Unitxt: Flexible, Shareable and Reusable
Data Preparation and Evaluation for Generative Al

Elron Bandel Yotam Perlitz Elad Venezian Roni Friedman-Melamed
Ofir Arviv Matan Orbach Shachar Don-Yehiya Dafna Sheinwald
Ariel Gera Leshem Choshen Michal Shmueli-Scheuer Yoav Katz
IBM Research
elron.bandel@ibm.com
Abstract model outputs are themselves rich textual data, and

In the dynamic landscape of generative NLP,
traditional text processing pipelines limit re-
search flexibility and reproducibility, as they
are tailored to specific dataset, task, and model
combinations. The escalating complexity, in-
volving system prompts, model-specific for-
mats, instructions, and more, calls for a shift to
a structured, modular, and customizable solu-
tion. Addressing this need, we present Unitxt,
an innovative library for customizable textual
data preparation and evaluation tailored to gen-
erative language models. Unitxt natively inte-
grates with common libraries like HuggingFace
and LM-eval-harness and deconstructs process-
ing flows into modular components, enabling
easy customization and sharing between practi-
tioners. These components encompass model-
specific formats, task prompts, and many other
comprehensive dataset processing definitions.
The Unitxt Catalog centralizes these compo-
nents, fostering collaboration and exploration
in modern textual data workflows. Beyond be-
ing a tool, Unitxt is a community-driven plat-
form, empowering users to build, share, and
advance their pipelines collaboratively. Join
the Unitxt community;

Project: https://github.com/IBM/unitxt.
UL https://bit.ly/unitxt-explore
Video: https://bit.ly/unitxt-video

1 Introduction

Textual data processing has always been at the heart
of NLP, but in the current landscape it has taken
on new roles. A prominent one comes from LLMs’
role as general interfaces, that receive an exam-
ple, but also the task they should perform, general
system instruction and other specifications, all in
natural language. Thus, the inputs — or prompts —
that a model receives now consist of many compo-
nents, that can be combined in different ways: task
instructions (Wei et al., 2022), in-context demon-
strations (Brown et al., 2020), system prompts and
more. At the same time, for text generation models,

thus can be processed and evaluated with a range
of different approaches and paradigms. Therefore,
textual data processing for LLMs is growing in-
creasingly complex. It incorporates a large number
of non-trivial design choices and parameters, which
pose new challenges for maintaining flexibility and
reproducibility in LLM research.

Broadly, research in computer science, and in
particular within NLP, thrives on that combination
of flexibility and reproducibility. On the one hand,
it should be simple to try new ideas: to compare
different approaches, choose parameters, and eas-
ily switch out one workflow or architecture with
another. On the other hand, the results of these
explorations must be shared in such a way that
others are able to — and crucially, are likely to —
reproduce and try them. To enable the above, code
reuse, a well-defined API and ease of use are piv-
otal, ensuring reproducibility and applicability in
practice. How such traits allow for widespread
adoption is epitomized by the Hugging Face trans-
formers library (Wolf et al., 2020). Today, a modest
set of hyperparameters is sufficient to reproduce
a training or inference workflow. This has had an
undeniable and dramatic impact on the ability to
make progress in the field.

Such is not the case, however, for textual data
pipelines. Unfortunately, data-preparation for
LLMs has no standards, Processing model inputs or
outputs of the same data often comes with rewriting
the code, leading to mismatches in reported values
(Post, 2018), unanswerable examples and hidden
bugs (Fourrier et al., 2023) and general time waste.
Crucially, the additional components beyond tra-
ditional processing, such as in-context demonstra-
tions, have no canonical API. This prevents fair
comparisons between different studies, discourages
exploring combinations, hinders integrating a par-
ticular approach (say, a new type of system prompt)
into an existing NLP system, and prevents major

207

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 207-215
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/IBM/unitxt
https://bit.ly/unitxt-explore
https://bit.ly/unitxt-video

scale-ups in terms of datasets, tasks and metrics.

To address these gaps, we introduce a new collab-
orative framework for unified textual data process-
ing named Unitxt. This new Python library sup-
ports multilingual textual data processing through
flexible pipelines called recipes. A recipe (see §4.1
and examples in §3) is a sequence of textual data
processing operators, including, among others, op-
erators that load data, pre-process it, handle the
preparation of different parts of a prompt, or evalu-
ate model predictions (see Figure 1).

Aiming for reuse, Unitxt ships with a catalog
containing a wide variety of pre-defined recipes for
various tasks. These are all based on a diverse set of
built-in operators that are also shared in the catalog.
Having a centralized location for these components,
where anyone can add new ingredients (such as
recipes or operators), or share existing ones, fosters
collaboration, transparency and reproducibility.

As fitting a Recipe, the modularity of Unitxt en-
ables mixing and matching of ingredients to create
new recipes. This ability to mix and match in-
gredients enables Unitxt to support 100K+ recipe
configurations, allowing users to experiment with a
large set of such recipes by to obtain multiple con-
figurations of tasks, datasets and new formatting
(see §3 for example).

Changing libraries is always a nuisance; there-
fore, Unitxt is designed to seamlessly integrate
with preexisting code, offering a hassle-free ex-
perience without even needing a pip install. For
instance, Unitxt can load HuggingFace datasets
and produce outputs that adhere to the same format,
allowing it to integrate seamlessly with other parts
of your codebase (§4.4.1). Demonstrating this, in-
corporating Unitxt, with all its tasks, datasets, tem-
plates and metrics into LM-eval-harness (Gao et al.,
2023) required only 30 lines of code, while pre-
serving the current API and ensuring a smooth tran-
sition and compatibility with existing workflows

(App. A).

Unitxt, an open-source library, is under ac-
tive development by IBM and the community.
The code and documentation are available on
GitHub at: https://github.com/IBM/unitxt,
the UI, at https://bit.ly/unitxt-explore
while the demo video is at https://bit.ly/
unitxt-video.

2 Use cases

Unitxt for evaluation: The increasing capabilities
of LLMs require evaluation frameworks that test
models over an unprecedented number of datasets,
tasks and configurations (Liang et al., 2022; Gao
et al., 2023; Contributors, 2023). Unitxt can serve
as the backbone of such evaluation efforts, by sup-
porting easy changes across multiple important
axes, including tasks, languages, prompt struc-
ture (e.g. instructions, verbalizations, etc.), aug-
mentation robustness and more. Moreover, with
the Unitxt Catalog, different distinct projects
can share their full evaluation pipelines, making
their data-preparation and evaluation metrics repro-
ducible.

Unitxt for training: Modern LLM training
frameworks have extensive data requirements to at-
tain state-of-the-art performance. Multiple datasets
across diverse domains and languages need to be
leveraged to impart broad capabilities; Various
prompt formulations and verbalizations are neces-
sary to enable instruction-following, where verbal-
izations are the final text form. However, combin-
ing heterogeneous data sources and textual repre-
sentations poses significant engineering challenges.
Without a common underlying framework, data
augmentation, multitask learning and few-shot tun-
ing become prohibitively complex. This is where
Unitxt steps in, as an indispensable data backend.

Unitxt enables seamless fusion of diverse
datasets. Moreover, the standardized format also
facilitates changes to the datasets, dynamic prompt
generation, data augmentations and model-specific
format, to name just a few. By handling the
data wrangling complexity, Unitxt empowers re-
searchers to focus on creating performant, robust
and safe LLMs.

For both evaluation and training, Unitxt has al-
ready been adopted as a core utility for LLMs in
IBM by multiple teams working on various NLP
tasks, including classification, extraction, summa-
rization, generation, question answering, code, bi-
ases and more. In total, the open source catalog
contains more than 100K possible pipeline config-
urations.

3 Unitxt: Library Tour

To introduce unitxt, we begin with a tour of the li-
brary, and specifically, with the creation of a recipe.
A recipe contains all the data-processing and met-
ric configurations needed, including the data, task,

208

https://github.com/IBM/unitxt
https://bit.ly/unitxt-explore
https://bit.ly/unitxt-video
https://bit.ly/unitxt-video

L T

-

Split

Operators:
Train/Val

Add
System
Prompt

Finalize

Sample
Format

Demo

Augment
Spaces

- ——— unitxt.load_dataset()

——p Load Data —_— - — Verbalize ——

Resources W Task

Calculate
Metric

‘._——-

Format for
Model

Template

‘ AY
1 Generate with | &
« - o : e :
\ 7’

unitxt.evaluate()

Figure 1: Unitxt flow: The upper section illustrates the data-preparation pipeline §4.4.1, encompassing raw dataset
loading, standardization according to the task interface, verbalization using templates, and application of formatting.
The lower section showcases the evaluation pipeline §4.4.2, involving de-verbalization operations and output
standardization before performance evaluation with task-defined metrics. All components are described in §4.2.

template and formatting (see details in §4). Here
we define a recipe that loads the STS-B dataset for
a sentence similarity task:

r e C i p e = nnn

card=cards.stsb, # dataset info card
template=templates.text_similarity,
sys_prompt=prompts.helpful,
format=formats.user_agent,
num_demos=1

nnn

With a recipe, a concrete dataset can be loaded:

dataset = unitxt.load_dataset(recipe)

Importantly, every data instance in a dataset loaded
with a unitxt recipe contains a fully prepared source
text, which can be directly passed as input to the
model. For example, here is such source text for
one sentence-similarity data instance, integrated
with three formatting decisions, a “helpful model”
system-prompt, a user-agent response schema and
one demonstration:

[System] you are helpful model [/System]

[User]: for the following texts rank the
similarity between 1 to 5.
Text 1: "i love ice cream”
Text 2: "i like ice cream”
[Agent]: 4.8
[User]: Text 1: "i hate pizza”
Text 2: "i like pizza”
[Agent]:

Loading a dataset with a unitxt recipe also adds
a metric-ready target text (created from the origi-
nal target) to each data instance. To Evaluate the
model’s textual predictions, we call:

results = unitxt.evaluate(

dataset,
predictions=predictions,

The evaluation results are a dictionary of task de-
fined metric names and the values computed for
them.

4 Design

In this section we outline the design of Unitxt.
Unitxt processes data by applying a modular se-
quence of operators, which are segmented into 5
key ingredients (§4.2) color-coded as in Fig. 1:

Resources, M Task, " Template, Format and
B Extensions. These ingredients are then used to
build the data preparation (§4.4.1) and evalua-
tion (§4.4.2) pipelines.

4.1 Unitxt Building Blocks

When loading a dataset (as demonstrated in §3),
the Unitxt ingredients are retrieved based on a
Data-Task Card and a Recipe.

M Data-Task Card Defines how raw data (in-
puts and targets) are standardized for a certain task.
Typically, this includes data wrangling actions, e.g.
renaming fields, filtering data instances, modifying
values, train/test/val splitting etc. It also describes
the resource from which the data is loaded.

B MW Recipe A Recipe holds a complete
specification of a Unitxt pipeline: including the
Resources, Task, Template, Format and Extensions.

209

4.2 Unitxt Ingredients

Resources Raw data and metrics are external
resources utilized by Unitxt. Unitxt implements
several APIs for raw-data and metric loading (e.g.,
from Huggingface Hub, local files, and cloud stor-

age).

Task A Unitxt Zask follows the formal defi-
nition of an NLP task, such as multi-label classi-
fication, named entity extraction, abstractive sum-
marization or translation. A task is defined by its
standard interface — namely, input and output fields
— and by its evaluation metrics. Given a dataset, its
contents are standardized into the fields defined by
an appropriate task by a Data-Task Card (§4.1).

As an example of a defined task, consider sen-
tence similarity: it has two input fields (named
“sentencel” and, “sentence2”), one output field
(named “label”) and the conventional metric is
Spearman correlation (Spearman, 1904).

Template A Unitxt Template defines the ver-
balizations to be applied to the inputs and targets,
as well as the de-verbalization operations over the
model predictions. For example, in Fig 2, applying
the template to I like toast verbalizes it into
classify the sentence: “I like toast”.

In the other direction, template de-verbalization
involves two steps. First, a general standardization
of the output texts: taking only the first non-empty
line of a model’s predictions, lowercasing, strip-
ping whitespaces, etc. The second step standard-
izes the output to the specific task at-hand. For
example, in Sentence Similarity, a prediction may
be a quantized float number outputted as a string
(e.g “2.43”), or a verbally expressed numeric ex-
pression (e.g “two and a half”). This depends on
the verbalization defined by the template and the
in-context demonstrations it constructs. Both types
of outputs should be standardized before evaluation
begins — e.g. to a float for sentence similarity. Hav-
ing the de-verbalization steps defined within the
template enables templates reuse across different
models and datasets.

Crucially, in contrast to existing solutions (e.g.,
Bach et al., 2022) the templates, datasets and tasks
in Unitxt are not exclusively tied. Each task can
harness multiple templates and a template can be
used for different datasets. Thus, the modularity of
Unitxt allows mixing and matching, significantly
enhancing re-usability and flexibility.

Source:
-
g <SYS>You are a helpful agent</SYS>
5 Instruction: Classify the sentence to one of the
L following categories: positive, negative
Q User: classify this sentence: ‘I like pizza’
%_ Agent: positive
g
= User: classify this sentence: ‘I hate pizza’
Agent: negative
(]
g User: classify this sentence: ‘I like toast’
3 Agent:
[0
o
Target:
positive

Figure 2: Illustration of the data preparation pipeline
(§4.4.1), depicting the transformation from raw data and
formatting specifications to the final text output. Com-
ponents include Resources (raw data), Format (model-
specific formatting requirements), and Template (ver-
balization).

Format A Unitxt Format defines a set of ex-
tra formatting requirements, unrelated to the under-
lying data or task, including those pertaining to sys-
tem prompts, special tokens or user/agent prefixes,
and in-context demonstrations. Continuing the ex-
ample from Figure 2, the Unitxt format receives
the text produced by the template classify the
sentence: “I like toast”, and adds the system
prompt <SYS>You are a helpful agent</SYS>,
the Instruction-User-Agent schema cues, and the
two presented demonstrations.

B Extensions Unitxt supports Extensions such
as input-augmentation (for example, adding ran-
dom whitespace, introducing spelling mistakes, or
replacing words with their synonyms) or label-
noising (replaces the labels in the demonstrations
randomly from a list of options). Such extensions
can be added anywhere in the data-preparation
pipeline between any two operators, depending on
the desired logic (see Fig. 1). Unitxt supports
the addition of custom extensions to the Catalog.
Each extension is an independent unit, reusable
across different datasets and tasks, templates and
formats.

4.3 Unitxt Catalog

All Unitxt artifacts — recipes, data-task cards, tem-
plates, pre-processing operators, formats and met-
rics — are stored in the Unitxt Catalog. In addi-
tion to the open-source catalog, that can be found in

210

the documentation, users can choose to define a pri-
vate catalog. This enables teams and organizations
to harness the open Unitxt Catalog while uphold-
ing organizational requirements for additional pro-
prietary artifacts.

4.4 Unitxt Pipelines
4.4.1 Data Preparation Pipeline

The data preparation pipeline (top part ot Fig. 1) be-
gins with standardizing the raw data into the task in-
terface, as defined in the data-task card (§4.1). The
examples are then verbalized by the template, and
the format operator applies system prompts, special
tokens and in-context learning examples (§4.2), as
illustrated in Figure 2. To maintain compatibility,
the output of this pipeline is an HF dataset, that can
be saved or pushed to the hub.

4.4.2 Evaluation Pipeline

The evaluation pipeline (bottom part of Fig. 1) is
responsible for producing a list of evaluation scores
that reflect model performance. It includes a de-
verbalization of the model outputs (as defined in
the template, see §4.2), and a computation of per-
formance by the metrics defined in the task. The
standardization of the task interface, namely, hav-
ing fixed names and types for its input and output
fields, allows the use of any metric that accept such
fields as input. In addition to the computed eval-
uation scores, Unitxt metrics supports a built in
mechanism for confidence interval reporting, using
statistical bootstrap (Perlitz et al., 2023).

5 Unitxt UIl: Explore & Preview

The objective of the user interface is to guide users
through the essential steps of recipe creation, il-
lustrated with pertinent examples. Additionally,
it allows for catalog exploration. The UI comple-
ments the experience with the option to execute
the examples on some pre-set model (e.g., flan-t5-
base), get the predictions and associated scores.
The interaction entry point is the tasks. Upon
clicking, the tasks taxonomy is presented, and the
users have the option to choose the applicable task
type. Selecting a task results in showing only the
relevant datasets and templates. Once the user se-
lects a dataset, and a template, and presses “Gener-
ate Prompts” a random example enhanced with the
template is loaded. If the user wants to augment
the input with system prompt, or response-schema
those will be instantly added when opted for. As

211

in-context learning evaluations are supported, the
user can select the preferred number of shots. Once
satisfied with the example, the user has the option
to proceed with executing it on a model, wherein
the predictions and corresponding scores will be
displayed for this specific example. Further, going
to the code tab, the user can copy the associated
code into a notebook and run. Users have the op-
tion to explore various examples, enhancing their
comprehension and confidence in the chosen con-
figuration.

6 Related work

Standardized data processing for evaluation and
training has been a longstanding need in the NLP
community and has been repeatedly addressed in
the past. Datasets (Lhoest et al., 2021) and Eval-
uate' are community-driven libraries, providing a
standardized interface to diverse corpora and met-
rics, as well as supporting many data processing
operations. These packages, however, fall short
of providing a standardized, shareable and repro-
ducible framework to cast the raw data into textual
prompts and cast them back from text to a metric
digestible format. The lack of such a framework
hinders reproducibility, as often slight variations in
ad-hoc text processing code may yield significantly
different evaluation scores. Moreover, it also pre-
vents users from easily scaling up their experiment,
as each task and dataset often requires specific code
for processing and evaluation. Unitxt builds on
top of these frameworks, harnessing them as re-
sources (§4.1) to produce a full data-preparation
and evaluation framework.

While several existing frameworks have con-
tributed to data pipeline management workflows, a
common drawback, for those we are aware of, is the
absence of a well-defined and flexible modularity
in their design, such as the ability to define specific
components for system prompts, task instructions
and model-specific formats. This absence of clearly
defined components makes it challenging to share
and customize such pipelines effectively, across
different datasets and tasks.

Like Unitxt, Tasksource (Sileo, 2023) supplies
tools for consistent preprocessing over different
datasets, simplifying their usage. However, it is
primarily designed for discriminative tasks, uses
fixed formats and lacks a modular design that en-
ables sharing, mixing and matching, and overall

1https: //github.com/huggingface/evaluate/

https://github.com/huggingface/evaluate/

Task

tasks.nli

Dataset Card

cards.wnli

Template

templates.classification.nli.simple

System-prompt

sysprompts.models.alpaca

Response scheme

formats.user_agent

Num Shots

Demo

Previous Sample Next Sample

Prompt:

]

Prompt

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

User:Given this sentence: Since Chester was dependent on Uncle Vernon, he couldn't very well
marry without his approval, classify if this sentence: He couldn't very well marry without
Chester's approval is entailment, not entailment.

Agent:entailment

User:Given this sentence: The man couldn't lift his son because he was so heavy., classify if this

__________ B S SR T UV U
Target

not entailment

Additional Parameters <

Figure 3: Exploration UI showcasing configuration options for model input creation on the left, including param-
eters such as task, dataset card, template, system-prompt, response-schema, number of examples, and optional
augmentations. The resulting model input is displayed in the prompt window.

flexibility in processing steps. Promptsource (Bach
et al., 2022) focuses on making and sharing natural
language prompts but doesn’t handle other types
of data processing. Each prompt is tied to just one
dataset, making it hard to reuse and share. Further-
more, prompts aren’t split into system, instruction,
and format parts, limiting options for flexibility
and reuse. SeqlO (Roberts et al., 2022), offers
task-based pipelines encompassing pre-processing,
post-processing, and handling metrics. However, a
structured breakdown of these processing steps is
absent, limiting the creation of shareable catalogs
within the community. In this framework, each pro-
cess is a generic function and specialized steps are
missing, like those designed for system prompts.

A different branch of solutions are language
model evaluation frameworks such as OpenCom-
pass (Contributors, 2023), HELM (Liang et al.,
2022) and LM-eval-harness (Gao et al., 2023) also
implement their own standardized data processing
pipelines in order to obtain verbalized prompts for
LMs. These, however, are highly coupled with the
inference engine and cannot be used as standalone
data-processing pipelines or integrated into other
code bases.

7 Conclusion

In this paper, we have introduced Unitxt, an open-
source Python library aimed at unifying textual
data processing pipelines for large language mod-
els. Unitxt provides a modular, flexible frame-
work that enables mixing and matching of vari-
ous pipeline components like loaders, templates,
formats and metrics. Unitxt key capabilities are,
standardization, flexibility, collaboration and scale.

Unitxt has already been successfully deployed
for large language model evaluation and training
within IBM. As the library matures through open-
source community involvement, we hope its adop-
tion will grow to push the frontiers of textual data
processing for LLMs. We believe Unitxt has the
potential to significantly impact research and de-
velopment of large language models by unifying
textual data processing. Through its emphasis on
flexibility, reproducibility and collaboration, unitxt
can help drive progress towards more capable, safer
and trustworthy LLMs.

8 Limitations

While unitxt makes significant progress towards
unified textual data processing for LLMs, some
limitations still remain:

* The Unitxt Catalog, while already substan-

212

tial in coverage, needs expansion to encom-
pass more datasets, languages, and niche tasks.
Community contributions will be key to en-
hancing catalog diversity.

» Coverage of evaluation metrics, especially for
generative tasks, needs improvement. We plan
to incorporate more reference-free and LLM-
based metrics going forward.

* Training data augmentation abilities, while
flexible currently, can be expanded further
with techniques like back-translation for mul-
tilinguality.

* While using Unitxt recipes is as simple as
specifying the recipe ingrediants, adding new
datasets or operators requires learning the
Unitxt operator language. Additional doc-
umentation, examples and IDE support could
help alleviate this.

Addressing these limitations through open-
source community involvement is the major focus
going forward. By tapping into collective expertise,
we envision unitxt becoming an indispensable tex-
tual data processing backbone for the responsible
development, evaluation and deployment of large
language models.

References

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea San-
tilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu,
Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish
Thakker, Khalid Almubarak, Xiangru Tang, Xian-
gru Tang, Mike Tian-Jian Jiang, and Alexander M.
Rush. 2022. Promptsource: An integrated develop-
ment environment and repository for natural language
prompts.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Clémentine Fourrier, Alex Cabrera, Stella Biderman,
Nathan Habib, and Thomas Wolf. 2023. Open llm
leaderboard: Drop deep dive.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sagko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175-184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2023. Ef-
ficient benchmarking (of language models). arXiv
preprint arXiv:2308.11696.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Se-
bastian Goodman, Livio Baldini Soares, Haitang
Hu, Sasha Tsvyashchenko, Aakanksha Chowdh-
ery, Jasmijn Bastings, Jannis Bulian, Xavier Gar-
cia, Jianmo Ni, Andrew Chen, Kathleen Kenealy,
Jonathan H. Clark, Stephan Lee, Dan Garrette, James

213

http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://huggingface.co/blog/leaderboard-drop-dive
https://huggingface.co/blog/leaderboard-drop-dive
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319

Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin
Ritter, Maarten Bosma, Alexandre Passos, Jeremy
Maitin-Shepard, Noah Fiedel, Mark Omernick, Bren-
nan Saeta, Ryan Sepassi, Alexander Spiridonov,
Joshua Newlan, and Andrea Gesmundo. 2022. Scal-
ing up models and data with t5x and seqio. arXiv
preprint arXiv:2203.17189.

Damien Sileo. 2023. tasksource: Structured dataset
preprocessing annotations for frictionless extreme
multi-task learning and evaluation. arXiv preprint
arXiv:2301.05948.

C. Spearman. 1904. The proof and measurement of as-
sociation between two things. The American Journal
of Psychology, 15(1):72-101.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

A LM Eval Harness Integration

LM-eval-harness (Gao et al., 2023) is one of the
most commonly used open source evaluation frame-
works. It leverages a yaml-based declarative lan-
guage which defines loading of the dataset, the
dataset splits, the prompt used and the metrics in a
single file for each task. Many tasks are supported,
including multi-class classification, multiple choice
question answering, and generation tasks. Unitxt
was integrated into LM-eval-harness to extend LM-
eval-harness to support new tasks and metrics that
currently are not supported, including multi-label
classification, named entity extraction, and target
sentiment analysis.

Since Unitxt recipes can be loaded as standard
HF datasets, no code changes were required to add
the Unitxt data preparation pipeline to LM-eval-
harness. Adding a Unitxt recipe requires only
one line change in a LM-eval-harness yaml (see
Figure 4 in Appendix). Adding the Unitxt met-
rics required about 30 lines of code, to register
the Unitxt metrics to the LM-eval-harness metrics

registry.

214

https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2301.05948
https://arxiv.org/abs/2301.05948
https://arxiv.org/abs/2301.05948
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

group: glue
task: unitxt_unfair_tos

3 dataset_path: unitxt/data

dataset_name: card=cards.unfair_tos,template_card_index=templates.classification.
multi_label.default,format=formats.user_agent
output_type: generate_until
training_split: train
validation_split: validation
doc_to_text: "{{source}}"”
doc_to_target: target
generation_kwargs:
until:
- "</s>"
metric_list:
- metric: unitxt_f1_micro_multi_label
metadata:
version: 1.0

Figure 4: Unitxt and LM-eval-harness integration. A Unitxt recipe can be integrated as an LM-eval-harness task,

by setting the dataset_path (line 3) to unitxt/data and the setting the recipe in the dataset_name (line 4). Unitxt
metrics can be used like any other metric (line 14).

215

