15 85.94 ± 58.63 26.82 ± 13.39 94.09 ± 66.62 23.04 ± 10.88 77.89 ± 55.93 25.10 ± 15.92 49.60 ± 34.38 12.587 ± 6.37
Min. source length 1 1 1 1 1 1 1 1 1 1
Max. source length 557 265 547 184 523 264 490 262 357 294
Duplicated source sents 2887 0 3666 0 2474 0 2032 0 2286 0
Avg. Self-BLEU source 23.97 21.02 18.68 21.08 26.48 47.67 10.9 15.93 11.44 14.04
Avg. length target 94.95 ± 67.34 24.15 ± 12.09 89.45 ± 61.28 28.64 ± 14.78 92.55 ± 66.06 22.74 ± 11.43 94.96 ± 67.8 14.93 ± 12.21 95.02 ± 68.12 28.95 ± 21.12
Min. target length 1 1 1 1 1 1 1 1 3 1
Max. source length 523 256 562 174 556 258 514 886 531 895
Avg. Self-BLEU target 26.52 28.02 18.33 27.56 18.14 36.22 26.5 20.45 26.42 40.77
Duplicated target sents 2827 20502 2582 20681 2431 32326 2836 14418 2816 40052

Table 16: Comparison of dataset statistics between language pairs in IWSLT17 and generated pseudo samples. Avg.
Self-BLEU represents the average over 10 runs with a sample size of 5k sentences.

Ar-En Es-Ru En-Fr
Original data Generated Original Generated Original Generated

Avg. length source 132.42 ± 112.08 19.66 ± 15.75 171.20 ± 147.66 23.39 ± 22.91 140.747 ± 126.661 24.253 ± 23.53
Min. source length 1 1 1 1 1 1
Max. source length 15523 641 14164 684 15024 601
Duplicated source sents 3828415 0 5086430 0 8696252 0
Avg. Self-BLEU source 16.37 14.59 34.98 17.7 26.86 14.02
Avg. length target 157.28 ± 132.64 20.19 ± 18.70 166.97 ± 144.29 21.98 ± 22.54 166.41 ± 151.952 27.492 ± 28.745
Min. target length 1 1 1 1 1 1
Max. source length 15024 655 13684 800 22285 669
Avg. Self-BLEU target 29.46 16.73 21.83 15.1 40.19 20.97
Duplicated target sents 4517013 35608 5053606 50771 8276589 17988

Table 17: Comparison of dataset statistics between language pairs in UNPC and generated pseudo samples. Avg.
Self-BLEU represents the average over 10 runs with a sample size of 5k sentences.
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