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Abstract

Automation systems that can autonomously
drive application user interfaces to complete
user tasks are of great benefit, especially
when users are situationally or permanently
impaired. Prior automation systems do not
produce generalizable models while AI-based
automation agents work reliably only in sim-
ple, hand-crafted applications or incur high
computation costs. We propose UINav, a
demonstration-based approach to train automa-
tion agents that fit mobile devices, yet achiev-
ing high success rates with modest numbers of
demonstrations. To reduce the demonstration
overhead, UINav uses a referee model that pro-
vides users with immediate feedback on tasks
where the agent fails, and automatically aug-
ments human demonstrations to increase diver-
sity in training data. Our evaluation shows
that with only 10 demonstrations UINav can
achieve 70% accuracy, and that with enough
demonstrations it can surpass 90% accuracy.

1 Introduction

The next frontier in artificial intelligence is agents
that autonomously operate computers as humans
do. Instructed by users in natural language, these
agents are especially valuable when their users have
visual or motor disabilities or when they are situa-
tionally impaired (e.g., driving, cooking). We are
particularly interested in agents that can execute
human tasks by interacting directly with the user
interface (UI) of a running application. These so-
called UI automation agents (Liu et al., 2018; Li
et al., 2020; Humphreys et al., 2022) can scale well
to support a myriad of tasks because they do not
depend on third-party APIs.

Existing approaches to UI automation range
from UI scripting to AI-based agents. UI scripts
can work reliably, but they involve coding or man-
ual demonstrations (Kundra, 2020; Barman et al.,
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2016; Riva and Kace, 2021; Li et al., 2017) and
they cannot tolerate well changes in the UI and
workflows, thus leading to high maintenance costs
– this is, however, what enterprises use to automate
business workflows (UIPath, 2023). AI-based ap-
proaches can scale better. Using imitation learning
and reinforcement learning (Liu et al., 2018; Gur
et al., 2018), agents are trained to navigate the
web autonomously. However, their synthetic and
simplified test environments (Shi et al., 2017) and
their dependency on large amounts of demonstra-
tions (Humphreys et al., 2022) make them hard to
deploy. Recent work leverages Transformers (Li
et al., 2020; Li and Li, 2023; Venkatesh et al., 2022;
Wang et al., 2023) and pre-trained large language
models (LLMs) (Yan et al., 2023; Venkatesh et al.,
2022; Zheng et al., 2024). Despite the performance
improvement, these solutions come with large re-
source costs (multiple days of training on hundreds
of GPUs/TPUs and high inference costs).

A practical approach to UI automation requires
trading between accuracy, generalizability and
computational costs. We find a sweet spot be-
tween these three properties, and propose UINav, a
demonstration-based system designed to produce
lightweight neural agents that can run on mobile
devices while yielding good success rates.

As in prior work, UINav needs to address the
challenge of how to achieve good success rates with
fewer demonstrations. We observe that the demon-
strations required to achieve good performance dif-
fers widely across tasks and environments. If the
environment is relatively static even a handful of
demonstrations is sufficient; for tasks that must
work across many different UIs more demonstra-
tions are needed. When collecting demonstrations,
UINav provide users with immediate feedback on
which tasks are failing and may benefit from addi-
tional demonstrations, and which are satisfactory.
It does so through a referee model which is trained
with the same set of demonstrations used to train
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the automation agent, but with a different goal: pre-
dicting whether a task is successfully completed
(rather than predicting which UI action to perform).

Another challenge UINav addresses is how to in-
crease the robustness of automation agents against
system delays and changes in the UI. It does so
through three key techniques. First, every UI ac-
tion is executed as a small program composed of
lower-level operations with status checks. These
programs, referred to as macro actions, abstract
the system-specific details thus greatly reducing
the agent’s state space and therefore the num-
ber of required demonstrations. Second, UINav
adopts demonstration augmentation where human
demonstrations are augmented by randomizing
non-critical UI elements to increase their diver-
sity. Finally, through utterance masking variable
sub-strings in utterances are abstracted out.

We develop UINav using an internal dataset of
40+ tasks and test is on actual Android phones. We
also evaluate it on a public dataset, where UINav
outperforms various baselines and demonstrates
generalizability. Overall, we make the following
contributions: (i) a practical system to build UI
automation agents that achieve near perfect suc-
cess rates on previously seen tasks and that can
be deployed to mobile devices; (ii) an error-driven
process to collect demonstrations paired with aug-
mentation techniques and macro actions; and (iii) a
comprehensive evaluation demonstrating UINav’s
advantages over state-of-the-art systems.

2 Related work

UI automation scripts. Record-and-replay tools
like Selenium (Kundra, 2020) can be used to facili-
tate the generation of UI automation scripts. These
scripts can also be integrated with robotic process
automation tools (UIPath, 2023; Automation Any-
where, 2023; Blue Prism, 2023). Programming by
demonstration tools (Sugiura and Koseki, 1998;
Leshed et al., 2008; Lin et al., 2009; Li et al., 2010;
Barman et al., 2016; Li et al., 2017; Chasins et al.,
2018) are advanced record-and-replay tools that
can generate fully functional UI scripts and even ac-
tion graphs (Riva and Kace, 2021) from recordings
of task interactions (demonstrations), which could
also be provided in the format of video record-
ings (Bernal-Cárdenas et al., 2020; Chen et al.,
2022). Overall, a major downside of this line of
work is that these systems do not produce models
that generalize to new task workflows and UIs.

AI-based automation. Transformer-based archi-
tectures (Li et al., 2020; Bai et al., 2021; He et al.,
2021; Banerjee et al., 2022; Li and Li, 2023) and re-
inforcement learning approaches (Liu et al., 2018;
Gur et al., 2018; Li and Riva, 2021) have been pro-
posed to train agents capable of navigating apps
and websites when provided with natural language
instructions. Yet, it is unclear how well these sys-
tems perform in a variety of real-world environ-
ments and scale across task categories because ei-
ther they have been tested in synthetic webpages of
10–50 UI elements (Shi et al., 2017) or on limited
datasets (Li et al., 2020; Burns et al., 2022). Recent
work leverages LLMs to ground natural language
instructions in UIs (Venkatesh et al., 2022; Wang
et al., 2023; Yan et al., 2023; Zheng et al., 2024;
Rawles et al., 2023). These approaches come with
a large training overhead (e.g., multiple days of
training on hundreds of GPUs/TPUs) and a high
inference cost which prevents them from running
on mobile devices.

In this paper, we extend our previous work (Li,
2021) where macro actions were introduced but
was limited to work with OCR and icon recogni-
tion, into a full system, that bridges the gap be-
tween programming by demonstrations and AI-
based systems by providing an easy-to-learn sys-
tem to train robust, multi-task agents for UI naviga-
tion in real-world applications. While the system
requires manual demonstrations for training, it pro-
vides an error-driven collection of demonstrations
where testing scenarios are automatically gener-
ated and evaluated by the system, thus reducing
the number of redundant demonstrations. The er-
ror driven demo collection of UINav is inspired by
the DAGGER (Ross et al., 2011) algorithm and we
show that it is effective in reducing the number of
demonstrations for both sequential (referee) and
non-sequential (agent) models.

3 Why is UI automation hard?

We study the problem of how a UI automation sys-
tem can generalize to new execution environments,
including different apps and different tasks, without
requiring an excessive number of demonstrations.
To illustrate the challenges we use an apparently
simple task, search, i.e., operating the search bar
of an app. Two aspects make this task challenging.

Search is a universal task that must work across
a myriad of apps where search bars can take many
different formats. Some search bars require the user
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Figure 1: High-level architecture of UINav.

to type some keywords and then click an icon (typ-
ically on the right hand-side); others, as the user
types, automatically display search results which
can be directly opened; some others have an ad-
ditional field (e.g., a category) which must be set
beforehand; there are also search bars that are hid-
den and reveal only upon clicking on an icon; etc.

The second axis of complexity regards the
agent’s start state. When an agent is requested
to search in a specific app, the user’s device screen
may not display the target app or may display it
in a page (state) without any search functional-
ity. The agent must first understand how to navi-
gate to the state offering the search function, which
may involve navigating back, launching a different
app, or dismissing welcome screens and ads. Even
when the environment already shows the desired
search widget, its state may need to be reset, e.g.,
by deleting search terms previously entered (see
the YouTube example in Fig. 6 in the Appendix).

In general, in a real environment, an agent is ex-
posed to many different screen conditions caused
by a combination of factors: different apps, dy-
namic app content, previous interactions, layout
variance across devices, UI changes across app/OS
versions, ads and notifications, etc. An agent needs
to ignore irrelevant UI elements and navigate to
relevant states. One way to tackle this variability
is through more demonstrations, but with obvious
overheads. UINav’s first contribution is to adopt
an error-driven process to collect demonstrations
(§4.2). Its second contribution is to amplify the
learning brought by each demonstration by auto-
mated augmentation (§5). Finally, to address vari-
ability issues due to system delays, rather than rely-
ing on demonstrations UINav takes a programmatic
approach by introducing macro actions (§5).
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Figure 2: The neural network of the agent model.

4 System design

Fig. 1 shows the high-level architecture of UINav.
Given a task represented by a natural language ut-
terance and an observation of the device state (i.e., a
representation of what is currently displayed on the
screen), a neural network-backed agent responds
with its choice of action to complete the task. The
predicted action is executed by the environment
by interacting with a device’s system (an emulator
or a real phone). Then, the agent is provided with
a new observation describing the new state and a
new action is predicted. This setup is similar to
that of a reinforcement learning agent, but UINav
also includes a second agent called referee, which
is responsible for judging the completion status of
a task (episode) at each time step.

The development of UINav agents (left of Fig. 1)
involves first collecting human demonstrations for
some target tasks, then training the neural networks
of the agent (§4.1) and referee (§4.2), and finally
evaluating them on the device. Failures of either the
agent or the referee are recorded and used to guide
the collection of new demonstrations to be used in
the next round of training. The development loops
over these steps until no more errors of either the
agent or the referee are found.

4.1 Agent’s neural network architecture

The UINav agent consists of an encoder-decoder
architecture (Fig. 2). It perceives the state of the
device through observations of what is currently
displayed on the screen, represented by the set
of UI elements composing it. Each UI element
is described by a set of attributes: type (button,
icon, etc.), text (visible text, content description,
resource identifier, etc.), on-screen position, utter-
ance matching (whether on-screen text matches
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the utterance1), and state (e.g., whether a check-
box is selected). The screen representation can
be generated from raw pixels processed by screen
understanding techniques (Chen et al., 2020; Wu
et al., 2021; Zhang et al., 2021), which also in-
clude icon detection and text recognition, or from
a tree-structured representation of the UI, such as
the Android accessibility tree. Our implementation
dynamically switches between the two sources of
screen representation based on simple heuristics,
such as whether the target app is known to provide
poor accessibility support or whether the number
of accessibility nodes is extremely small.

Then, the input to the neural network of the agent
is a set of UI elements and an utterance. Each UI el-
ement is represented by a vector concatenated from
the feature vectors of its attributes. Text labels of
UI elements are encoded by a language model (De-
vlin et al., 2019). The feature vectors of the UI
elements are fed into a Transformer encoder. The
output of the encoder is a function of the encoding
of each UI element plus its attention over all other
UI elements on the screen, including itself.

The decoder predicts which action to perform.
This involves predicting (i) the UI element on
which to perform the action, (ii) the type of action
(click, type, etc.), and (iii) any argument for the ac-
tion. Actions (summarized in Table 3, §A.2) can be
of two types. Element actions (click, focus_and_type,
dismiss) manipulate a specific element, while global
actions (wait, back, scroll, open_app) are general op-
erations or platform-specific functions.

The decoder uses a single cross-attention mod-
ule, with the utterance embedding serving as the
query vector and element encodings serving as keys
and values. The largest attention weight is used to
select the element to act upon, while the vector out-
put of the cross-attention module is passed through
two independent multi-layer perceptrons (MLP) to
predict action type and argument.

In its essence, the agent’s neural network imple-
ments a scoring system. For any given screen, all
its elements are scored, and the highest-scored one
is selected. Due to the attention in the encoder, for
any UI element, its relationship with all the other
elements can be encoded. The Transformer model
learns how different combinations of UI elements
and utterances map to actions, and uses this knowl-
edge to rank elements to act on. It is essential that

1Similarly to previous work (Liu et al., 2018), we compute
utterance matching as the average of the similarity scores of
all words in the UI element’s text with the utterance.

the model learns to evaluate single UI elements in
the context of others because the meaning of UI
elements is often context sensitive (Banerjee et al.,
2022) – elements of similar appearance (color, size
and shape) can have different functions but neigh-
boring elements like text labels can help resolve the
ambiguity. For specific examples on how UINav
contextually evaluates UI elements see §A.8.

4.2 Referee model
In the agent’s action space there is no “done” action.
This means that the agent does not stop on its own
but instead relies on the environment to terminate
a task. This is common practice in reinforcement
learning. Instead of building task-specific termi-
nation logic, we train a referee model to predict
whether a task is completed at each step and what
its outcome is. The referee is trained using the
exactly same set of demonstrations as the agent,
hence it does not incur extra effort in data collec-
tion. However, it also serves a second purpose.

A well-known challenge in demonstration-based
systems is that they can require excessive developer
time to collect a sufficient number of demonstra-
tions (Lau, 2009) and that it may be difficult to
provide samples that are sufficiently different from
each other (Myers and McDaniel, 2001; Lee et al.,
2017). By automatically evaluating the execution
of a currently-trained agent and identifying fail-
ing tasks, the referee guides users towards collect-
ing new demonstrations only for critical scenarios.
Failed executions are saved along with all their
parameters and passed to the demonstrator.

The neural architecture of the referee model is
similar to that of the agent except that it is wrapped
in a recurrent neural network to consider the history
of actions (see §A.3 for more details). The referee
predicts one out of 4 labels: (1) SUCCESSFUL: the
task is completed successfully; (2) FAILED: the task
has failed or has reached the maximum number of
allowed steps; (3) PENDING: the task is ongoing; or
(4) INFEASIBLE: the task cannot be executed.

4.3 Utterance masking
UINav’s focus is on generalizing to different execu-
tion environments without requiring an excessive
number of demonstrations. However, another large
source of variability is the input instruction pro-
vided in natural language. To address this problem,
we design UINav agents to learn general task work-
flows rather than specific task instances. We do so
by pre-processing utterances to identify sub-string
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that represent the variables of a task. For example,
in Search for tiktok in Google, tiktok is the phrase to
search for and can be replaced by other keywords.
The variable sub-strings are masked and replaced
by placeholders before being encoded, so that the
utterance embedding is independent on the specific
instances. As a result, there is no need to train
with different utterances covering the distribution
of variables.

For any utterance, all the replaced sub-strings
are included in the list of entities associated with
the task. A matching vector is computed for each
UI element on the screen and is included in the ele-
ment attributes passed as input to the agent. In the
matching vector, each scalar is in the range of [0, 1]
and computed as the cosine similarity between the
text label of the UI element and the corresponding
entity string.

Variable sub-strings can be identified by either
following pre-defined patterns, through the use
of explicit delimiters, or semantic parsers (Ka-
math and Das, 2019). LLMs can also be em-
ployed (Shin and Van Durme, 2022; Drozdov et al.,
2022; Mekala et al., 2022). UINav still works
without utterance masking but may require more
demonstrations to reach similar accuracy (see abla-
tion analysis in Table 2).

5 Increasing robustness and efficiency

We have described how UINav helps developers
balance accuracy and number of demonstrations.
Next, we describe the techniques that increase the
agent robustness in the face of system delays, UI
changes, and variations in task descriptions.

Action validation and macro actions. Control-
ling UIs of an actual device involves dealing with
various system issues. There are unavoidable de-
lays between the time a state is collected from a
device and when a predicted action is ready to be
performed. Screens can also be slow at loading or
updating, hence an agent needs to wait for them to
stabilize. These delays are particularly noticeable
on a mobile device. To deal with these issues, rather
than modeling this variability through more demon-
strations, we take various programmatic measures.

First, before executing an action, UINav vali-
dates it by checking whether a referenced UI ele-
ment is still on the current screen and if so, whether
it has changed. If the action is not applicable any-
more, it requests a new prediction.

Table 1: Inference time (msec) on high/low-end phones.
None of the models utilize any accelerators.

Device Agent Referee SmallBERT Total
High-end 1.98 2.21 262.79 267.00
Low-end 4.40 5.24 427.63 437.27

Second, every action is executed as a small pro-
gram that is composed of lower level operations
with status checks. Such a program is referred to
as macro. Each macro is implemented following a
state transition graph and it is atomic so that while
a macro is running the agent stays idle and changes
to the screen are not visible to it. An example of
macro action is focus_and_type which comprises 4
low-level actions: clicking the input field to obtain
focus, waiting for the blinking cursor to appear, typ-
ing the text in the field, and (optionally) pressing
Enter. See §A.4 for more details.

Demonstration augmentation. To further limit
the number of required demonstrations and amplify
the learning brought by each one, UINav also aug-
ments the collected demonstrations by randomizing
the attributes of randomly-selected, non-critical UI
elements. This teaches the agent which elements
may be safely ignored, and ultimately makes it
more tolerant to UI changes. Non-critical UI ele-
ments have their attributes modified with a prede-
fined probability by either (i) replacing the embed-
ding of their text labels with random vectors, or (ii)
by adding random offsets to the four scalars of their
bounding boxes, which is equivalent to randomiz-
ing both the element’s position and size. Despite its
simplicity, demo augmentation is highly effective
at improving UINav’s performance (see Table 2).

6 System evaluation

We built UINav for Android. Both the agent and
referee are implemented in TensorFlow. The agent
model has 320k parameters and its tflite version
occupies 1.3MB, while the referee has 430k param-
eters and it is 1.8MB large. For text encoding we
use SmallBERT (Turc et al., 2019) and convert it to
a 17.6MB tflite model. No quantization is applied
during the conversion (More implementation de-
tails in §A.5). As shown in Table 1), both the agent
and referee take only a couple of milliseconds to
execute on a high-end phone (e.g., Pixel6pro) and
around 5 milliseconds on a low-end phone (Pixel
3a). BERT dominates the total time.
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Table 2: Task and step accuracy on MoTIF.

Model App seen task unseen App unseen task seen
task acc step acc task acc step acc

Seq2Seq 22.5% 40.4% 18.0% 31.3%
MOCA 21.3% 40.0% 17.0% 32.7%
Seq2Act 32.4% 66.4% 28.3% 67.7%
UINav 37.9% 73.7% 36.8% 66.8%
UINav+aug 39.4% 74.9% 39.7% 68.4%
UINav+aug+utt 68.3% 89.7% 59.6% 81.9%

6.1 Agent and referee accuracy

We evaluate UINav on the MoTIF dataset (Burns
et al., 2022). MoTIF includes two splits: (i) app
seen task unseen which tests whether a model can
generalize to new tasks, and (ii) app unseen task
seen which tests whether a model can generalize to
new apps. As in the evaluation of the MoTIF sys-
tem, we train UINav using low-level instructions,
and compare against three baselines: Seq2Seq
(Shridhar et al., 2019), MOCA (Singh et al., 2020),
and Seq2Act (Li et al., 2020). More training details
in §A.7. We measure (i) step accuracy, the percent-
age of task steps where the model and the dataset
have matching outputs, and (ii) task accuracy, the
percentage of tasks with all steps matching.

Table 2 reports the results. For ablation pur-
poses, we consider three variants of UINav, de-
pending on whether demonstration augmentation
(+aug) and utterance masking (+utt) are enabled.
UINav+aug surpasses all baselines by 7 and 11
percentage points in task accuracy and 8.5 and 0.7
points in step accuracy. Without demo augmen-
tation UINav outperforms all three baselines, in
all except one case (step accuracy in app unseen
and task seen). This demonstrates the effectiveness
of the UINav design and how demo augmentation
effectively exposes the model to a larger variety of
training conditions thus improving generalizability.
In this dataset, generalizing to new apps appears
to be harder than generalizing to new tasks. With
the addition of utterance matching, on unseen apps,
UINav still achieves 59.6% in task accuracy and
81.9% in step accuracy, well above all baselines.

To evaluate the referee model we use again the
MoTIF dataset as its traces are labeled as “feasi-
ble” or “infeasible”, depending on whether the task
was successfully completed. We compare against
the MoTIF system, specifically designed to predict
task feasibility/infeasibility. As the UINav referee
predicts 4 states, we map SUCCESSFUL/ PENDING to
“feasible” and FAILED/INFEASIBLE to “infeasible”.
As Fig. 3 shows, our referee model produces a sig-
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Figure 3: Referee model compared to the MoTIF sys-
tem (Burns et al., 2022) using the MoTIF dataset.

nificantly better F1 score, 80.9% vs. 63.5%, and it
is especially better in identifying infeasible tasks.

6.2 Demonstration effort

To evaluate the effectiveness of the error-driven
demo collection approach of UINav we cannot use
static datasets. Hence, we quantify the demon-
stration effort of UINav by using it to train high-
accuracy agents for 43 different tasks across 128
Android apps and websites, selected based on pop-
ularity (e.g., Gmail, Contacts, Amazon, Airbnb,
linkedin.com, target.com, etc.). Please see §A.9
for the full list. For demo collection we build a
dedicated GUI which can be connected to Android
phones or emulators (see §A.6). The GUI supports
macro actions and error-driven data collection. Dur-
ing data collection and testing, the environment
automatically performs a few random operations
at the beginning of each task, including randomly
changing pixel densities, font scales, device orien-
tation, and issuing a sequence of random number
of clicks on randomly selected UI elements. The
purpose is to start a task from a random state and
to diversify data coverage.

We collect demonstrations with the goal to
achieve near perfect success rates. With the ex-
ception of the search task we collect from 10 to 106
demonstrations (on average 32.7) per task, 3661 in
total (Fig. 4). Collecting 10 demonstrations takes
less than 10 minutes. The search task must work
across 100+ apps hence requiring 1700+ samples.
To verify this data is sufficient to train accurate
agents, in a second phase we collect additional 596
test samples. Because of the random initialization
of the environment, and the dynamic characteris-
tics of a live system, it is unlikely that the models
see a training sample that is identical to a test one.
The UINav agent achieves 90.6% task accuracy and
95.8% step accuracy; the referee is 99.5% accurate.
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Figure 4: Number of demonstrations in the training set collected for 43 tasks across 128 apps/websites.

Please note that the numbers of demonstrations
in Fig. 4 are most likely more than the minimum
required to reach the same accuracy, as we priori-
tize improving accuracy over reducing the number
of training samples. It is less effort to add new
demonstrations as a batch than finding out whether
a specific demonstration improves model accuracy.

In an informal user study, a few software engi-
neers with no prior experience using UINav utilized
it to build agents for a few tasks. They started from
scratch, without using any existing demonstrations.
The time spent on collecting data for each task was
between 10 to 20 minutes while all participants
claimed their resulting agents performed perfectly.

6.3 Multi-task vs. single-task agents

To reduce the resource overhead on mobile de-
vices, we train a single multi-task agent. We show
this choice is preferable also for small numbers of
demonstrations. From our in-house dataset, we se-
lect the 10 tasks with the largest number of demon-
strations. We then train one multi-task UINav
agent using demonstrations across all 10 tasks and
10 single-task UINav agents using demonstrations
from individual tasks. We repeat the training for
an increasing number of demonstrations. As Fig. 5
shows, the multi-task agent reaches 51% accuracy
even with just one demonstration, demonstrating
transfer learning across tasks is happening. The av-
erage accuracy for both multi-task and single-task
agents surpasses 80% with 40 demonstrations.

7 Limitations

To limit the number of required demonstrations, the
UINav agent makes decisions based only on the
contents of the current screen and does not utilize
information from previous screens. However, if a
task truly requires an agent to remember previous
states or actions, then the current architecture of the

Figure 5: Comparison between multi- and single-task
agents with an increasing number of demonstrations.

agent model will fail. Our assumption is that a well-
designed UI often presents all the information that
is needed for successful human interaction on the
current screen. The accuracy of our memory-less
agents proves that this is the case for the tasks tested
so far. For tasks or UIs that require memory, the
UINav agent model can be enhanced with memory
through either a recurrent neural network or by
padding previous states in its input.

Our approach depends on UI elements for both
representing features of screens as well as defining
actions. It will not work if a screen representa-
tion fails to capture critical UI elements. This can
happen also when accessibility trees miss critical
nodes because content embedded in WebViews and
Canvas is generally not captured.

8 Conclusions

We presented a demonstration-based system for
building small and fast UI automation agents
that are suitable for mobile devices. Our ap-
proach requires small human effort and no coding
skills. With modest numbers of demonstrations
UINav agents achieve near perfect success rate on
previously-seen tasks and with more effort they can
generalize well to new tasks and applications.
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A Appendix

Ethical considerations

A use case that motivates UINav agents include
screen readers for visually-impaired users. As ac-
cessibility labels are often missing or incomplete in
mobile apps, UINav can provide them with access
to a much wider range of applications and func-
tionality. Another potential use case of UINav is
task automation, which has societal, security and
privacy implications. An agent may leak private
information or carry out a task in an unacceptable
way or produce unwanted side effects. Malicious
actors could also use UINav agents for undesired
purposes such as overriding anti-fraud mechanisms
or manipulating applications to achieve undesirable
goals.

To develop UINav we collected a dataset inter-
nally. The demonstrators were asked to avoid en-
tering any private information and received fair
compensation.

A.1 An example task: search in YouTube
Fig. 6 shows the UINav agent searching in
YouTube. The agent dismisses popups twice (a)
and (b) to reveal the search bar. It then clicks
the "X" button to erase the previous search phrase
“something” (c). The system does not reach the de-
sired start state for a search until the screen shown
in (d), where the agent sets the focus on the search
bar to then enter the search term.

Fig. 4 shows the SEARCH task requires over 1700
task demonstrations because it must work for 100
or more different apps and websites. All other tasks
are specific to a single app and thus require fewer
samples, 33 on average.

A.2 Action space
The types of action the agent can predict define
its action space, summarized in Table 3. Actions
can be of two categories. Element actions manipu-
late a specific element. Global actions are general
operations or wrappers for platform-specific func-
tions (e.g., for launching an app). All the tasks
that we have tested so far are solvable by these two
categories of actions. In the future, we expect to
expand the action space to incorporate additional
functionality including deep-links and APIs.

A.3 Referee model
The referee is a recurrent neural network (RNN)-
based model (Fig. 7). The attention over
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Figure 6: UINav agent searches in YouTube. The pink arrows highlight the agent’s actions that are also annotated
by red boxes and texts. To start using the search bar the agent must first dismiss popups (twice) and clear the search
bar. (a) Clicks the back button to dismiss a popup ads; (b) Clicks "X" to dismiss the install page of Audible; (c)
Clicks "X" to erase the previously entered search phrase “something”; (d) Focuses on the search bar to enter a new
search term.

Table 3: UINav action space.

Element
click <elem> Clicks the center of the specified element.

actions
focus_and_type <elem,text> Sets focus on the specified element, types the

specified text, and optionally presses Enter.
dismiss <elem> Clicks outside of the specified element.

Global

wait Waits until the next observation is received.

actions

back Goes back to the previous app screen.
scroll <left|right|up|down> Scrolls in the specified direction.
open_app <app_name> Launches the specified application.

Transformer-encoded UI elements is similar to that
of the agent model, except that the query is the in-
put utterance concatenated with the action history
(the action performed in the previous step and its
outcome). Although action history could be de-
rived from previous screen representations, feeding
it as input directly makes it less challenging as the
referee does not have to learn it. The output of
the attention module is then fed into a gated re-
current unit (GRU) (Cho et al., 2014). The GRU
takes this along with the previous internal hidden
state as inputs to predict the current status of the
step: (1) SUCCESSFUL: the task is completed and it
is successful; (2) FAILED: the task has failed or has
reached the maximum number of allowed steps; (3)
PENDING: the task is ongoing; or (4) INFEASIBLE:
the task cannot be executed (e.g., the task may not
be well defined). Failed executions are saved along
with all their parameters and passed to the demon-
strator.

GRU cell
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attended UI element
ht ht+1
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Task status
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attention 
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UI elements utterance action 
history
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Figure 7: The architecture of the UINav referee model.

A.4 Macro actions

In UINav, every action is executed as a small pro-
gram that is composed of lower level operations
with status checks. Such a program is referred
to as macro. Macro actions abstract the system-
specific details, thus making it possible to build
cross-platform agents and simplifying the agent’s
logic. Each macro action is implemented following
a state transition graph. Fig. 8 shows the state tran-
sition graph for most macro actions that result in
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Figure 8: The state transition graph for macro actions
resulting in screen changes.

screen changes, such as click and back. It starts
at S0, and transitions among the other states accord-
ing to incoming events, such as Action dispatched
and Screen changed, and exits either successfully
(S6) or with a failure (S5). The graphs of other
macro actions are similar.

Each macro is atomic so that the agent stays idle
while a macro is running. During the execution of a
macro action, changes to the screen are not visible
to the agent, and do not contribute to the state space.
In particular, each macro action is designed to en-
capsulate transitional screens, and finishes when
the screen becomes stable or a timeout is reached
(required for dynamic screens such as playing a
video).

Another advantage of using macro actions is that
they package highly dependent, low-level actions.
Fig. 9 shows an example. The focus_and_type action
(inspired from MiniWoB (Shi et al., 2017)) consists
of 4 low-level actions: clicking the input field to
obtain focus, waiting for the blinking cursor to
appear, typing the text in the field, and (optionally)
pressing Enter. (Note that large arrows in purple
are drawn to highlight interesting areas.)

As a result, we are able to utilize a memory-less
neural network architecture for the agent. In other
words, our agent picks an action based only on
the information of the current screen. This makes
the neural network easier to train. Additionally,
a memory-less neural network can be trained us-
ing sets of single screenshots, rather than long se-
quences of screens which can be hard to collect.

A.5 Implementation

We built UINav for the Android platform. How-
ever, our design is applicable to other platforms

and some of our techniques (e.g., macro-actions
and screen representation) are specifically designed
to be platform agnostic. Both the agent and the ref-
eree models are implemented in TensorFlow. We
employ two inference modes, off-device and on-
device. During development we use the Python
API of TensorFlow to test the models off-device.
Once stable, the models are converted to Tensor-
Flow Lite (tflite) for on-device inference. Both
agent and referee models utilize the same pre-
trained language model to encode utterances and
texts appearing on screens. We choose the small-
est model, L-2_H-128_A-2, of SmallBERT (Turc
et al., 2019), and convert it to a 17.6MB tflite model.
Note that no quantization is applied during the tflite
conversion of any of the above models. For effi-
ciency, the sentence encoding computation of the
agent and referee models are shared.

The selection of SmallBERT over a larger lan-
guage model is mainly for on-device inference. We
restrict the input utterances to predefined patterns
so that arguments can be parsed through regular ex-
pressions. With the help of utterance masking, our
models deal with higher data diversity and main-
tain high-accuracy. If an LLM can be used, such
restrictions won’t be necessary.

For both off-device and on-device modes, we
rely on an in-house built companion Android app
to extract screen representations and to perform
macro actions. For off-device mode, we utilize
AndroidEnv (Toyama et al., 2021) to communicate
between the companion app and our learning en-
vironment. For on-device mode, all the models
interact with the companion app directly.

The neural networks are agnostic to whether the
Android accessibility tree or screen understanding
techniques are used to produce screen representa-
tions. We include demonstrations using both data
sources in the same pool of training samples. Both
approaches have their limitations. There are icons
that are unrecognizable by the icon detectors of
screen understanding models and the output of text
recognizer may contain errors. On the other hand,
visible UI elements may be absent in the corre-
sponding accessibility tree if the app contains Web
views, Canvas, etc.

A.6 UINav Console
To collect demonstrations, we have developed a
dedicated application, the UINav Console, that can
be seen in the right-half side of the screenshots in
Fig. 10–12. At each step of a demonstration, a
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Figure 9: The focus_and_type macro action consists of four steps: (a) clicking the input field (“Search in Drive”)
to obtain focus; (b) waiting for the blinking cursor to appear; (c) typing the specified text (“reinforcement learn-
ing”); and (d) pressing Enter and wait for the screen to update.

user specifies a macro action, including action type,
referenced element, and action argument (if any),
and then requests execution of the action.

It is typically less effort to complete a task us-
ing the UINav Console than directly manipulating
the device. For example, entering text using the
console takes at most four clicks (clicking the tar-
get element, opening the drop-down list of can-
didate texts, selecting the text to input, clicking
the focus_and_type button), while manipulating
a real device requires keying-in individual char-
acters. The UINav Console also exposes system
APIs, such as opening an app through intents, that
are not available through the actual device. While
using the console may encourage users to com-
plete a task in a way that is different than how they
might do through a native interface, the main goal
of a trained agent is to successfully complete tasks.
Whether it behaves like a human is less important.

In the UINav workflow, new human demonstra-
tions are collected only in scenarios where the cur-
rent version of the agent or the referee make errors.
The demonstration collection interface is integrated
with the agent and referee. At each step, the agent’s
choice of an action and its optional argument are
assigned to the internal states and are visualized
on the GUI. It is not uncommon that an agent pro-
duces correct outputs for unseen scenarios due to
the neural networks’ capability of generalization.
In such cases, a demonstrator simply proceeds with
a single click to the next step, thus avoiding the
effort of manually specifying the action parame-
ters. Error-driven demonstration collection signifi-
cantly reduces human effort as well as the number
of training samples, which ultimately leads to lower

training times.

A.7 Model training details
Training the agent model. For the agent model,
demo augmentation happens dynamically with a
1% probability for a sample to remain unchanged.
The model is optimized by an Adam optimizer with
a fixed learning rate of 1e-3. Initially a training
runs up to 100,000 samples and can be terminated
earlier if the test accuracy stabilizes. If new demon-
strations are added, the agent will be trained with
additional 20,000 samples. It is trained on CPU or
GPU with a batch size of 256.

Training the referee model. For the referee
model, each demonstration is augmented to 10 sam-
ples at a pre-possessing stage. The model is opti-
mized by an Adam optimizer with a fixed learning
rate of 1e-3. A training takes up to 30 epochs and
can be terminated earlier if the test accuracy sta-
bilizes. It is trained on CPU or GPU with a batch
size of 128.

A.8 Case study of agent capabilities
In the following figures we report screenshots and
the associated UINav console. The large arrows in
purple are drawn on the screenshots to highlight
interesting areas. In the console it is the annotated
screen, where UI elements are identified using blue
and green boxes. An element highlighted by a red
box indicates that it is selected to receive the next
action.

Sending an email with multiple text inputs.
Fig. 10 shows the image sequence of a UINav agent
completing the “send email” task. The task utter-
ance is “send an email to uinav@gmail.com with
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Figure 10: The UINav agent sends an email: (a) Clicks the compose button; (b) Types the email address; (c) Types
the subject; (d) Types the email content. The action of clicking the send button is not shown due to space limitation.
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Tom

Jerry

Tom

(a)
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Jerry

Jerry

(b)

Figure 11: Two cases of an agent sending a message. The task description is “send the following message in
WhatsApp Messenger to Jerry: Are you coming to the meeting?”. (a) In the message view to a different recipient
from the one in the utterance; (b) In the message view of the same recipient as the one in the utterance.
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Figure 12: An agent selects an action to turn off notification dot (a) when the switch is on, and (b) when the switch
is already off. The texts in red (click in a) and wait in b)) are the actions selected by the agent.

the subject: Events for the Week and the content:
Hi, you are invited to attend our weekly meeting
from 4:00pm to 5:00pm on Tuesday (EST - New
York)”.

Sending a message to the correct recipient.
Fig. 11 compares two cases of an agent sending
messages. The images are deliberately modified to
hide the real names of the recipients. Both (a) and
(b) are in the message view of the app but of dif-
ferent recipients, Tom in (a) and Jerry in (b), while
the utterance specifies the recipient to be Jerry. The
agent correctly recognizes the difference and se-
lects the correct action for both cases: pressing the
back button at the top left for (a) and typing the
content of the message at the bottom for (b). Note
that it is the title bar that contains the information
on the current recipient. We believe that it is due to
the self-attention of the Transformer encoder that
the agent learns whether the text of the title bar
matches the recipient is a critical signal in these
states.

Understanding the relationship between text la-
bel and switch. Fig. 12 shows how the UINav
agent selects actions to turn off notification dot
in two cases: (a) when the switch is on and the
agent selects the action to click the text label of
"Notification dot on app icon", and (b) when the
switch is already off and the agent chooses to wait
for the referee to terminate the task. Note that the
text label of "Notification dot on app icon" and its
switch are independent UI elements in the screen
representation, and there are multiple switches on

the screen with identical attributes except for their
positions and states. The agent learns their relation-
ship probably by the relative positions (horizontally
aligned).

A.9 Apps and websites used in data collection

The full list of Android apps and websites that are
used in our data collection is as follows:

Facebook Messenger, TikTok, Instagram, What-
sApp, Amazon Shopping, Facebook, Walmart, Spo-
tify, Pandora, Amazon Prime Video, Google Play
Games, Wish, Pinterest, Google Messages, Target,
Poshmark, Waze, Twitter, Wayfair, google.com,
Google Play Store, Seamless, YouTube, Reddit,
Ebay, Etsy, Soundcloud, Tasty, Gmail, Contacts,
Android Auto, YouTube Music, Snapchat, Tubi TV,
Shop, News Break, Cash App, Pluto TV, Uber,
Burger King, Roku, Amazon Alexa, Life 360,
HBONow, ESPN, iHeartRadio, Nike, Amazon Pho-
tos, Letgo, Walmart Grocery, Weather App, Google
News, Files, Home Screen, Google Docs, Door-
Dash, Google Photos, AirBnB, AliExpress, Ama-
zon Music, Apple Music, Audible, Chewy, Chik Fil
A, Costco, Dollar General, Google Drive, Dunkin
Donuts, Google Earth, Emoji Home, Family Dol-
lar, wikipedia on firefox, Food Network, GroupMe,
Groupon, GrubHub, Instacart, KeepNotes, King
James Version, Kroger, Likee, LinkedIn, fb Lite,
Lyft, Maps, OfferUp, Phone, Pixaloop, Scanner,
SHEIN, Skype, SmartNews, Starbucks, thredUp,
Ticket Master, Walgreen’s, Yahoo Mail, Yelp,
YouTube Kids, Zedge, Zelle, Zillow, wikipedia.org,
youtube.com, yahoo.com, facebook.com, live.com,
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reddit.com, bing.com, linkedin.com, Sam’s Club,
discord, GoodRx, Outlook, Breaking US News,
Lucky Go, CNN, Postmates, Transit, Sephora, tar-
get.com, twitter.com, irs.gov, craigslist.org, home-
depot.com, Recipes Home, Zillow, and Dialer.
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