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Abstract

In e-commerce, accurately extracting product
attribute values from multimodal data is crucial
for improving user experience and operational
efficiency of retailers. However, previous ap-
proaches to multimodal attribute value extrac-
tion often struggle with implicit attribute values
embedded in images or text, rely heavily on
extensive labeled data, and can easily confuse
similar attribute values. To address these issues,
we introduce EIVEN, a data- and parameter-
efficient generative framework that pioneers the
use of multimodal LLM for implicit attribute
value extraction. EIVEN leverages the rich in-
herent knowledge of a pre-trained LLM and
vision encoder to reduce reliance on labeled
data. We also introduce a novel Learning-by-
Comparison technique to reduce model confu-
sion by enforcing attribute value comparison
and difference identification. Additionally, we
construct initial open-source datasets for multi-
modal implicit attribute value extraction. Our
extensive experiments reveal that EIVEN sig-
nificantly outperforms existing methods in ex-
tracting implicit attribute values while requiring
less labeled data.

1 Introduction

Product attributes are crucial in e-commerce, aid-
ing retailers in product representation, recommen-
dation, and categorization, and assisting customers
in product searching, comparison, and making in-
formed purchasing decisions (Xu et al., 2019; Yan
etal., 2021; Yang et al., 2023; Shinzato et al., 2023).
Despite their importance, the accurate listing of
these attributes remains a challenge. Sellers often
fail to specify all relevant attribute values or list
them incorrectly, leading to inefficiencies and po-
tential customer dissatisfaction (Lin et al., 2021;
Khandelwal et al., 2023). To address these issues,
the task of Attribute Value Extraction (AVE) has

tWork done as an intern at Amazon.

[Title] T-Shirt with Kawaii Tree
[Description] Baby Summer Shirt

[Tit\e][Transparent Waterprooﬂ Boot
[Category] Outdoor Shoes

Neckline: Round Neck Boot Style: Rain Boot

Figure 1: Examples of implicit attribute values. The
attribute value cannot be explicitly extracted as a part of
product texts, but can inferred from the product image,
text context or prior knowledge.

emerged as a key area of research in e-commerce.
AVE seeks to automate the extraction of attribute
values from product profiles such as product titles,
descriptions, and images (Zheng et al., 2018; Wang
et al., 2020, 2022).

Existing approaches for multimodal attribute
value extraction can be broadly categorized into
three categories: extractive, discriminative, and
generative (more detailed discussion is provided
in Appendix A). Most extractive studies focus on
extracting attribute values that are explicitly stated
in product text data (Zhu et al., 2020; Yang et al.,
2022; Li et al., 2023; Xu et al., 2023). However, in
real-world scenarios, an attribute value that needs
to be obtained may not appear as a subsequence
of the product text, but can be inferred from the
product image, implied text context or prior knowl-
edge about this product type (Zhang et al., 2023;
Khandelwal et al., 2023; Blume et al., 2023). Take
products in Figure 1 for example. The value “round
neck” of the “neckline” attribute does not appear in
product textual information, but can be easily iden-
tified from its product image. Similarly, the value
“rain boot” corresponding to the attribute “boot
style" in the second product is not explicitly stated
but is implicitly embedded in its textual context
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“transparent waterproof” and visual information.
In addition, previous discriminative and generative
approaches for multimodal AVE are highly data-
hungry, requiring large amounts of labeled data for
training but still perform poorly in extracting im-
plicit attribute values (Zhang et al., 2023; Fu et al.,
2022). Furthermore, similar implicit attribute val-
ues are easily confused by the recent generative
AVE model (Zhang et al., 2023).

To tackle these challenges, we introduce EIVEN,

a data and parameter-efficient multimodal gener-
ative framework for multimodal implicit attribute
value extraction. EIVEN utilizes the rich inher-
ent knowledge of a pre-trained LLM and vision
encoder to lessen reliance on extensive attribute-
specific data. Additionally, to address the issue of
model confusion caused by similar attribute values,
we introduce a novel technique termed "Learning-
by-Comparison". This approach feeds the model
with pairs of instances that share the same attribute
but potentially have different attribute values, forc-
ing the model to compare and distinguish them.

Our contributions are summarized as follows:

* To the best of our knowledge, we are the
first work to explore multimodal LLM for the
emerging real-world problem of implicit at-
tribute value extraction.

* We propose a novel Learning-by-Comparison
technique to reduce model confusion among
similar attribute values.

* We construct initial open-source datasets for
multimodal implicit AVE. !

» Extensive experiments show that our frame-
work greatly outperforms recent multimodal
AVE works, even with less labeled data.

2 EIVEN Framework

Problem Formulation. Given a product’s image
and text context and a specified attribute, our goal is
to extract the value for the corresponding attribute.
Specifically, in our task of extracting implicit at-
tribute values, the ground truth attribute value does
not appear as a subsequence of the text context,
but can be inferred from the product image, text
context, or prior knowledge. In this work, we for-
mulate the task of extracting implicit attribute val-
ues as the problem of generating answers given a
question and product information. For example,

"https://github.com/HenryPengZou/EIVEN

the question could be "What is the Sleeve Style
of this product?" and the generated answer could
be "Short Sleeve" by inferring from the product’s
image and text context.

Figure 2 presents an overview of our efficient
multimodal LLM, and Figure 3 illustrates our
Learning-by-Comparison strategies. Next, we ex-
plain our key components in detail.

2.1 Image Embedding

We leverage projected multi-granularity visual fea-
tures to serve as the visual token input to our LLM
model. Specifically, we extract visual features from
the [cls] token in every M layer of the vision en-
coder and then concatenate them as:

I = Concat ({I;}1))

where K is the total number of extracted features,
I1, € RYP is the k-th extracted visual feature, and
I € RE*P j5 the overall multi-granularity image
embedding.

Then, a simple visual projection network is used
to adapt and transform the visual features to the
same dimension as the text embedding of the LLM,
which is denoted by:

I'=a(IW4+ bg)W, + by

Here, Wy € RP*dn and W,, € R *Drext de-
note the weight matrices of the downsampling and
upsampling layer, b; and b, are the bias terms, o
is the SwiGLU activation function (Shazeer, 2020;
Luo et al., 2023b). In this way, we empower the
LLM to understand visual features at multiple lev-
els of granularity, such as edges, textures, patterns,
parts, and objects (Ghiasi et al., 2022; Nguyen et al.,
2019), which enables more effective extraction of
attribute values.

2.2 Efficient Multimodal LLM

Previous generative works in multimodal implicit
attribute value extraction (Zhang et al., 2023; Khan-
delwal et al., 2023) require large amounts of
attribute-specific labeled data to achieve good per-
formance. However, in the ever-evolving field of
e-commerce, new products with unique attributes
and values are constantly being introduced by
different retailers and merchants. Gathering a
large number of annotations for each new attribute
is time-consuming and expensive (Yang et al.,
2023; Lai et al., 2021; Zou and Caragea, 2023;
Zou et al., 2023). To reduce reliance on labeled
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Figure 2: Overview of our efficient multimodal LLM. We extract multi-granularity visual features from a frozen
pre-trained vision encoder and use a learnable visual projection network to align their dimensions with text token
embeddings. The obtained visual tokens and tokenized question and text context are fed to the LLM (LLaMA-7B) to
generate the answer. We insert lightweight adapters into every layer of the LLM for parameter-efficient fine-tuning.

Base Input [Product Image] |; [Question] Q; [Text Context] C
Base Q: What is the Sleeve Style of this product?
A: Short Sleeve
LBC Input [Product Image] |, I'; [Question] Q; [Text Context] C, C'
Judge_Last: Q: What is the Sleeve Style of these two products? Are they the
A: First: Short Sleeve; Second: Long Sleeve; No.
Judge_First: Q: Do these two products have the same Sleeve Style? Why?

A: No; First: Short Sleeve; Second: Long Sleeve.
Better_Instance: Q: Which product's Sleeve Style is Short Sleeve?

A: nd product has Short Sleeve.

Figure 3: Illustration of Learning-by-Comparison strate-
gies. Our model is fed with pairs of product instances
that share the same attribute but potentially different
attribute values and asked to compare the values.

data, we pioneer the exploration of leveraging pre-
trained LLMs for the multimodal implicit AVE
task. Trained on vast and diverse datasets, LLMs
have demonstrated remarkable understanding, gen-
erative capabilities, and few-shot transfer learning
ability (Touvron et al., 2023; Liu et al., 2023; Wang
etal., 2023; Tian et al., 2023; Dong et al., 2023; Lai
et al., 2024), making them a promising approach to
be explored for implicit attribute value extraction.

However, LLMs typically comprise billions of
parameters, rendering their full-scale fine-tuning
both resource-demanding and inefficient. To ad-
dress this, we resort to parameter-efficient fine-
tuning strategies, which has been proven to achieve
performance comparable to full fine-tuning but
with substantially fewer trainable parameters (Hu
et al.,, 2023; Houlsby et al., 2019; Luo et al.,
2023b; Tian et al., 2024). Specifically, we insert a
lightweight adapter before every attention layer in
our LLM. The mechanism of adapters is defined
as:

W' = fou(o(fpa(h))) +h
where h, I’ is the input and output of the adapter,

foa(+), fou(+) denotes for the downsampling and
upsampling layers, o is an optional activation func-

tion depending on the choice of adapters.

During training, we freeze all parameters in our
LLM (LLaMA-7B (Touvron et al., 2023)) and the
large image encoder, and only fine-tune these in-
serted lightweight adapters and the visual projec-
tion network.

Formally, given a product image embedding I,
text context C, and an attribute-related question
Q, the input of our multimodal LLM is denoted as
X = [I,Q, C]. The overall training objective £ of
our multimodal LLM can be defined as:

B |R|

1 i i pi
L= _EZZZOQP(Rt|X s Rey3 04, 0p)
=1 t=1

where B is the batch size, R represents the ground-
truth answer, R; is the t-th token of R, R, rep-
resents the tokens before R;, 6, denotes all pa-
rameters of adapters in LLM, and 6,, denotes all
parameters in the visual projection network.

In our training scheme, although we use LLM,
thanks to these lightweight adapters, the number
of trainable parameters can be kept at a very small
scale, e.g., 2~5M. This greatly reduces the memory
requirement and allows efficient training of EIVEN
on the same single 32G V100 GPU as the previous
work (Zhang et al., 2023), while achieving signif-
icantly better performance even with much less
labeled data.

2.3 Learning-by-Comparison

Many attributes have very similar attribute values,
such as ‘Crew Neck’, ‘Scoop Neck’, and ‘Cowl
Neck’, which can confuse models. To help mod-
els better distinguish these similar attribute values,
we propose a new technique called Learning-by-
Comparison (LBC) to assist model training.
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Clothing Footwear General
Method Approach 10 100 Al | 10 100 All | 10 100  All | Average
M-JAVE (2020)* Extractive | 0.00 000 0.0 | 0.00 000 000 | 000 000 000 | 0.00
CMA-CLIP (2022) ~ Discriminative | 5.92 1452 29.08 | 11.60 22.02 45.68 | 1331 27.54 4956 | 24.36
DEFLATE (2023) Generative | 1329 2523 5652 | 1143 3594 7480 | 975 3922 59.11 | 36.14
EIVEN (Ours) Generative | 34.92 6121 74.61 | 38.80 74.44 8420 | 3227 6498 7631 | 60.19
Absolute Gains (%p) - | 21.63 3598 18.09 | 27.37 3850 9.40 |22.52 2576 17.20 | 24.05

Table 1: Performance (micro-F1) comparison with representative work across different approaches. Models are

trained with 10, 100, all (up to 1000) labeled data per attribute value. EIVEN delivers best results on all datasets,

surpassing the latest implicit attribute value extraction work DEFLATE (Zhang et al., 2023) by 24.05%p on average.

*Extractive approaches such as M-JAVE (Zhu et al., 2020) fail to handle implicit attribute values that do not appear

explicitly as a subsequence of product text.
Clothing

Footwear General
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Figure 4: Data efficiency demonstration with varying numbers of labeled data. EIVEN can achieve better perfor-
mance than DEFLATE with less labeled data, highlighting its data efficiency.

During training, in addition to the original prod-
uct information /1, C1, and the query attribute A,
we randomly sample another product with the same
attribute A and include its image I3 and text con-
text C'y in the model input for comparison. We
have designed three strategies: LBC_Judge_Last,
LBC_Judge_First, and LBC_Better_Instance as
illustrated in Figure 3. We modify the attribute-
related question and ground-truth answer accord-
ingly. For example, in LBC_Judge_Last, we first
ask the model to identify the value of the query at-
tribute for both products, and then ask the model to
compare and determine whether they have the same
attribute value. The answer should be in the for-
mat of "First: {attribute value of the first product};
Second: {attribute value of the second product};
{comparison result}". Through this approach, the
model is compelled to distinguish similar attribute
values. Note that during the validation and testing
phase, only the original product information and
the attribute-related question are used.

3 Open-Source Multimodal Implicit AVE
Dataset

Multimodal implicit AVE is an emerging problem,
and there is currently a lack of truly open-sourced

datasets for multimodal implicit AVE. ? Existing
AVE datasets either do not contain product im-
ages or lack implicit attribute values. Thus, in this
section, we introduce and make available several
datasets to facilitate further research in this area.
Specifically, we present three multimodal im-
plicit AVE datasets: Clothing, Footwear, and Gen-
eral. The statistics of these datasets are summarized
in Table 6. All of them are derived and sampled
from two publicly available datasets, MAVE (Yang
et al., 2022) and Amazon Reviews 2018 (Ni et al.,
2019). There are a total of 68,423 samples that
cover 12 diverse product attributes and 87 com-
mon attribute values. Specifically, for each product
attribute, we randomly collect product instances
including the product texts (titles and product cate-
gories) and attribute values from the MAVE dataset.
We collect popular attribute values with more than
100 instances for effective evaluation and randomly
sample up to 1000 instances per attribute value to
limit the dataset size. Since the MAVE dataset does
not provide product images and is derived from the
multimodal Amazon Reviews 2018 dataset, we col-
lect the corresponding product images from the

The claimed released multimodal implicit AVE dataset
from DEFLATE (Zhang et al., 2023) is encrypted, and our
multiple attempts to request decrypted data have failed.

456



Clothing Footwear General
Methods MGVF LBC Image Text 50 100 50 100 50 100  Average
EIVEN v v v v 5401 6121 6733 7444 5731 6498 63.21
- MGVF X v v v 4992 57775 65.04 7273 535 6227  60.20
EIVEN-Base X X 4 v 4976 5550 64.14 7346 47.85 59.30 58.34
- Image X X X v 4397 5045 5472 68.01 37.20 4940 50.63
- Text Context X X v X 1649 1991 2225 2938 1196 1828  19.71

Table 2: Ablation study of key components and modality information. *50/100° represents the number of labels per
attribute value, as is the case for the subsequent tables. "MGVF" denotes multi-granularity visual features.

Amazon Reviews 2018 dataset using their shared
product identification number. Furthermore, the
MAVE dataset contains only explicit attribute val-
ues. To evaluate performance on implicit attribute
value extraction, we manually removed all explicit
attribute value mentions from the product text for
each product and its corresponding attribute. There-
fore, attribute values in these data can only be in-
ferred from product images, text context, or prior
knowledge, i.e., implicit attribute values. Lastly,
we split the train, test, and validation sets in a ratio
of 0.75:0.15:0.15. We open-sourced these datasets.

4 Experiment

4.1 Experimental Setup

Baselines: We compare EIVEN with representa-
tive baselines in multimodal AVE: the latest gen-
erative work DEFLATE (Zhang et al., 2023), the
representative discriminative work CMA-CLIP (Fu
et al., 2022) and the extractive work M-JAVE (Zhu
et al., 2020). Detailed descriptions of baselines are
provided in Appendix C. Metrics: Following the
latest work (Zhang et al., 2023), micro-F1 (%) is
used as our evaluation metric and we determine
whether the extraction results are correct using the
exact match criteria, in which the full sequence of
words is required to be correct.

Implementation Details: We select the ViT-B/16
(Dosovitskiy et al., 2021) of the pre-trained CLIP
(Radford et al., 2021) as our image encoder. The
multi-granularity visual features contain 4 [cls] to-
kens extracted from every 3 layer of ViT-B/16. We
use LLaMA-7B (Touvron et al., 2023) as our LLM.
The default dimension of the two-layer visual pro-
jection network is set to 128, and the dimension of
the adapter in LLM is set to 8. LBC_Judge_Last is
used as our default Learning-by-Comparison strat-
egy. RepAdapter (Luo et al., 2023a,b) is adopted
as our LLM adapter in default. We use AdamW
(Loshchilov and Hutter, 2019) as the optimizer and

Clothing Footwear General
Methods 50 100 50 100 50 100 Average
LBC_Judge_Last 5401 6121 6733 7444 5731 6498 63.21
LBC_Judge_First 53.08 6025 66.78 74.64 5497 6471 6241
LBC_Better_Instance 52.34 60.22 6826 73.51 53.02 63.51 61.81

w/o LBC 49.76 5550 64.14 7346 47.85 5930 58.34

Table 3: Ablation study on Learning-by-Comparison
(LBC) strategies. All three strategies help improve
performance, indicating their effectiveness in reducing
model confusion. A visualization of the confusion ma-
trix is provided in Appendix E.

train the model for 15 epochs. During the genera-
tion stage, we use top-p sampling as our decoding
strategy with the temperature of 0.1 and the top-p
value of 0.75. We report the micro-F1 result from
a single run.

4.2 Performance Comparison with Baselines

The micro-F1 results with varying numbers of la-
beled data on the three multimodal datasets are
shown in Table 1 and Figure 4. As can be seen from
these comparison results, EIVEN can deliver sig-
nificantly better performance on average than the
other baseline methods. For instance, EIVEN can
surpass the recent generative approach DEFLATE
by 18.09%p on the Clothing dataset and 17.20%p
on the General dataset. Also, EIVEN is much more
data-efficient compared to previous generative at-
tribute value extraction approaches. Using only 100
labels per attribute value, EIVEN can outperform
or perform on par with other baselines trained with
all labels (i.e., 1000 labels per attribute value) on all
three datasets. These results indicate the effective-
ness of our efficient multimodal LLM framework
with the Learning-by-Comparison technique.

5 Ablation Study and Analysis

5.1 Effectiveness of Each Component

In order to quantify the impact of each compo-
nent and modality in EIVEN, we measure and

457



Question: What is Sleeve Style of this product?
Text Context: : [Title] Choies Women Wine Red Plunge
Neck Strappy Front Shirt S [Category] Shirts & Tops

GT Answer: Long Sleeve

DEFLATE: Strappy

EIVEN (ours): Long Sleeve

Question: What is Shoulder Style of this product?
Text Context: [Title] Persun Women's Stripes Heart Print
T-shirt, XL [Category] Shirts & Tops

GT Answer: Cold Shoulder

DEFLATE: Off Shoulder

EIVEN (ours): Cold Shoulder

Question: What is Neckline of this product?
Text Context: [Title] Michael Stars Modal Flutter Sleeve
Dress [Category] Dresses

GT Answer: Cowl Neck

DEFLATE: V-Neck

EIVEN (ours): Cowl Neck

Question: What is Pattern of this product?

Text Context: [Title] Lightweight Infinity Scarfs for
Women Print [Category] Scarves & Shawls

GT Answer: Galaxy

DEFLATE: Paisley

EIVEN (ours): Galaxy

Question: What is Material of this product?
Text Context: [Title] Vintage Like Hand Painted Faberge
Egg Rhinestone Jewerly Trinket Box with Cut Out

GT Answer: Metal

DEFLATE: Wooden

EIVEN (ours): Metal

Question: What is Boot Style of this product?
Text Context: [Title] Chemistry Women's Ankle Flat Grey
Transparent Clear Waterproof Martin [Category] Shoes
GT Answer: Rain Boots

DEFLATE: Flat

EIVEN (ours): Rain Boots

Question: What is Material of this product?
Text Context: [Title] Nulink 8 Grid Watch Box Organizer
Glass Jewelry Ring Storage [Category] Jewelry Holders
GT Answer: Leather

DEFLATE: Wooden

EIVEN (ours): Wooden

Question: What is Shape of this product?
Text Context: [Title] Star K Sterling Silver 8mm Shape
Cross of Love Pendant [Category] Charms & Pendants
GT Answer: Heart

DEFLATE: Cross

EIVEN (ours): Crucifix

S, i
2y i

Figure 5: Qualitative examples and comparisons between EIVEN and DEFLATE.

summarize the micro-F1 result of EIVEN after re-
moving different components and modalities in
Table 2. First, we observe that the performance
decreases after replacing multi-granularity visual
features with the single-granularity feature or re-
moving Learning-by-Comparison, suggesting that
both of them contribute to the final performance
of EIVEN. Notably, the performance of EIVEN-
Base is still much better than DEFLATE, justifying
the significant benefits of leveraging the LLM for
implicit AVE. Besides, we can see that removing
either the image or text context can significantly
hurt model performance, which demonstrates the
necessity of combining all these modalities in the
implicit attribute value extraction task. Interest-
ingly, the text modality plays the most important
role, even when most of the ground truth attribute
values cannot be explicitly identified from the prod-
uct text. The possible reason is that implicit at-
tribute values can still be inferred from the text
context given the strong prior knowledge learned
in LLM, as illustrated in the second product in Fig-
ure 1. On the other hand, extracting some product
attribute values from images requires fine-grained
visual understanding and thus is more challenging,
especially when labels are limited.

5.2 Learning-by-Comparison Strategies

We explore different Learning-by-Comparison
(LBC) strategies as illustrated in Figure 3. The
results of these strategies are presented in Table 3.
It is evident that all three strategies help improve
the model’s performance. This validates our moti-
vation that including two instances into the model’s
input and asking the model to compare their at-
tribute values can help alleviate model confusion
among similar attribute values and improve overall
performance. While there is no significant differ-
ence in performance among the three strategies,
we believe that more effective LBC strategies can
be devised to further enhance the model’s perfor-
mance, and we leave them for future exploration.

5.3 Qualitative Examples

Figure 5 demonstrates diverse qualitative examples
and responses from the most recent generative work
in implicit attribute value extraction DEFLATE
and our method EIVEN. Compared to DEFLATE,
EIVEN achieves overall better generation results
across diverse product categories and attributes. In
the first example, EIVEN extracts the correct at-
tribute values for the product’s sleeve style from
the product image. In contrast, DEFLATE is con-
fused by the strap in the neckline and generates
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incorrect answers. In the sixth example, EIVEN
demonstrates its ability to infer the correct value
"Rain Boots" for the attribute "Boot Style" from the
text context "Transparent Clear Waterproof Mar-
tin", prior knowledge, and product image. We also
visualize some failure cases in the last two exam-
ples. We observe that EIVEN can make mistakes
when multiple reasonable attribute values exist.

6 Conclusion

In this paper, we propose EIVEN, an efficient gen-
erative framework using multimodal LLM for im-
plicit attribute value extraction. EIVEN leverages
the rich internal knowledge of pre-trained LLM to
reduce reliance on attribute-specific labeled data
and adopts lightweight adapters for parameter-
efficient fine-tuning of LLM. Besides, to enhance
the visual understanding ability of our model, we
feed multi-granularity visual features into LLM and
propose Learning-by-Comparison strategies to alle-
viate model confusion among attribute values. We
also release the first open-source dataset. Through
extensive experiments on three multimodal im-
plicit attribute value extraction datasets, we found
that EIVEN can significantly outperform previous
works using fewer labels, making it an efficient
solution for implicit attribute value extraction.

Limitations

There are several limitations to our work. First,
we only compared our approach with a limited
number of baselines. This is because implicit mul-
timodal attribute value extraction is a relatively
new task, and also most of other multimodal at-
tribute value extraction works are not open-sourced
and very difficult to reproduce. We are planning
to establish the first open-source benchmark for
multimodal implicit AVE, which will also include
comparisons among pre-trained general-purpose
multimodal LLMs such as InstructBLIP (Dai et al.,
2023), LLaVA (Liu et al., 2023) and GPT-4V.
Second, we observed that some annotations from
MAVE (Yang et al., 2022) are not accurate for im-
plicit attribute value extraction, and there are some
semantically overlapping attribute values. Auto-
matic correction methods and human inspections
are needed to construct more suitable benchmark
datasets for implicit attribute value extraction. We
plan to conduct such exploration in the future. In
addition, more effective LBC strategies can be de-
vised to further improve model performance.
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A Detailed Discussion of Previous Works
in Multimodal AVE

Existing approaches for multimodal attribute value
extraction can be broadly categorized into three cat-
egories: extractive, discriminative, and generative
(Table 4). Extractive approaches pose this task
as a named entity recognition or sequence tagging
problem, where the model outputs the start and
end positions of the attribute value in the input text
(Zhu et al., 2020; Xu et al., 2019). However, they
are incapable of extracting implicit attribute values
hidden in textual contexts or images. Addition-
ally, they can only obtain raw value strings from
product text, instead of the canonicalized values
required for services such as faceted product search
(e.g., 'Short Sleeve’ instead of *Short Sleeves’ or
’Short Sleeved Shirt’). A further step is required
for extractive approaches to canonicalize extracted
raw value strings. Discriminative approaches clas-
sify each instance into a pre-defined set of attribute
values (Fu et al., 2022; Chen et al., 2022). Yet,
they cannot identify attribute values not in the pre-
defined set and are hard to scale to large amounts
of attributes. Ideally, we would like to eliminate
the need to re-train a separate model for every new
attribute or attribute value. Generative approaches
frame the task as generating answers to attribute-
related queries, using product information as a ref-
erence (Lin et al., 2021; Wang et al., 2022; Khan-
delwal et al., 2023; Zhang et al., 2023). Given their
nature of free-form text output, they are able to ad-
dress implicit attribute values, unseen values, and
can learn to directly obtain canonicalized values
and answer values for multiple attributes. Nonethe-
less, previous generative methods in multimodal at-
tribute value extraction require large amounts of la-
beled data for training and still perform very poorly
on datasets with implicit attribute values.

Approach Implicit Unseen Canonical Scalable
pp Values  Values Values Attributes
Extractive X v X 4
Discriminative v X v X
Generative v v v v

Table 4: Different AVE approaches and challenges.

B Dataset Statistics

The statistics of the introduced multimodal implicit
AVE datasets (Footwear, Clothing, General) are
provided in Table 6.

Clothing
Linear Sparse #Param 50 100 50 100

Footwear

Methods Average

RepAdapter v v 1.70M  49.76 5550 64.14 7346  60.72
MLP-Adapter X X 2.23M 5343 59.61 67.60 73.38  63.51
MLP-Adapter-L 4 X 223M 4586 54.89 6492 69.81 58.87

Table 5: Ablation study on the adapter in EIVEN-Base.

C Detailed Descriptions of Baselines

We describe in detail our baselines here: (1) M-
JAVE (Zhu et al., 2020): A representative extrac-
tive approach that labels the input textual prod-
uct description as "BIO" sequences related to at-
tributes. It utilizes the fused multimodal features
from the global and regional-gated cross-modality
attention layer to make attribute predictions jointly.
(2) CMA-CLIP (Fu et al., 2022): A recent discrim-
inative approach that uses CLIP and sequence-wise
attention to learn fine-grained multimodal product
features. A modality-wise attention is then pro-
posed to adaptively weigh the importance of visual
and textual modalities to discriminate values for
different product attributes. (3) DEFLATE (Zhang
et al., 2023): A T5-based generative approach that
consists of a generator to produce candidate at-
tribute values from product information from dif-
ferent modalities and a discriminator to ensure the
credibility of the generated answers.

D Ablation Study on Adapters

In this section, we study the performance of differ-
ent types of adapters from the perspective of linear-
ity and sparsity. RepAdapter (Luo et al., 2023a) is a
recently proposed linear adapter without an activa-
tion function and has a sparse structure via group-
wise transformation. The linear structure allows
parameters in the adapter to be re-parameterized
into LLM and thus introduces no inference latency.
The sparse structure helps reduce the number of
parameters and save memory consumption. Ta-
ble 5 shows the comparison result with the repre-
sentative MLP-adapter (Houlsby et al., 2019) in
LLM. MLP-Adapter performs the best in micro-
F1, while RepAdapter has the fewest parameters.
We also observe that the linear structure generally
sacrifices model micro-F1 performance in our task,
and sparse transformation can boost model perfor-
mance as well as reduce the number of parameters.
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Dataset # Samples # Values # Head # Tail Attributes
Footwear 26868 32 1000 229  Athletic Shoe Style, Boot Style, Shaft Height, Heel, Toe Style
Clothing 24664 30 1000 211 Neckline, Dress Length, Sleeve Style, Shoulder Style
General 16891 25 1000 117  Pattern, Material, Shape
Total 68423 87 1000 117 -

Table 6: Dataset statistics. “’# Head’ and “’# Tail’ denote the maximum and minimum amounts of attribute value
instances among all attributes in the dataset. More details about these datasets can be found in Section 3.
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Figure 6: Confusion matrix for the Pattern attribute.
LBC_Judge Last is used in this example as the
Learning-by-Comparison strategy. It can be observed
that the confusion among attribute values is signifi-
cantly reduced, demonstrating the effectiveness of our
Learning-by-Comparison technique.

E Confusion Matrix

Figure 6 visualizes the confusion matrix of EIVEN
and DEFLATE for the Pattern attribute on the Gen-
eral dataset using all labeled data. It can be ob-
served that EIVEN has much less confusion com-

pared to DEFLATE, which validates our utilization
of LLM and our Learning-by-Comparison strategy.
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