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Abstract

We introduce Prompt Tuned Embedding Clas-
sification (PTEC) for classifying companies
within an investment firm’s proprietary industry
taxonomy, supporting their thematic investment
strategy. PTEC assigns companies to the sec-
tors they primarily operate in, conceptualizing
this process as a multi-label text classification
task. Prompt Tuning, usually deployed as a
text-to-text (T2T) classification approach, en-
sures low computational cost while maintaining
high task performance. However, T2T classifi-
cation has limitations on multi-label tasks due
to the generation of non-existing labels, per-
mutation invariance of the label sequence, and
a lack of confidence scores. PTEC addresses
these limitations by utilizing a classification
head in place of the Large Language Models
(LLMs) language head. PTEC surpasses both
baselines and human performance while lower-
ing computational demands. This indicates the
continuing need to adapt state-of-the-art meth-
ods to domain-specific tasks, even in the era of
LLMs with strong generalization abilities.

1 Introduction

Investors leveraging thematic investment strategies
concentrate their efforts on specific industry sec-
tors, such as “Circular Economy.” This strategy
involves compiling a comprehensive list of com-
panies within these sectors by analyzing unstruc-
tured natural language data on platforms such as
Pitchbook (2024) and Crunchbase (2024). For in-
stance, investors might utilize the description and
associated keywords of a company like “Vinted” to
identify the industries it operates in. In this context,
machine learning can be instrumental by framing
this as a multi-label text classification challenge:
given a natural language description of a company
X , the goal is to categorize it into one or more

*Corresponding authors. The source code is publicly avail-
able at https://github.com/EQTPartners/PTEC.

industries from a predefined industry sector taxon-
omy T = {Y1, Y2, . . . , Yn}.

While there exist various machine learning solu-
tions for multi-label text classification, this indus-
trial application encompasses some challenges:

• Scarce annotations: The annotation process,
carried out by investment professionals familiar
with a firm’s taxonomy, results in only a limited
number of labeled examples. Given that an indus-
try taxonomy may include up to 300 industries,
there are only few annotations per industry.

• Imbalanced annotations: Annotations are pri-
marily focused on investment opportunities rele-
vant to the annotator’s industry of interest, lead-
ing to a long-tail distribution.

• Large and heterogeneous inference dataset:
The necessity to infer industries for over 10M
companies, coupled with the likelihood of the in-
ference data being out-of-distribution compared
to the annotated dataset in terms of language use
and descriptiveness.

• Dynamic taxonomy and training data: Fre-
quent updates in industry taxonomy, company
information, and annotations necessitate ongoing
re-training and inference processes.

Traditional text classification approaches de-
mand large amounts of annotated training data and
often struggle to generalize effectively to novel
data (Srivastava et al., 2023). Large Language
Models (LLMs) exhibit superior generalization ca-
pabilities to unseen data and can be fine-tuned on
smaller annotated datasets (Raffel et al., 2020).
However, fine-tuning LLMs may lead to the un-
desirable phenomenon of “catastrophic forgetting”
of pretraining knowledge (Chen et al., 2020), and
is computationally demanding. These challenges
can be mitigated through Parameter-Efficient Fine-
Tuning (PEFT, Ding et al., 2023) techniques such
as Prompt Tuning (PT). PT minimizes the number
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of parameters that need fine-tuning by focusing
on a soft prompt appended to the tokenized and
embedded input text, thus reducing computational
costs and preserving the pretrained knowledge of
the LLM, as the main body of the LLM’s parame-
ters remains unaltered (Tam et al., 2022; Tu et al.,
2022; Lester et al., 2021). Hence, PT emerges as
a viable solution for computational efficiency and
knowledge retention in LLM applications.

This research evaluates the scalability, efficiency,
and performance of PT in a real-world industry
classification scenario, benchmarked against com-
mon baseline methods. However, PT as a text-
to-text (T2T) classification approach encounters
limitations on multi-label tasks as discussed in Sub-
section 2.4. We enhance PT by (1) integrating con-
strained decoding using Trie Search (Yang et al.,
2023; De Cao et al., 2020) and (2) replacing the lan-
guage model head with a specialized classification
head. Our key contributions include:

• The adaptation of the Trie Search decoding
method (Yang et al., 2023), preventing repetitive
prediction of the same label, akin to the approach
in (Chen et al., 2018).

• The introduction of Prompt Tuned Embedding
Classification (PTEC), which concurrently opti-
mizes the soft prompt and the classification head
with differential learning rates.

• A comparative analysis of the performance and
computational requirements of the proposed and
baseline methods on two datasets: our pro-
prietary IndustrySector classification task and
the publicly available HateSpeech classification
benchmark.

• Empirical evidence demonstrating that evaluating
PTEC on data it has more pretraining knowledge
about does not lead to an overestimation of the its
classification performance when applied to data
it has less pretraining knowledge about.

The paper first outlines existing text classifi-
cation methodologies and their limitations. We
then introduce constrained Trie Search decoding
and PTEC as potential solutions to these limita-
tions. Subsequently, we describe our experimen-
tal setup and compare the efficiency and perfor-
mance of current and proposed methods. Our code-
base and the HateSpeech dataset can be accessed
at https://github.com/EQTPartners/PTEC.

2 Related Methods

2.1 Parameter-Free Classification with gzip

A very simple approach to text classification makes
use of compression algorithms such as gzip (Jiang
et al., 2023). This method leverages the princi-
ple of lossless compression, where frequently oc-
curring symbols are encoded with shorter codes.
Similar texts are likely to have more common sym-
bols, leading to a shorter compressed length when
concatenated. This phenomenon forms the basis
for a low-computation distance metric for nearest-
neighbors classification methods.

2.2 In-Context Learning

In-Context Learning (ICL), or N -shot prompting,
involves prepending N input-output example pairs
to the prompt before the actual input (Brown et al.,
2020; Min et al., 2022). This method is particularly
appealing for text classification as it obviates the
need for any LLM fine-tuning.

2.3 Embedding Proximity

Another approach to text classification not requir-
ing LLM fine-tuning uses text embeddings gen-
erated with LLMs. These can be used as input
features for a separate classification model. The
most parameter-efficient classification models are
K-Nearest Neighbors (KNN) or Radius Nearest
Neighbors (RadiusNN) (Guo et al., 2003; Cover
and Hart, 1967). Alternatively, text embeddings
can be used as input to a classification layer, which
can be trained to perform the respective classifica-
tion task (Kowsari et al., 2019).

2.4 Prompt Tuning

To emulate fine-tuning’s effectiveness with re-
duced computational expense, various Parameter-
Efficient Fine-Tuning (PEFT) techniques have
been developed. These include Pattern-Exploiting
Training (Schick and Schütze, 2021), Prefix-
Tuning (Li and Liang, 2021), Low-Rank Adap-
tation (LoRa, Hu et al., 2021), and Prompt Tun-
ing (Lester et al., 2021; Liu et al., 2022; Tam
et al., 2022). These methods limit trainable pa-
rameters compared to full LLM fine-tuning. PT in-
volves training the smallest amount of parameters
(< 0.1%), while still being reported to outperform
fine-tuning (Liu et al., 2021). It prepends a soft
prompt — a sequence of virtual token embeddings
— to the token embeddings of the input text, as
depicted in Fig. 1. During this process, only the
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Figure 1: Schematic overview of Prompt Tuning, showing the
trainable soft prompt (matrix SPθ), the tokenized and

embedded input text (Xinput), and the LLM with frozen
parameters (LLMϕ).

soft prompt undergoes training, leaving the LLM’s
parameters unchanged. This approach not only
demands fewer computational resources but also
supports multi-task processing in a single batch and
mitigates the risk of “catastrophic forgetting.”

2.5 T2T Classification for Multi-Label Tasks

Text-to-Text (T2T) classification leverages genera-
tive language models to produce the token(s) repre-
senting target categories. Historically, T2T has
surpassed other methods in public benchmarks,
aligning with the notion that text generation closely
mirrors the LLM’s pretraining tasks (Raffel et al.,
2020). For multi-label scenarios, T2T classifica-
tion sequentially generates labels, separated by a
separator token (SEP) and concluded with an end-
of-sequence (EOS) token (Yang et al., 2018, 2023).
However, this approach faces several limitations:
(a) The model might generate semantically simi-
lar but incorrect labels due to non-intuitive class
labels. For instance, in our proprietary taxonomy,
the model could misclassify “Healthcare IT” as
“Healthcare Software”. (b) In multi-label instances,
labels must be provided in an arbitrary order during
fine-tuning. If the model’s correct label predictions
deviate from this order, it is penalized by the loss
function. Augmenting the label order at random
would result in an inconsistent learning signal and
unstable convergence. (c) The model computes the
probability of a subsequent label based on the pre-
viously decoded label, expressed as P (Y2|X,Y1),
where X is the input and Yi represents the i-th
label (Simig et al., 2022). This approach fails to
provide independent confidence scores for each
label P (Y2|X), which are vital in real-world appli-
cations for balancing the trade-off between false
positives and false negatives. Additionally, this
limitation does not allow for achieving optimal
performance in metrics like Precision@K, which
depend on label probabilities.

3 Proposed Methods

3.1 Prompt Tuning + Trie Search

To address limitation (a) as detailed in Section 2.5,
constrained decoding methods such as Trie Search,
which are effective in generating only valid labels,
can be employed (De Cao et al., 2020; Yang et al.,
2023). Trie Search, a constrained decoding method,
utilizes a label trie structure for organizing target
labels, as illustrated in Fig. 2. The label trie, be-
ginning from the root node (BOS) and ending at
leaf nodes (EOS or SEP), enables valid label re-
trieval during label generation by guiding the LLM
to select tokens only from the trie. In the con-
text of multi-label classification, labels are gener-
ated sequentially and separated by the SEP token.
Upon reaching a leaf node, the LLM chooses ei-
ther to generate the SEP token, restarting the Trie
Search, or the EOS token, concluding label pre-
diction. However, this method may lead to repet-
itive generation of the same label, a known issue
with LLMs (Fu et al., 2021). To mitigate this, our
approach extends the Trie Search method by re-
moving a label from the trie once it is generated,
an idea inspired by (Chen et al., 2018). While this
method effectively addresses limitations (a), it does
not resolve limitations (b) and (c) since it requires
labels provided in an arbitrary order during training
and does not allow the calculation of appropriate
confidence scores.

3.2 Prompt Tuned Embedding Classification

PTEC addresses all limitations by combining PT
with Embedding Classification rather than T2T
classification. This is done by using a single linear
layer with a sigmoid activation function to pro-
cess the text embeddings generated by the Prompt
Tuned LLM. This layer produces a probability dis-
tribution over industry sectors in the taxonomy,
thus (a) ensuring valid industry selection, (b) en-
abling the application of label order-independent
loss functions, and (c) providing probability scores
useful for ranking or adjusting model prediction
sensitivity. This process is mathematically repre-
sented as:

p =

{
1 if σ(WLLMϕ(SPθ ⊕Xinput) + b) ≥ τ,

0 otherwise.
(1)

Here, LLMϕ(SPθ ⊕ Xinput) parameterized by ϕ
yields an embedding vector. The tokenized and em-
bedded input text is represented by Xinput, and τ is
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Figure 2: A schematic comparison of Prompt Tuning with T2T classification (PT + T2T), Prompt Tuning with Trie Search (PT +
TS), and PTEC. Note that Healthcare Software would not be a valid label name, while Healthcare IT would be.

the threshold used. The weight matrix W ∈ Rd×l

and bias vector b ∈ Rl are components of the lin-
ear layer, with d representing the dimensionality
of the LLM’s embedding vector and l the num-
ber of labels. During training, the task-specific
classification layer and the soft prompt are opti-
mized concurrently, while the rest of the LLM’s
parameters are kept frozen. This approach is akin
to strategies used in Named Entity Recognition
(Liu et al., 2022) and multi-class text classifica-
tion (Hambardzumyan et al., 2021). Following
the observation by Lester et al. (2021), we found
that a soft prompt typically benefits from a higher
learning rate, while the classification head performs
optimally with a lower rate. Hence, in our PTEC
implementation, differential learning rates are ap-
plied to the soft prompt and the classification head.
Besides addressing the limitations listed in Sec-
tion 2.4, PTEC offers the advantage of faster infer-
ence times, requiring only a single forward pass
per prediction compared to one forward pass for
each predicted token.

4 Experiments

4.1 Dataset

Based on an investment firm’s proprietary database
we constructed the IndustrySector dataset of
around 5500 companies. Each company is anno-
tated with 1 to 4 of 76 different industries, and each
industry is labeled at least 20 times. For each com-
pany, its legal name, keywords, and a description
are available. This information is concatenated to
one text used as the input prompt in all experiments.
Appendix A.2 describes dataset analytics and pre-
processing steps. To facility reproducibility, we
further constructed the public HateSpeech bench-
mark, which is elaborated on in Appendix A.5.

4.2 Model Training

Our PT set-up follows the architecture described in
Section 3. Since for T2T classification the labels
need to be provided in a predefined order during
training, we sort the labels for each sample de-
scending by their frequency in the training data
as this has been confirmed to provide the best per-
formance (Yang et al., 2018; Jung et al., 2023).
We noticed that classes with class labels consist-
ing of more tokens have more influence on the
cross-entropy loss than classes with shorter labels.
Consequently, we developed the Normalized To-
ken Entropy (NTE) Loss, which is motivated and
elaborated on in Appendix A.3. Further, we use
token embeddings of the target classes to initialize
the soft prompt’s weights, as Lester et al. (2021)
showed this to be beneficial for task performance.
As there are more tokens available for the target
classes than there are tokens in the soft prompt,
we randomly sample the tokens to be used for soft
prompt initialization. All methods are compared
using the 7B parameter version of LLaMa (LLaMa
7B, Touvron et al., 2023) and the 1.7B parameter
version of Bloom (Bloom 1B7, Scao et al., 2022).
A detailed description of our hyperparameter tun-
ing strategy can be found in Appendix A.4.

4.3 Metrics

To achieve optimal business impact, it is crucial to
predict all industry sectors similarly well. This en-
ables an investment firm to not only find companies
in well-explored sectors but also in novel or niche
sectors. Consequently, we use the macro-averaged
F1 score to compare model performance. Further,
it becomes important to be cost-effective when fre-
quently retraining and running inference over a
large database. Therefore, we report on the com-
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putational resources required for fine-tuning and
for inference over 10M companies by measuring
the consumed floating point operations (FLOPs).
These were measured using Pytorch’s profiler (Py-
Torch, 2024) for a representative sample of batches,
and the results were extrapolated on the full train-
ing and inference process. The FLOPs consump-
tion of KNN and RadiusNN were estimated as mo-
tivated in Appendix A.1. To investigate the subjec-
tivity of this industry classification task, an exhaus-
tive list of labels was created for a representative
subsample of the test set (N = 104) and anno-
tated by 3 independent professional raters. Chance-
corrected inter-annotater agreement was calculated
using Cohen’s kappa (κ, McHugh, 2012).

4.4 The Impact of Pretraining Knowledge

Companies in our IndustrySector dataset were an-
notated depending on investment professionals’ in-
terests and are not a representative sample of the
inference dataset. On the contrary, investment pro-
fessionals are more likely to annotate companies
that are more widely known, which are compa-
nies the LLM may have encountered during pre-
training. The LLM may thus perform the desired
downstream task better for the annotated compa-
nies in our test set than for the full set of less-known
companies in the inference dataset, resulting in an
overestimation of model performance. To investi-
gate whether this is the case, we prompted an LLM
to indicate about which companies in the test set
it has pretraining knowledge, following the logic
that LLMs mostly know what they know (Kadavath
et al., 2022). We then conducted a nonparametric
Mann-Whitney U test (Nachar et al., 2008) to test
the hypothesis H1 that classification performance
is higher for the companies the LLM indicates to
have pretraining knowledge about.

5 Results

5.1 Performance and Computational Cost

The computational efficiency and average perfor-
mance over 3 runs of various methods on the Indus-
trySector dataset are presented in Table 1. PTEC
shows an improvement ranging from 3.6 to 11.7
percentage points over the next best method while
being more efficient than other PT methods for
both training and inference. Additionally, PTEC
shows less variability between runs than PT with
T2T classification, particularly for Bloom 1B7.

Contrasting prior findings where T2T classifica-

Method FLOPs Macro F1

Training Inference Mean Std

B
lo

om
1B

7

PTEC 1.12e+17 1.09e+18 0.398 0.019
PT + TS 8.96e+16 1.65e+18 0.240 0.060
PT 8.96e+16 1.65e+18 0.221 0.068
CH 3.29e+16 3.97e+17 0.281 0.006
KNN 3.29e+16 3.97e+17 0.230 0
RadiusNN 3.29e+16 3.97e+17 0.101 0
N -shot + TS 0 8.51e+18 0.134 0.004
N -shot 0 5.68e+18 0.025 0.005

L
L

aM
a

7B

PTEC 1.69e+17 4.27e+18 0.448 0.001
PT + TS 9.73e+17 5.62e+18 0.412 0.005
PT 9.73e+17 5.62e+18 0.412 0.002
CH 2.13e+17 2.56e+18 0.400 0.007
KNN 2.13e+17 2.56e+18 0.332 0
RadiusNN 2.13e+17 2.56e+18 0.237 0
N -shot + TS 0 2.59e+19 0.032 0.001
N -shot 0 2.55e+19 0.015 0.002

- gzip − − 0.271 0
CH = classification head; gzip = parameter-free classifica-
tion with gzip. Other abbreviations as defined in Fig. 2.

Table 1: Results on the IndustrySector dataset. The
method with the lowest FLOPs and highest Macro F1
Score is highlighted in bold for each LLM. A dash (−)
indicates unavailable data or no LLM required.

tion outperformed classification heads (Raffel et al.,
2020), PTEC outperforms PT + T2T in our study.
Several arguments can be made to explain this: (1)
T2T classification often outperforms because the
LLM can make a reasonable guess. However, the
proprietary and domain-specific nature of the indus-
try taxonomy limits the LLM’s ability to leverage
its pretraining knowledge. (2) While most tasks
used to evaluate T2T classification can be reduced
to singular-token targets (“good” or “bad”), the In-
dustrySector dataset consists of multi-token labels
and therefore presents a more complex label space.

Trie Search enhances T2T classification perfor-
mance by 0.17 to 10.9 percentage points with N -
shot prompting. However, it does not improve
LLaMa 7B’s performance when used with PT, sug-
gesting that PT effectively learns to predict valid
labels such that Trie Search does not result in any
additional performance gain.

Classification heads demonstrate comparable
performance to PT with T2T classification but are
significantly more computationally efficient. While
N -shot prompting eliminates training FLOPs, it
necessitates a higher number of inference FLOPs.
Table 2 summarizes the techniques each method
employs. Results on our public HateSpeech bench-
marking dataset followed nearly the same pattern
and can be inspected in Appendix A.5.
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Figure 3: ROC curves using LLaMa 7B. Methods that cannot
be thresholded are displayed as individual points. AUROC =
Area Under the ROC curve. Other abbreviations as defined in

Fig. 2 and Table 1.

valid order conf. LLM Macro
labels invariant scores tuning F1

N -shot 0.015
N -shot + TS 0.032
RadiusNN 0.237
KNN 0.332
CH 0.4
PT + T2T 0.412
PT + TS 0.412
PTEC 0.448
Abbreviations as defined in Fig. 2 and Table 1

Table 2: Overview of methods used and their perfor-
mance on the IndustrySector dataset using LLaMa 7B.
The highest F1 score is highlighted in bold.

Methods such as PTEC offer the advantage of
predicting appropriate confidence scores. This at-
tribute is evident in Fig. 3, which displays the Re-
ceiver Operating Characteristic (ROC) curves for
multiple methods. These confidence scores allow
for selecting a threshold to choose the appropriate
trade-off between precision and recall, a crucial
attribute for deploying a model in production.

5.2 The Impact of Pretraining Knowledge

In the IndustrySector dataset’s test split, 159 of
the 839 companies were recognized from pretrain-
ing, while 680 were not. A qualitative review con-
firmed that known companies had more accessible
online information than unknown companies. A
Mann-Whitney U test indicated that differences in
task performance using LLaMa 7B between both
groups were nonsignificant at a p-value of 0.243 (U
= 50993.5; r = 0.0385). This results in the rejection
of H1 that classification performance is higher for
the companies the LLM indicates to have pretrain-
ing knowledge about. This indicates that we likely

Rater2 Rater3 Gold PTEC ∆Gold−PTEC
a

Rater1 0.477 0.401 0.389 0.36 0.029
Rater2 0.444 0.551 0.422 0.129
Rater3 0.311 0.245 0.066
Average 0.417 0.342 0.075

Gold 0.562
athe difference in agreement of a given rater with the gold
annotations and the PTEC predictions.

Table 3: Agreement Matrix using Cohen’s Kappa com-
paring three independent human raters, gold labels, and
predictions made with PTEC LLaMA 7B.

do not overestimate performance on the inference
dataset.

5.3 Inter-rater Agreement
Table 3 displays the interrater agreement between
three independent human raters, the gold labels
used to train PTEC, and PTEC predictions on the
subsample described in Section 4.3. The moderate
agreement between human raters verifies the sub-
jectivity of our IndustrySector classification task.
Out of 104 companies, unanimous agreement was
reached on just 6 companies. Importantly, PTEC’s
agreement with the gold labels is up to 15.1 per-
centage points higher than the agreement between
human raters and the gold labels. This shows that
PTEC outperforms human professionals, meaning
that it provides value by accelerating and objectify-
ing the industry classification process.

6 Conclusion

This study benchmarks computational cost and
multi-label text classification performance of PT
as a parameter-efficient alternative to fine-tuning
all LLM parameters. To address the limitations of
a T2T approach on multi-label classification prob-
lems, PT is extended with Trie Search as a con-
strained decoding strategy, and with Embedding
Classification as an alternative to T2T classifica-
tion. Results indicate that Trie Search can signifi-
cantly improve the performance of N -shot prompt-
ing. PT can outperform popular text classification
approaches on both our domain-specific Industry-
Sector classification task, and the publicly released
HateSpeech classification benchmark. Both per-
formance and efficiency can be further improved
by combining PT with Embedding Classification.
The proposed solution, PTEC, outperforms base-
lines and human professionals and can be deployed
at scale to accelerate and objectify industry sector
allocation.
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A Appendix

A.1 Inference FLOPs Calculation for
Nearest-Neighbors Methods

KNN and RadiusNN were implemented using
sklearn (Pedregosa et al., 2011). There is to our
knowledge no existing method to measure their
FLOPs consumption for nearest-neighbor methods
implemented with sklearn during inference. In-
stead, their inference FLOPs were estimated as:

FLOPs ≈ E(T + I) + 3(D · T · I) (2)

Here, D represents the dimensionality of the
text embeddings, T denotes the number of train-
ing samples, I indicates the number of inference
samples, and E the FLOPs required to embed one
example. This equation can be derived as follows:
The term E(T + I) refers to calculating the embed-
dings for the training and inference samples, and
3(D · T · I) estimates the number of floating point
operations (FLOPs) for performing classification
with the KNN and RadiusNN algorithms. The av-
erage value of E is calculated by measuring the
FLOPs used for generating one embedding with
PyTorch’s profiler. Assuming a brute-force imple-
mentation, for both KNN and RadiusNN, each in-
ference embedding is compared with every training
embedding. The term 3 ·D corresponds to calcu-
lating the Euclidean distance between two embed-
dings. This calculation involves the subtraction of
one embedding from the other (D FLOPs), squar-
ing each element of the new vector (D FLOPs),
taking the sum of these values (D − 1 FLOPs) and
finally taking the square root of this sum (1 FLOP).
As this is done once for each pair of training and
inference examples, the distance calculations will
need 3(D ·N ·M) FLOPs in total.

As this is only an estimate, the exact number
can vary based on the specifics of the operations
used. While the formula provided here assumes a
brute-force method for KNN and RadiusNN, it is
important to note that more efficient methods are
often employed in practice, especially in popular
machine learning libraries such as scikit-learn (Pe-
dregosa et al., 2011). True computational resources
required by KNN and RadiusNN methods may
therefore be lower than estimated in this paper.
However, this estimation provides a general idea
of the computational resources needed. For both
RadiusNN and KNN the FLOPs used for calculat-
ing the text embeddings of the training data are
considered as ‘training’ FLOPs.

A.2 IndustrySector Dataset Preprocessing

The average number of labels in the IndustrySec-
tor dataset per example is 1.1. This indicates that
while the problem, in theory, is a multi-label classi-
fication problem, most examples in our dataset are
not exhaustively annotated and only carry one label
(see Fig. 4). The dataset is split into 75% training
set, 10% validation set, and 15% test set. Fig. 4
shows the highly imbalanced, long-tail class dis-
tribution: some industries occur only ∼ 25 times,
while the most frequent industry occurs > 300
times. Importantly, this distribution only shows the
classes included in the IndustrySector dataset, and
our database contains many more classes with even
fewer annotations. To ensure that each industry in
the IndustrySector dataset is represented in simi-
lar proportions in all splits, and with a minimum
frequency in both validation and test split, stratifica-
tion is performed using multi-label stratified shuf-
fle splitting, as proposed by Sechidis et al. (2011).
During this process, it is ensured that each industry
is represented at least 2 times in the validation set,
3 times in the test set, and 15 times in the training
set. The imbalanced annotations were accounted
for by reweighing the loss: Class weights are cal-
culated for each class with nmax/nclass. The loss
for each instance is weighted by its class weight
before updating the gradients.

Since the LLM’s self-attention mechanism’s
complexity increases quadratically with prompt
length, long input prompts will easily result in out-
of-memory (OOM) errors. Therefore, descriptions
and keyword lists that consist of more than 1000
characters are summarized using the 250M param-
eter instruction fine-tuned FLAN T5 model (Chung
et al., 2022), such that no input prompt supersedes
a length of 1000 characters. The result of this sum-
marizing step is displayed in Fig. 4.

A.3 Normalized Token Entropy (NTE) Loss

Careful attention has to be paid to the loss calcula-
tion when performing mini-batch gradient descent.
As PyTorch’s (PyTorch, 2024) cross-entropy loss
function by default averages the loss over all label
tokens in a batch, industries with names consisting
of more tokens (“Circular Economy & Sustainable
Materials”) have a larger influence on the batch
loss than industries with shorter names (“Market-
places”). This results in the model learning indus-
tries with longer names better than industries with
shorter names. To avoid this, we adjust the cross-

116



Figure 4: Distributions of (a) original description lengths, (b) preprocessed description lengths, (c) number of labels per example,
and (d) number of examples per label

entropy loss calculation such that each label has
the same influence on the batch loss by reweighting
the influence that each token has on the loss. This
can be done by first taking the average loss of all
tokens belonging to one label, and then averaging
all individual losses over the batch. This is denoted
in (3), where L is the aggregated loss of the batch,
N is the number of examples of the batch, yi is
the label tokens for the i-th example in the batch,
|yi| is the length of the label of the i-th example
measured in it’s number of tokens, yij is the target
value of the j-th token of the i-th label, and pij is
the predicted probability of the j-th token of the
i-th label.

L = − 1

N

N∑

i=1


 1

|yi|

|yi|∑

j=1

yij log(pij)


 (3)

A.4 Hyperparameter Tuning

The hyperparameters for all methods were opti-
mized using Bayesian Optimization (Snoek et al.,
2012) with 25 random initializations of hyperpa-
rameter combinations and 15 iterations of Bayesian
Optimization. Models involving PT are trained us-
ing the AdamW optimizer. Hyperparamters such as
the learning rate and weight decay were searched
on a logarithmic scale, such that the probability
to sample values from the interval [0.01 ≤ x ≤
0.1] equals the probability to sample values from
[0.001 ≤ x ≤ 0.01], given that both intervals are
included in the searched hyperparameter space. For
the KNN and RadiusNN methods, the optimal hy-
perparameter values have large variability between
different models. For this reason, if a hyperpa-
rameter was close to the boundary of the searched
hyperparameter space, Bayesian Optimization was
continued with a broader hyperparameter range.
An overview over the optimized hyperparamters,

Method Hyperp Scl Searched Space Value

N -shot n lin {0, 1, ..., 8} 7

RadiusNN radius lin [0.1, 150] 25.25

KNN k lin {1, 2, ..., 150} 1

CH lr log [1e−6, 1e−3] 1e−3.58

wd log [0, 1e−3] 0

PT (+ TS)
SP lr log [1e−9, 1] 1e−1.66

SP length lin {50, 51, ..., 200} 156
epochs lin {5, 6, ..., 18} 18

PTEC

SP lr log [1e−9, 1] 1e−4.95

SP length lin {50, 51, ..., 200} 53
CH lr log [1e−9, 0.1] 1e−4.23

wd log [1e−9, 0.5] 1e−8.72

epochs lin {5, 6, ..., 18} 13

Abbreviations as defined in Fig. 2 and Table 1

Table 4: Overview of hyperparameters (hyperp), scales
(scl), and search space. To ensure reproducibility, value
refers to the selected value for LLaMa 7B on the public
HateSpeech dataset.

the scale of searching, and the ranges of hyperpa-
rameter values searched are provided in Table 4.
Hyperparameter tuning was performed using the
validation set, while all results reported in Section
5 were calculated over the test set. While the maxi-
mum batch size fitting on one A100 GPU was used
for model training, an effective batch size of 32 was
used for gradient updates. Threshold τ mentioned
in (1) is not considered a hyperparameter, since we
automatically select the value that optimized the F1
score.

A.5 Public Benchmarking

To enable reproducibility, we constructed a pub-
lic benchmark from Salminen et al.’s (2018) hate-
speech classification dataset. The task of this
dataset is to classify social media comments into
different kinds of hatespeech, where each comment
can have one or multiple labels. This dataset was
chosen because it is structurally similar to our In-

117



dustrySector dataset: It covers a set of 22 differ-
ent classes, its data is highly imbalanced, and the
length of the social media comments is similarly
distributed as the length of the company descrip-
tions. Each hate speech comment is annotated
with 1 to 4 labels, and a comment has 1.45 annota-
tions on average. It should be noted that we could
only find a substantially smaller and differently dis-
tributed subset of the original dataset, implying that
our results cannot directly be compared with Salmi-
nen et al. (2018). Nevertheless, this benchmark
serves as a possibility to verify our methodology
and results. The constructed HateSpeech dataset
can be found in our released codebase.

We achieved very similar results to the Industry-
Sector dataset on our public HateSpeech dataset,
as shown in Table 5. The most notable differ-
ence is that for LLaMa 7B, PT outperforms PTEC.
For both models, Trie Search decreases the perfor-
mance of the Prompt Tuned LLM, while it slightly
improves the performance for N-shot prompting
of Bloom 1B7. A relevant observation made is
the high standard deviation of T2T classification
performance when using Bloom 1B7. This goes
along with results of recent research showing that
models from the Bloom family produce the most in-
consistent summaries, as judged by other language
models (Tam et al., 2023).

Method FLOPs Macro F1

Training Inference Mean Std

B
lo

om
1B

7

PTEC 6.99e+16 3.96e+17 0.48 0.015
PT + TS 8.69e+16 6.85e+17 0.233 0.123
PT 8.69e+16 7.94e+17 0.318 0.088
CH 6.82e+12 3.59e+17 0.063 0.011
KNN 8.39e+14 3.59e+17 0.12 0
RadiusNN 8.39e+14 3.59e+17 0 0
N-shot + TS 0 2.81e+18 0.082 0.002
N-shot 0 2.51e+18 0.055 0.005

L
L

aM
a

7B

PTEC 1.31e+17 2.27e+18 0.437 0.007
PT + TS 2.22e+17 2.37e+18 0.47 0.032
PT 2.22e+17 3.20e+18 0.526 0.021
CH 3.07e+13 1.59e+18 0.365 0.014
KNN 3.72e+15 1.59e+18 0.195 0
RadiusNN 3.72e+15 1.59e+18 0.142 0
N-shot + TS 0 4.40e+18 0.094 0.008
N-shot 0 1.16e+19 0.107 0.021

- gzip − − 0.128 0
gzip = Parameter-Free Classification with gzip. Other ab-
breviations as defined in Table 4.

Table 5: Experimental results on the HateSpeech bench-
mark. The method requiring the lowest FLOPs and
achieving the highest macro-averaged F1 Score is high-
lighted in bold for each model. A dash (−) indicates
that a value could not be estimated.
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