
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track), pages 191–200

June 16-21, 2024 ©2024 Association for Computational Linguistics

An Automatic Prompt Generation System for Tabular Data Tasks

Ashlesha Akella
IBM Research, India

ashlesha.akella@ibm.com

Abhijit Manatkar
IBM Research, India

abhijitmanatkar@ibm.com

Brij Chavda
IBM Research, India

brijkumar.chavda@ibm.com

Hima Patel
IBM Research, India

himapatel@in.ibm.com

Abstract
Efficient processing of tabular data is important
in various industries, especially when work-
ing with datasets containing a large number
of columns. Large language models (LLMs)
have demonstrated their ability on several tasks
through carefully crafted prompts. However,
creating effective prompts for tabular datasets is
challenging due to the structured nature of the
data and the need to manage numerous columns.
This paper presents an innovative auto-prompt
generation system suitable for multiple LLMs,
with minimal training. It proposes two novel
methods; 1) A Reinforcement Learning-based
algorithm for identifying and sequencing task-
relevant columns 2) Cell-level similarity-based
approach for enhancing few-shot example se-
lection. Our approach has been extensively
tested across 66 datasets, demonstrating im-
proved performance in three downstream tasks:
data imputation, error detection, and entity
matching using two distinct LLMs; Google
flan-t5-xxl and Mixtral 8x7B.

1 Introduction

Recent advancements in pre-training large lan-
guage models have paved the way for prompt-based
and in-context learning (Brown et al., 2020; Raf-
fel et al., 2020), providing an efficient approach to
tackle a wide range of tasks. Generating a suitable
prompt is particularly important when harnessing
pre-trained LLMs for tabular downstream tasks.
Unlike natural language sentences, tabular data ne-
cessitates specific formatting, column preferences,
and in-context examples. In the domain of tabular
data downstream tasks, prompts are frequently cus-
tomized for each dataset and specific downstream
tasks to ensure consistent and efficient performance.
A few studies (Narayan et al., 2022; Zhang et al.,
2023b) have demonstrated this approach, wherein
prompts are crafted for a given dataset and task by
manually selecting columns and relevant in-context
(few-shot) examples. Additionally, recent research

{Instruction}
Following is a serialized 'column':'value' format. The task is to 
predict the correct value of the specified column in the question.

{Few-shot examples}
Example 0:
name: lattanzi ristorante
addr: 361 w. 46th street
type: Italian

Question: What is the value for column city?
Answer: New York

{...}

{Test example}
Test Example:
name: palio d'asti
addr: 640 sacramento st.
type: Italian

Question: What is the value for column city?
Answer:

Figure 1: Example Prompt Template for Data Imputa-
tion task

has introduced automated methods that target spe-
cific components of prompt such as in-context ex-
amples (Huh et al., 2023). This leads us to two
pivotal questions; Firstly, what are the components
or parts of the prompt that significantly impact per-
formance in tabular tasks? Secondly, how can we
devise automated methods for the components to
generate prompts that can be efficient and effective
for tabular data tasks?

In tabular data tasks, a vanilla prompt typically
includes a row of information where each column
name is paired with its respective value, for ex-
ample: Brand: Dell; Price: $349.00; Feature:
Newest Dell Inspiron. However, providing all col-
umn information of a row may introduce unnec-
essary details, redundancy, and noise, while also
inefficiently using input tokens, potentially leaving
inadequate space for additional crucial information
such as few-shot examples. Our empirical analy-
sis reveals that carefully selecting columns to be
included in the prompt improves task performance,
aligning with prior research findings by (Narayan
et al., 2022; Zhang et al., 2023b). In addition to
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choosing the right columns, we noticed a signifi-
cant improvement in performance when we care-
fully arranged these column details in the prompt.
This underscores the importance of both selecting
the columns and arranging them in a specific order.
Particularly, dealing with large datasets with many
columns poses a practical challenge.

Furthermore, our study demonstrates a perfor-
mance difference between traditional few-shot ex-
ample selection methods developed for natural lan-
guage (NL) focused tasks and our proposed cell-
level similarity few-shot (CLFS) example selection
approach for tabular data. The NL-based method
serializes a row into a sentence and selects few-shot
examples based on similarity, potentially losing rel-
evant information by imposing a sentence structure
on the tabular data during serialization. In contrast,
the proposed CLFS method considers each cell’s in-
formation independently with the aim of selecting
few-shot examples at a cell level similarity.

To this end, we introduced an auto-prompt gen-
eration system designed to be compatible with var-
ious LLMs without the need for extensive training.
This system introduces a novel approach emphasiz-
ing two essential elements:

1. The identification and sequencing of task-
relevant columns facilitated by a Reinforce-
ment Learning-based algorithm.

2. A few-shot selection approach based on cell-
level similarity.

2 Related Work

Recent studies on tabular data tasks have demon-
strated that LLMs can effectively tackle data wran-
gling tasks, through different strategies, including
pre-training and fine-tuning (Gong et al., 2020; Iida
et al., 2021; Somepalli et al., 2021; Wang et al.,
2020; Tang et al., 2020), prefix-tuning (Vos et al.,
2022) and prompt learning (Liu et al., 2022; Chen
et al., 2023; Zhang et al., 2023a). However, these
training methodologies pose significant computa-
tional demands and exhibit high time complexity.
Furthermore, many of these approaches require ad-
justments to the model parameters, a process that
proves impractical for black-box language models
like ChatGPT.

Previous research has achieved success in de-
veloping methods for generating prompts for tab-
ular data tasks (Narayan et al., 2022; Zhang et al.,
2023b). However, a challenge exists due to the

reliance on manual processes to select columns
and few-shot examples. This manual approach be-
comes especially difficult when dealing with large
datasets with many columns. The study by (Huh
et al., 2023) propose a few-shot selection method
that utilizes an embedding of a row transformed
into a natural language sentence, raising questions
about integrating tabular structure-aware few-shot
selection methods for tabular data.

This paper discusses the importance of select-
ing and organizing columns with empirical results,
followed by an overview of two auto-prompt gen-
eration systems. Extensive testing was carried out
across 3 different tabular data tasks; Data Imputa-
tion (DI), Error Detection (ED), and Entity Match-
ing (EM), utilizing 66 datasets using two models:
Google flan-t5-xxl (11B parameters) (Chung et al.,
2022) and Mixtral 8x7B (47B parameters) (Jiang
et al., 2024) 1.

3 Motivation

Tabular data, especially with wider datasets,
presents a challenge when inputting all column
details into LLMs for row-level tasks (e.g., Data
Imputation, Error Detection). It becomes evident
that selecting columns is crucial for optimizing the
performance of LLMs.

In addition to choosing columns, we conducted
a study to explore the impact of column arrange-
ment on downstream tasks performance. In this
experiment, we manually selected specific columns
for a dataset and downstream task and then created
prompts using a template (see Figure 1). Figure
2 demonstrates the significant effect of different
column orders on accuracy. For instance, when ex-
amining the Data Imputation task on the AMTRAK
dataset, a wide range of accuracies was observed,
varying from 0.06 to 0.95 for the manually selected
columns but in different orders and combinations.
This shows that using an optimal sequence of sub-
set columns is crucial while generating a prompt
for tabular data tasks.

This can be considered as solving a sequential
decision-making problem. This study uses Rein-
forcement Learning (RL) to optimize column se-

1Specifically, we use the GPTQ (Frantar et al., 2022)
quantized version of the model available at https://
huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.
1-GPTQ. Mixtral 8x7B is a Sparse Mixture of Experts (SMoE)
Model consisting of 8 feedforward blocks (i.e. experts) at
each layer. For each token, at each layer, 2 out of 8 experts are
selected for inference which results in a total of 13B active
parameters.
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Figure 2: Variations in accuracy across different combi-
nations and permutations for manually selected columns
for Data Imputation (DI) and Error detection (ED). We
collected accuracies for all possible permutations of the
selected columns (per dataset and per task) and visual-
ized the distributions of accuracies.

lection and ordering in order to improve accuracy
and performance in tabular data tasks.

Another component, namely few-shot example
selection, becomes critical in light of the improved
performance shown by LLMs when provided with
a small set of illustrative examples (few-shot ex-
amples) in the prompt. Selecting these examples
is extensively studied in the field of Natural Lan-
guage tasks (Ma et al., 2023; Liu et al., 2021) and
these methods typically retrieve similar examples
from a pool using similarity metrics such as BM25
(Robertson et al., 1994) or cosine-similarity calcu-
lated over task specification embeddings obtained
from encoder-only models like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), etc. Our
exploration reveals that a modified approach for cal-
culating the similarity measure leads to improved
performance. To address this, our work proposes a
new Cell-Level Similarity Measure for retrieving
in-context examples that takes into account the se-
mantic similarity of individual cells in a row, and is
seen to outperform natural language inspired base-
lines.

We evaluated the performance of the proposed
system on 3 downstream tasks Data Imputation
(DI), Error Detection (ED) and Entity Matching
(EM). More details on the downstream as provided
in Appendix A.4.

4 Method and Implementation

In this section, we explain the methodology of de-
veloping our auto-prompt generation system. We
begin by describing the overall architecture of the
system, followed by description of individual com-
ponents.

4.1 Architecture

The architecture of our system, as seen in Figure 3,
comprises of three modules: RL agent training for
Column Selection (RLCS), Build Prompt module,
and Evaluation. The RL agent is trained to generate
a sequence of column names. The Build Prompt
module contains Cell-level Similarity based Few-
shot selection (CLFS) to select few-shot examples
and the Prompt Template module which fills in a
predefined prompt template with selected column
information from the test sample and the selected
few-shot examples. Once an RL agent is trained,
we obtain an optimal sequence of selected columns
from the final model which is used during evalua-
tion.

4.2 Reinforcement Learning based Column
Selection: RLCS

The process of choosing columns as a sequence can
be seen as a decision-making procedure that can be
represented as a Markov Decision Process (MDP).
This includes a set of states S, a set of actions
A, a transition function P : S × A → S and a
reward function R : S → R. The objective for the
RL agent is to maximize its expected cumulative
reward defined by R = E[

∑T
t=0 γ

trt], where rt
denotes reward at step t and γ ∈ [0, 1] signifies
a discounting factor for rewards over time steps.
We use the Soft Q-Learning algorithm (Haarnoja
et al., 2017; Guo et al., 2021) to train the network
with the goal of maximizing cumulative rewards
within an episode.

4.2.1 State and Action Representation

An initial state is defined as s0 = d0, where d0 is
a brief description of the dataset (e.g: d0 = ‘This
dataset contains products on the Bigbasket web-
site’). At each time step t, the RL agent selects
one column name at from the action space A. The
transition function P (st, at) = st+1 appends the
selected column to the previous state, i.e., st+1 =
⊕(st, at). There exists termination criteria based
on the number of columns chosen.
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Figure 3: The architecture comprises three modules: RL agent Training Module for Column Selection, Build Prompt
Module and Evaluation.

4.2.2 Policy Network
We use an attention-based architecture in the policy
network for the RL agent. The first three layers
of the policy network are taken from a small LLM
and kept frozen. Specifically, we utilize the ini-
tial 3 layers of GPT-2 (Radford et al., 2019). This
is followed by a trainable multi-headed attention
layer with two heads, followed by the LM head
layer from GPT-2. The initial three layers and the
LM head layer are taken from the smallest version
of GPT-2 with 124M parameters. Let M represent
the policy network and M (y | s, θ) be the logit
value of policy network for a token y given state
s and weight parameters θ. During training, only
the multi headed attention layer is trained while
all other layers remain frozen. For every column,
col namei we calculate the mean of logits for all ni

tokens {yi0, yi1, . . . yini−1} in the name of that col-
umn, yielding qs,col namei . This computation is per-
formed for all columns (∀i ∈ {0, 1, . . . N −1}), re-
sulting in the vector of Q-values qs. Subsequently,
a softmax function is applied to qs to obtain a
probability distribution over the columns. During
exploitation, the action at is argmax over this dis-
tribution. During exploration (i.e. while training),
at is obtained by sampling from this distribution.

A = {col name0, col name1, . . . col nameN−1}
(1)

qs = {qs,col name0 . . . qs,col nameN−1} (2)

qs,col namei =
1

ni

ni−1∑

k=0

M
(
yik | s, θ

)
(3)

at = argmax
a∈A

(softmax(qs)) (4)

Here N is the number of columns, ni represents
the total number of tokens of column col namei.

At each timestep, a new column name is added
to the list of selected columns. Based on these
selections, CLFS chooses few-shot examples that
are then sent to the PT module (shown in Figure 3)
as input for Task-LM. The agent receives a reward
at each timestep t following:

rt =





20− 3t if Task-LM matches the
expected output

−0.5 otherwise

(5)

Figure 4 in the Appendix illustrates that the RL-
based approach can identify an optimal sequence of
column sets across training episodes. The columns
chosen by RL and those selected manually for each
dataset and task can be found in Appendix A.3.

4.3 Cell-Level Similarity Measure based
Few-shot Selection: CLFS

The proposed Cell-Level Similarity Measure uses
an embedding technique to preserve the semantic
content of each cell in a row. A pool of examples,
denoted as P , is available for selecting a few-shot
examples. Two methods were explored to under-
stand the performance difference between Natural
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Task
Dataset Baseline MCS-RFS MCS-NFS MCS-CLFS RLCS-CLFS Baseline RLCS-CLFS

#columns flan-t5-xxl flan-t5-xxl flan-t5-xxl flan-t5-xxl flan-t5-xxl Mixtral 8x7B Mixtral 8x7B
(Ours) (Ours)

DI

Restaurant (6) 0.75± 0.02 0.76± 0.02 0.75 0.77 0.82 0.92 0.97
BigBasket (14) 0.32± 0.12 0.75± 0.00 0.86 0.93 0.92 0.91 0.92

GlobalPowerPlant (40) 0.61± 0.06 0.75± 0.00 0.85 0.85 0.90 0.84 0.84
AMTRAK (86) 0.57± 0.11 0.91± 0.00 0.93 0.92 0.98 0.61 0.81

ED

Adult (15) 0.50± 0.00 0.62± 0.02 0.96 0.89 0.95 0.54 0.78
Hospital (23) 0.49± 0.00 0.70± 0.00 0.56 0.57 0.85 0.36 0.81

Global PowerPlant (40) 0.33± 0.11 0.34± 0.00 0.42 0.52 0.83 0.90 0.95
BigBasket (14) 0.39± 0.12 0.38± 0.00 0.39 0.39 0.87 0.37 0.95

EM

Fodors-Zagats (14) 0.86± 0.01 0.97± 0.02 0.96 0.93 1.00 0.92 0.99
DBLP-GoogleScholar (10) 0.69± 0.02 0.84± 0.04 0.74 0.81 0.85 0.83 0.85

beers (10) 0.71± 0.03 0.84± 0.08 0.81 0.81 0.89 0.88 0.91
Walmart-Amazon (12) 0.54± 0.02 0.79± 0.04 0.87 0.87 0.87 0.91 0.91

Table 1: Performance of Data Imputation (DI), Error Detection (ED) and Entity Matching (EM) tasks under 5 varied
conditions on Google flan-t5-xxl (11B) model and 2 conditions with Mixtral 8x7B. #columns shows the number
of columns in the Dataset. As metrics, accuracy is used for DI and F1-macro used for ED and EM. Baseline and
MCS-RFS experiments are for 3 different seeds, where accuracy is avg ± std

Language-based (NL) approach and the proposed
CLFS approach.

In the NL-based approach, an embedding for
each row is generated by serializing it using a tem-
plate (as discussed in section 4.4) and then encod-
ing it into a latent space using model B (typically
an encoder-only transformer model). For every test
sample, cosine similarity (simNL) was calculated
between the test sample rt and all samples from the
pool P , and then top k samples from P with the
highest similarity scores with the test sample are
chosen as few-shot examples for that test sample.

simNL(rt, rx) = B(ser(rt))
TB(ser(rx)) (6)

where ser(r) serializes row r, rt and rx are the test
sample and a sample from P respectively.

This method requires presenting a row of tabular
data as a serialized string of text which is then em-
bedded using a Language Model trained on natural
language data. The presentation and the encod-
ing model in this method treat the table row like
a string of natural language text, which can result
in sub-optimal embeddings because of information
loss from a representational mismatch. The pro-
posed CLFS method embeds each cell of the row
independently of other cells, and then computes
the similarity simCL between a test sample rt and
a sample rx from pool P as the average of similari-
ties between corresponding cells.

simCL(rt, rx) =

∑
c∈C B(rt[c])

TB(rx[c])

|C| (7)

where C is the set of columns and r[c] gives the

value for the cell at the intersection of column c ∈
C and row r.

4.4 Prompt template

The prompt template for tabular data wrangling
tasks includes a brief description of the serializa-
tion, followed by serialized few-shot examples and
a test example. An illustrative example of the
prompt template is presented in Figure 1. The
serialization of both the few-shot examples and the
test example follows

F r
i =⇓N

n=1 Example n : ⊕ ⇓c
j=1 h

n
j⊕ : ⊕vnn,j ⊕

Sr
i = F r

i ⇓ TestExample : ⊕ ⇓c
j=1 h

i
j⊕ : ⊕vij⊕

For ith test row, F r
i is serialized nth few-shot,

N is the total number of few-shot examples, c is
the number of columns, hnj is the jth column name
and vnj is the value of column j of nth few-shot. ⇓
is the new line operator and ⊕ is the concatenation
operator.

5 Datasets

We gathered datasets from various sources like Kag-
gle 2 and Open ML 3, ensuring datasets containing
numerous columns (upto 120 columns) across dif-
ferent domains. All the datasets gathered are in
the format Comma Seperated Values (CSV) files.
For the data imputation task, specific columns were
chosen for imputing values across all rows within
those columns. Real-world databases commonly

2https://www.kaggle.com
3https://openml.org
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have both syntactic and semantic errors (Chu et al.,
2013; Heidari et al., 2019; Mayfield et al., 2010).
In the error detection task, selected columns in the
datasets were introduced with errors: around 25%
of cell values were replaced with out-of-domain
strings for semantic errors (e.g., ‘Stationer’ in the
‘County name’ column), while approximately 25%
of cell values within a specific column had random
letter additions introduced as syntactic errors. For
entity matching tasks, we used datasets previously
studied in literature (Mudgal et al., 2018).

6 Experimental Results

This section describes the experiments carried out
in our study. We compared 5 different conditions
including our proposed system to highlight the im-
portance of each of the components. These exper-
iments included 12 datasets across 3 tasks using
Google flan-t5-xxl as shown in Table 1. On ob-
serving similar trends with Mixtral 8x7B as with
flan-t5-xxl, we only report results for our system
and the baseline with Mixtral 8x7B.

1. Baseline: For the baseline method, no column
selection is done and data from all columns
in included in the prompt. Columns are per-
muted in the order in which they appear in
the dataset and few-shot examples are chosen
randomly. We conduct experiments with three
different seeds.

2. Manual Column Selection and Random Few-
shot examples (MCS-RFS): To assess the effi-
cacy of carefully chosen manual columns, we
conducted experiments by manually selecting
columns and selecting random few-shot exam-
ples using three different seeds, while keeping
the column order consistent across all seeds.

3. Manual Column Selection and NLP Few-shot
Selection (MCS-NFS): This method seeks to
assess the performance of the cosine similar-
ity few-shot selection method used in Natural
Language tasks. For selecting few-shot exam-
ples, the simNL similarity metric (6) is used.

4. Manual Column Selection and Cell-Level Sim-
ilarity Few-shot selection (MCS-CLFS): This
method seeks to assess the impact of using the
cell level similarity metric simCL (7) for se-
lecting few-shot examples. In this method and
the previous one, columns are selected manu-

ally while keeping the column order consistent
across methods.

Additionally, the comparison between baseline
and auto-prompt generation results was conducted
across 66 datasets (see Appendix Tables 3, 4 and
5). Each of the studied datasets are partitioned
into train, validation and test splits. The train
split is used for training the RL-based column
selection agent. The validation split is used as
the pool P for selecting few-shot examples and
metrics are reported on the test split. For the
settings which use few-shot example selection,
all-distilroberta-v1 from the SentenceTrans-
formers library (Reimers and Gurevych, 2019) is
used as the encoding model B.

7 Conclusion and Future Work

The results indicate that our proposed system signif-
icantly outperforms the baseline as well as methods
based on combinations of manual column selection,
random few-shot selection and natural language
based few-shot selection. Our research underscores
the efficacy of an auto-prompt generation system in
enhancing tabular data tasks across various datasets
and tasks using Large Language Models. Man-
ual column selection and sequencing, found to be
a cumbersome process, necessitates an automatic
method, a gap which is suitable filled by our RL-
based algorithm. Our proposed cell-level similarity
measure exhibits improved performance compared
to the NL-based few-shot selection method. Over-
all, the auto-prompt generation system showcases
versatility and generalizability across diverse tasks
and datasets, providing a streamlined solution for
efficient tabular data tasks.

As part of future work, the following directions
of study may be worthwhile:

1. Expanding the automatic prompt-generation
system to more row-level downstream tasks
and analyzing its performance.

2. Training of a unified model for column selec-
tion and sequencing across tabular datasets.

3. Identifying other parts/components of the
prompt that can be automatically optimized
for tabular tasks.
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A Appendix

A.1 Reinforcement Learning Parameters
The hyperparameter settings for reinforcement
learning employed in this study are delineated in
Table 2.

A.2 Reinforcement Learning Reward Graph
Figure 4 illustrates that the RL-based approach can
identify an optimal sequence of column sets across
training episodes.

A.3 Manually selected columns and RL
selected columns

Table 6 shows the columns that were manually
selected and those selected and sequenced by the
RL algorithm for 12 datasets across three tasks.

A.4 Downstream Tasks
In the assessment of an Auto-prompt generation
system for tabular datasets, we performed three
distinct downstream tasks: Data Imputation, Error
Detection, and Entity Matching.

• Data Imputation (DI): DI entails predicting
missing values in a given column and row.
For instance, if a dataset for restaurants has
some missing values in the "state" column, the
data imputation task involves predicting the
value of "state" based on other details for that
specific row.

• Error Detection (ED): ED focuses on identify-
ing errors within a given row. As an example,
consider a dataset where an error is present in
the "City" column with the value "Computer."

• Entity Matching(EM): involves comparing
two rows to determine if they match seman-
tically. For instance, when comparing two
CSV files containing details of products from
different ecommerce websites, this task aims
to establish whether there is a match between
each product listed in one CSV file with those
listed in another.

A.5 Overall Results
Table 3, Table 4 and Table 5 display the exten-
sive results of the proposed auto-prompt generation
system across three tasks: data imputation, error
detection, and entity matching. The system utilized
a diverse set of 66 datasets.

Parameter Name Parameter Value
Discount factor γ 0.6

Learning rate 1e− 4
Batch size 200

Number of episodes 60
Exploration fact ϵ 0.4

Max replay buffer size 3000

Table 2: Reinforcement Learning Hyper Parameters
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Dataset Target Column Baseline Ours Baseline Ours
(#columns) flan-t5-xxl (11B) flan-t5-xxl (11B) Mixtral (8x7B) Mixtral (8x7B)

Airline Dataset (15) Country Name 0.78 0.97 0.92 0.99
Airline Dataset (15) Airport Continent 0.87 1.00 0.67 1.00
Airline Dataset (15) Airport Country Code 0.68 0.90 0.99 1.00
Airline Dataset (15) Continents 0.91 1.00 1.00 1.00

customer support tickets (17) Ticket Type 0.21 0.21 0.08 0.20
customer support tickets (17) Ticket Priority 0.16 0.27 0.14 0.25
customer support tickets (17) Ticket Subject 0.01 0.06 0.01 0.05
finance sentiment analysis (2) Sentiment 0.51 0.51 0.68 0.70

flipkart ecommerce (15) product_category_tree 0.12 0.48 0.01 0.31
flipkart ecommerce (15) brand 0.59 0.58 0.20 0.49
fortune1000_2023 (31) Dropped_in_Rank 0.93 0.94 0.68 0.91
fortune1000_2023 (31) Gained_in_Rank 0.73 0.93 0.77 0.93
fortune1000_2023 (31) Sector 0.42 0.89 0.25 0.87
fortune1000_2023 (31) HeadquartersState 0.68 0.88 0.65 0.97
fortune1000_2023 (31) Industry 0.13 0.23 0.12 0.34

IPM Matches (16) city 0.66 0.85 0.86 0.94
shopping trends (19) Season 0.22 0.28 0.20 0.26
shopping trends (19) Category 0.62 1.00 0.68 0.99

starbucks in california (24) state 1.00 1.00 0.83 1.00
starbucks in california (24) city 0.04 0.44 0.73 0.86
starbucks in california (24) county 1.00 1.00 0.88 0.99
starbucks in california (24) 24_hour_service 0.00 0.76 0.00 0.79

Restaurants (6) City 0.75 0.82 0.92 0.97
BigBasket (14) category 0.32 0.92 0.91 0.92

Global PowerPlantDB (40) source 0.61 0.90 0.84 0.84
AMTRAK (86) city 0.57 0.98 0.61 0.81

Speed Dating (124) race 0.30 0.61 0.35 0.64

Table 3: Data Imputation Task

Dataset Target Column Baseline Ours Baseline Ours
(#columns) flan-t5-xxl (11B) flan-t5-xxl (11B) Mixtral (8x7B) Mixtral (8x7B)

customer support tickets (17) Ticket Priority 0.45 0.93 0.86 0.99
customer support tickets (17) Ticket Type 0.38 0.81 0.68 0.98
customer support tickets (17) Ticket Subject 0.42 0.68 0.74 0.98

shopping trends (19) Category 0.38 0.76 0.90 0.98
shopping trends (19) Season 0.45 0.95 0.91 0.96

GlobalPowerPlantDB (36) source 0.34 0.83 0.90 0.95
GlobalPowerPlantDB (36) country 0.37 0.85 0.83 0.97
GlobalPowerPlantDB (36) country long 0.38 0.87 1.00 0.98
GlobalPowerPlantDB (36) source 0.33 0.83 0.71 0.95
flipkart ecommerce (15) product_category_tree 0.00 0.79 0.63 0.70
flipkart ecommerce (15) brand 0.39 0.84 0.73 0.87

finance sentiment analysis (2) Sentiment 0.37 0.37 0.74 0.97
fortune1000_2023 (31) Sector 0.38 0.39 0.98 0.99
fortune1000_2023 (31) HeadquartersState 0.39 0.89 0.99 0.99
fortune1000_2023 (31) Industry 0.38 0.77 0.89 0.96
fortune1000_2023 (31) Dropped_in_Rank 0.46 0.86 0.90 1.00
fortune1000_2023 (31) Gained_in_Rank 0.42 0.81 0.87 0.99

BigBasket Products (14) sub_category 0.38 0.48 0.80 0.45
BigBasket Products (14) type 0.38 0.86 0.82 0.88
BigBasket Products (14) category 0.39 0.87 0.37 0.95

Airline Dataset (15) Continents 0.43 0.91 0.99 0.91
Airline Dataset (15) Airport Continent 0.42 0.76 0.91 0.99
Airline Dataset (15) Airport Country Code 0.77 0.91 0.98 0.99
Airline Dataset (15) Country Name 0.53 0.96 0.95 0.96

starbucks in california (24) county 0.42 0.53 1.00 0.98
starbucks in california (24) city 0.40 0.79 0.97 0.95
starbucks in california (24) 24_hour_service 0.28 0.93 0.93 0.99
starbucks in california (24) state 0.38 0.89 1.00 1.00

Speed Dating (124) race 0.33 0.69 0.33 0.73
IPM Matches (16) city 0.42 0.88 0.93 0.91

Adult (15) (Multiple targets) 0.50 0.95 0.54 0.78
Hospital (23) (Multiple targets) 0.49 0.85 0.36 0.81

Table 4: Error detection Task
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Dataset Baseline Ours Baseline Ours
(#columns) flan-t5-xxl (11B) flan-t5-xxl (11B) Mixtral (8x7B) Mixtral (8x7B)

Fodors-Zagats (14) 0.86 1.00 0.92 0.99
DBLP-GoogleScholar (10) 0.69 0.85 0.83 0.85

beers (10) 0.71 0.89 0.88 0.91
Walmart-Amazon (12) 0.54 0.87 0.91 0.91
iTunes-Amazon (16) 0.78 0.89 0.76 0.91

DBLP-ACM (8) 0.90 0.98 0.87 0.94
Amazon-Google (6) 0.50 0.63 0.73 0.73

Table 5: Entity Matching Task

Task Dataset Name Manually Selected columns RL selected columns

DI

Restaurant Name, Address, Phone Address, Name
BigBasket sub_category, product, description, type description, sub_category, type, product
Global PowerPlant owner, geo_source, name, country_long geolocation_source, country, gppd_idnr
AMTRAK StationName, address1, address2, State, Zip Zip, StationName, StationServicesPaging

ED Global Power Plant owner, geo_source, name, country_long geolocation_source, country, esti-
mated_generation_note_2015

BigBasket sub_category, product, description, type brand, sub_category, market_price

EM

Fodors-Zagats l_name, l_addr, l_city, l_class, r_name, r_addr,
r_city, r_class

r_class, l_class

DBLP-GoogleScholar l_title, l_authors, l_venue, r_title, r_authors,
r_venue

r_title, l_title, r_venue, l_venue

beers l_Beer_Name, l_Brew_Factory_Name, l_Style,
r_Beer_Name, r_Brew_Factory_Name

l_Beer_Name, r_Beer_Name,
l_Brew_Factory_Name, r_Brew_Factory_Name

Walmart-Amazon l_title, l_brand, l_modelno, r_title, r_brand,
r_modelno

r_title, l_title, l_modelno, r_modelno

Table 6: Manual and RL selected columns per dataset (the columns that were manually selected and those selected
and sequenced by the RL algorithm for 12 datasets across three tasks.)

Figure 4: The plot shows, reward accumulated by the RL-agent while undergoing training for each episode. The
solid lines represent the average, and the shaded areas depict the highest and lowest test accuracy across 3 different
seeds.
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