Low-code LLM: Graphical User Interface over Large Language Models

Yuzhe Cai*, Shaoguang Mao*, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge
Chenfei Wu, Wang You, Ting Song, Yan Xia, Nan Duan and Furu Wei
Microsoft Research Asia

v-yuzhecai,
chewu,

shaoguang.mao,

v-wangyou, tsong,

Abstract

Utilizing Large Language Models (LLMs) for
complex tasks is challenging, often involving
a time-consuming and uncontrollable prompt
engineering process. This paper introduces
a novel human-LLM interaction framework,
Low-code LLM. It incorporates six types of
simple low-code visual programming interac-
tions to achieve more controllable and stable
responses. Through visual interaction with a
graphical user interface, users can incorporate
their ideas into the process without writing triv-
ial prompts. The proposed Low-code LLM
framework consists of a Planning LLM that de-
signs a structured planning workflow for com-
plex tasks, which can be correspondingly edited
and confirmed by users through low-code vi-
sual programming operations, and an Execut-
ing LLM that generates responses following the
user-confirmed workflow. We highlight three
advantages of the low-code LLM: user-friendly
interaction, controllable generation, and wide
applicability. We demonstrate its benefits us-
ing four typical applications. By introducing
this framework, we aim to bridge the gap be-
tween humans and LLMs, enabling more ef-
fective and efficient utilization of LLMs for
complex tasks. The code, prompts, and exper-
imental details are available at LowcodeLLM.
A system demonstration video can be found at
LowcodeLLM.

1 Introduction

Large language models (LLMs), such as Chat-
GPT(OpenAl, 2022) and GPT-4(OpenAl, 2023),
have garnered significant interest from both
academia and industry, as they demonstrate im-
pressive capability across a range of tasks(Bubeck
et al., 2023), and are increasingly utilized in a va-
riety of other fields as well(Nori et al., 2023; Choi

* The first two authors contributed equally. This work
was performed during the first author’s internship at Microsoft
Research Asia

wenswu,
yanxia,

12

zehwang,
nanduan,

yalia, tage,
fuweil@microsoft.com

Conventional Human-LLM Interaction
| Q
@ ot
—— prompt ——’@— response

Low-code Human-LLM Interaction (Low-code LLM)

response

[

task prompt

©.g., Wite an essay titled
“Drunk Driving As A Social Issue”.

3)

Figure 1: Overview of the Low-code human-LLM in-
teraction (Low-code LLM) and its comparison with the
conventional interaction. The red arrow indicates the
main human-model interaction loop.

et al., 2023; Baidoo-Anu and Owusu Ansah, 2023).
However, it is not yet perfect in handling complex
tasks. For example, when generating a long paper,
the presented arguments, supporting evidence, and
overall structure may not always meet expectations
in diverse user scenarios. Or, when serving as a
task completion virtual assistant, ChatGPT may not
always interact with users in the intended manner
and may even display inappropriate behavior in
various business environments.

Effective utilization of LLMs like ChatGPT
requires careful prompt engineering(Zhou et al.,
2022; Wang et al., 2023b). However, prompt en-
gineering can be particularly challenging when in-
structing LLMs to perform complex tasks, as re-
flected in more uncontrollable responses and more
time-consuming prompt refining(Tan et al., 2023).
There exists a gap between providing prompts and
receiving responses, and the process of generating
responses is not accessible to humans.

To reduce this gap, this paper proposes a
new human-LLM interaction pattern Low-code
LLM, which refers to the concept of low-code
visual programming(Hirzel, 2022), like Visual Ba-

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 12-25
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/moymix/TaskMatrix/tree/main/LowCodeLLM
https://www.youtube.com/watch?v=jb2C1vaeO3E

sic(Microsoft, 1991) or Scratch(Resnick et al.,
2009). Users can confirm the complex execution
processes through six predefined simple operations
on an automatically generated workflow, such as
adding or deleting, graphical dragging, and text
editing.

As shown in Figure 1, human-LLM interaction
can be completed through the following steps: (1)
A Planning LLM generates a highly structured
workflow for complex tasks. (2) Users edit the
workflow using predefined low-code operations,
which are all supported by clicking, dragging, or
text editing. (3) An Executing LLM generates re-
sponses based on the reviewed workflow. (4) Users
continue to refine the workflow until satisfactory
results are obtained.

Compared with the conventional human-LLM
interaction pattern, Low-code LLM has the follow-
ing advantages:

1. User-friendly Interaction. The visible work-
flow provides users with a clear understanding of
how LLMs execute tasks, and enable users to easily
edit it through a graphical user interface.

2. Controllable Generation. Complex tasks are
decomposed into structured workflows and pre-
sented to users. Users control the LLMs’ execution
through low-code operations to achieve more con-
trollable responses.

3. Wide applicability. The proposed framework
can be applied to various complex tasks across
various domains, especially in situations where hu-
man’s intelligence or preference are critical.

2 Low-code LLM

2.1 Overview

Figure 1 demonstrates the overview framework of
the Low-code LLM. Different from conventional
prompt engineering, in Low-code LLM, users first
input a task prompt, which could be a very brief
description of the task they want to achieve. Then
(1) a Planning LLM will design a workflow for
completing the task. The workflow is a kind of
structured plan, including execution procedure and
jump logic. (2) The user will edit the workflow us-
ing six pre-defined low-code visual programming
operations. (3) Once the user confirms workflow,
it is interpreted into natural language and inputted
to the Executing LLM, which will generate a re-
sponse with the user’s guide. (4) The user can itera-

13

STEP 1: [Step Name] [Step Description] [[[If ...][Jump to STEP...]][...]]
STEP 2: [Step Name] [Step Description] [[[If ...][Jump to STEP...]][...]]

Table 1: Format of Structured Planning Workflow. For
each item, it consists of two parts: execution procedure
(i.e. step name and description), and jump logic (null
for sequential execution).

tively refine the workflow until satisfactory results
are achieved.

2.2 Planning LLM and Structured Planning
Workflow

A structured planning workflow is designed by the
Planning LLM based on user input task prompt.
Generally, the workflow consists of multiple steps
and jump logic between steps. To facilitate the
transformation from a workflow in natural language
to an intuitive graphical flowchart, Planning LLM
is instructed to produce structured workflows, as
shown in Table 1, with every step consisting of
two parts: (1) Step: including step name and step
description that users can directly revise; (2) Jump
logic. Additionally, users can extend every step of
the workflow into a sub-workflow with more details
according to their preferences, and keep extending
until reaching their desired level of detail.

We implement the Planning LLM with Chat-
GPT! and educate it to draft a plan with education
prompts, which consists of (1) Role of Planning
LLM: a powerful problem-solving assistant that
provides a standard operating procedure (i.e., work-
flow) for the user’s task; (2) Generation of overall
workflow: Planning LLM is instructed to analyze
the task and provide standard operating procedure
as guidance, but is not required actually to solve
the task; (3) Generation of sub-workflow: If a
user intends to extend a step, the Planning LLM is
provided with the dialogue history of the previous
generation of the overall workflow to ensure logi-
cal consistency and prevent duplication of content
between the sub-workflow the other steps of the
overall workflow. (4) Basic rules: Planning LLM
must follow the instructions and be strict to the
output format defined in Table 1.

With the education prompts, Appendix A.2 ex-
hibits an example of a workflow for the task “Write
an essay titled ‘Drunk Driving As A Social Issue’"
generated by the Planning LLM.

'GPT-3.5-turbo on Azure. Model version: 2023-06-13

1 Adding/removing steps

uuuuuuuuuuuuu

eeeee

)) '

uuuuuuu s Outline. L
v . v

v P

*® seloct and delete

Modify step content

reh

~N

Extend sub-flowchart

- outine B N

nnnnnnnnn

Sub-flowchart

Adding Removing

-

Adding Removing Overall Flowchart for STEP 3
Adding/removing jump logic Changing the order Regeneration and confirm
e T B
| ' }] _— ’)
ccccccc E mmmr Outiine = k Dim . wﬁ} utline
‘v H Vv select and delete X '
waie. s wite s + f‘ + e _
= k e | (.. s : nnnnnnn
....... it ' - 3

J

Figure 2: Six kinds of pre-defined low-code operations: (1) adding/removing steps; (2) modifying step name or
descriptions; (3) adding/removing a jump logic; (4) changing the processing order; (5) extending a part of the

flowchart; (6) regeneration and confirmation.

2.3 Low-code Interaction with Planning
Workflow

To more intuitively present users with the workflow,
a flowchart is utilized to visualize the workflow and
presented it to users. The structured workflow (e.g.,
workflow in Appendix A.2) can be conveniently
converted to a flowchart. Then, low-code visual
programming operations enable users to easily im-
plement sequential execution, conditional execu-
tion, and recursive execution.

As shown in Figure 2, there are six pre-defined
low-code interactions on graphical flowchart. We
define six types of low-code interactions for users
to edit the workflow, including:

» Extending a step in the flowchart by clicking
the button;

* Adding or removing steps by clicking buttons;

* Modifying step names or descriptions by
clicking and text editing;

* Adding/removing a jump logic by clicking;
* Changing the processing order by dragging;
* Regeneration by clicking buttons.

These operations can be efficiently completed in
a graphical user interface to achieve a very user-
friendly interaction. Besides, a prototype has also

14

been designed, featuring a clear interactive inter-
face that enhances the usability of the Low-code
LLM.

2.4 Executing LLM

The modified flowchart is converted back to a natu-
ral language based workflow (referred to as mod-
ified workflow) so that it can be understood by
LLMs. Executing LLM is designed to generate
responses by following the user-confirmed work-
flow and engaging in interactions with users via
a conversational interface. Thanks to the user’s
explicit confirmation of the task execution logic in
the workflow, the results generated by LLMs will
be more controllable and satisfactory.

We implement the Executing LLM with Chat-
GPT and educate it to generate responses by pro-
viding it with education prompts, which instruct
the ChatGPT to generate responses by strictly fol-
lowing the provided workflow.

2.5 Application Scenarios

We believe that, no matter how powerful large lan-
guage models will be in the future, some tasks in-
evitably require users’ participation. For example,
users need to communicate their ideas and pref-
erences, their understanding of the task, and their
desired output format to the large language mod-
els. The traditional approach is to iterate through
cumbersome prompt engineering, but the interac-

tion method of Low-code LLM will greatly liberate
users from such tedious prompt engineering. Work-
flow is an effective intermediate language that both
humans and large language models can understand.
This simple low-code operation in graphical user
interface allows users to easily complete their log-
ical ideas, while the structured planning process
allows large language models to execute tasks more
strictly according to the logic.

3 Experiments

3.1 Experimental Setup

We demonstrate the power and potential of Low-
code LLM in assisting users with four categories
of tasks:

(1) Long Content Generation, including long
texts (such as blogs, business plans, and pa-
pers), and posters, wherein users interact with the
flowchart generated by the Planning LLM to spec-
ify the structure, idea, and focus of the generation.

(2) Large Project Development, including com-
plex object relations and system design. Users can
educate LLMs about their architect design through
low-code interactions.

(3) Task-completion Virtual Assistant, where
developers can predefine the interaction logic be-
tween the virtual assistant and customers by editing
the flowchart, and the Executing LLM will strictly
follow the logic specified by the developer to mini-
mize potential risks.

(4) Knowledge-embedded System, where do-
main experts can embed their experience or knowl-
edge into a conducting workflow. Then, the coun-
seling assistant will follow a pre-defined pattern
and act as a coach to scaffold users to complete
their tasks.

In particular, the Low-code LLM experiments
are carried out using the OpenAl service (gpt-
3.5-turbo). In each experiment, we detail the
user-defined requirements, the user-provided in-
put prompt, the flowchart created by the Planning
LLM, user edits on the flowchart, and the final
generation results.

In the qualitative analysis, we examined four pi-
lot cases in the above categories to demonstrate the
benefits of Low-code LLM in achieving control-
lable and satisfactory results.

3.2 Qualitative Analysis

Pilot Case 1: Essay Writing As shown in Fig-
ure 3, by enabling users to make specific edits to

15

the flowchart, users can easily communicate with
the system on their ideas and writing structures.
As a result, the generated results are very control-
lable and highly aligned with users’ writing plans.
Low-code interaction is a win-win collaboration
of the user’s intelligence and LLM’s powerful text
generation ability.

Pilot Case 2: Object-oriented Programming
Even though large language models demonstrate
significant capabilities in code generation, it can be
challenging for users to precisely instruct their re-
quirements to an LLM in building complex systems.
However, as shown in Figure 4 in Appendix A.1
, Low-code LLM enables professional program-
ming architects to easily input their system design
through low-code interaction. The results verify
that the generated codes strictly follow the expert’s
design. With the Low-code LLM interaction, con-
structing a complex system becomes much more
convenient for users.

Pilot Case 3: Virtual Hotel Service Figure 5 in
Appendix A.l shows the advantages of Low-code
LLM over traditional prompt engineering for im-
plementing a task-completion virtual assistant. By
using Low-code LLM, users, probably hotel man-
agers, can take advantage of a structured planning
flowchart and interactively define the necessary ex-
ecution logic for the virtual assistant. This ensures
that the virtual assistant operates according to the
managers’ exact intentions, reducing potential er-
rors and misbehavior. The intuitive, visual nature
of the flowchart allows for easy editing and mod-
ification, and the result shows the behaviors are
tightly aligned with the specified requirements.

Pilot Case 4: Resume Helper Figure 6 in Ap-
pendix A.1 shows another scenario where Low-
code LLM is helpful. In some professional,
knowledge-driven scenarios, experts can integrate
execution logic and knowledge into the workflow
through low-code interactions. By embedding ex-
pert knowledge, users can be scaffolded to com-
plete their tasks. In this case, a human resource
expert inputs resume creation experiences into Re-
sume Helper, and when users use it to complete
their resumes, the Executing LLM strictly follows
the expert-defined workflow to communicate with
users. Some similar scenarios may include psy-
chological counseling, medical diagnosis, mock
interviews, and others.

Low-code N

Prompt: Write an essay titled "Advertising: Information or Manipulation”.

The user-specified preferences:

* Support that advertising is primarily a form of manipulation
* Expound the argument in the introduction paragraph

* Use three paragraphs to dialectically analyze

Flowchart generated by Planning LLM and then revised by user: (The red text is the part edited by the user)

Research

Hl

Gather information about advertising and its effects on consumers

'

Organize

Hl

Create an outline of the essay, including introduction, body
paragraphs, and conclusion

Write the first body paragraph =
* Write the first body paragraph, providing evidence and
Write = examples to analyze why advertising is a form of information
Write the introduction, including a thesis statement that
advertising is a form of manipulation

* Write the second body paragraph =
Write the second body paragraph, providing evidence and
Write the body paragraphs, providing evidence and examples to examples to analyze why advertising is manipulation
support the thesis statement

| v

Write = Write the third body paragraph =
Write the conclusion, summarizing the main points and restating Write the third body paragraph, providing evidence and
the thesis statement examples to support the thesis statement
Revise =

Review the essay for clarity, coherence, and grammar

Low-code LLM:

Certainly, here is the essay | have written on the topic "Advertising:
Information or Manipulation": Advertising: Information or Manipulation

Advertising is a ubiquitous presence in modern society, with advertisements appearing on television, billboards, and social media platforms. While
some argue that advertising provides valuable information to consumers, others contend that it is a form of manipulation that exploits people's
desires and insecurities. In this essay, | will explore both sides of the debate and argue that advertising is primarily a form of manipulation.

On the one hand, proponents of advertising argue that it provides valuable information to consumers. For example, advertisements for new products
can inform people about the latest technological advancements or health benefits. Additionally, advertisements can help consumers make informed
decisions by providing information about the features and benefits of different products. In this sense, advertising can be seen as a useful tool for
consumers to make informed choices.

On the other hand, critics of advertising argue that it is primarily a form of manipulation. Advertisements often appeal to people's emotions and
desires, rather than providing objective information. For example, advertisements for beauty products often use images of flawless models to create
an unrealistic standard of beauty that can make people feel inadequate. Similarly, advertisements for fast food restaurants often use images of
delicious food to create cravings that can lead to unhealthy eating habits. In this sense, advertising can be seen as a form of manipulation that
exploits people's desires and insecurities.

While there are certainly benefits to advertising, | believe that it is primarily a form of manipulation. Advertisements often use psychological tactics to
influence people's behavior, such as creating a sense of urgency or scarcity. Additionally, advertisements often rely on stereotypes and cultural norms
to appeal to people's emotions. For example, advertisements for cleaning products often feature women as the primary users, reinforcing gender
stereotypes and limiting women's roles to domestic tasks. In this sense, advertising can be seen as a powerful tool for shaping people's beliefs and
behaviors.

In conclusion, while some argue that advertising provides valuable information to consumers, | believe that it is primarily a form of manipulation that
exploits people's desires and insecurities. By using psychological tactics and appealing to people's emotions, advertising can shape people's beliefs
and behaviors in powerful ways. As consumers, it is important to be aware of these tactics and to critically evaluate the messages that we receive
from advertisements.)

Figure 3: Essay Generation through Low-Code LLM: Users interact with the LLM by editing a flowchart, resulting
in responses that are more closely aligned with their requirements. The red section in the flowchart illustrates how
users modify the workflow. The generated output is highly tailored to the user’s specific needs (see the highlighted
parts). To obtain similar controllable results, conventional prompt engineering requires complex prompt and heavy
prompt modification works.

16

4 Related Work

Large Language Models Large language mod-
els (LLMs) have emerged as a prominent area of
research in recent years. Recent LLMs, such as
GPT-4 and ChatGPT, have made impressive strides
in generating more coherent and contextually rele-
vant responses. They have been applied in various
industries and fields, including content creation,
code development(Chen et al., 2021), customer sup-
port(George and George, 2023), and more. How-
ever, while LLMs have demonstrated promising
potential, they still face limitations(Bowman, 2023;
Borji, 2023; Bang et al., 2023). In particular, con-
trolling the behavior and output of LLMs for com-
plex tasks remains a challenge, which has led to
the development of new techniques, such as prompt
engineering, and methods to improve results(Wu
et al., 2023; Ge et al., 2022; Wu et al., 2022; Shen
et al., 2023; Wang et al., 2023b).

Prompt Engineering Prompt engineering has
emerged as an essential technique for interacting
with LLMs to achieve desired outcomes. The
success of large language models relies heavily
on their ability to produce answers to various
queries(Zuccon and Koopman, 2023). However,
providing effective prompts that convey the exact
intent of humans is a non-trivial task, especially
when it comes to complex tasks and requirements.

The challenge in prompt engineering lies in craft-
ing prompts that can manipulate the LLM into
generating specific outcomes. Researchers have
explored various techniques to simplify prompt en-
gineering, ranging from giving explicit instructions
to providing context for LLMs to understand the
desired output better(White et al., 2023).

Some recent advancements in prompt engineer-
ing include techniques such as few-shot learn-
ing(Wang et al., 2023a; Brown et al., 2020; Min
et al., 2022), reinforcement-learning(Deng et al.,
2022; Cao et al., 2023). However, these techniques
often demand substantial expertise and time, mak-
ing it difficult for end-users to leverage the full
potential of these LLMs.

The Low-code LLM framework proposed in our
paper provides an innovative solution by involving
the users in the process of designing workflows,
which ultimately controls the LLM’s response gen-
eration.

Task Automation with LLMs Recently, various
research studies have focused on leveraging large

17

language models for task automation(Auto-GPT,
2023; Liang et al., 2023; Kim et al., 2023). Task
automation with LLMs usually involves the model
analyzing a given input, breaking it down into sub-
tasks, and generating desired outputs accordingly.

However, the black-box nature of the interaction
and the difficulty in controlling their output have
remained significant challenges in deploying LLMs
for complex tasks(Tan et al., 2023). Users often
face difficulties when attempting to direct LLMs to
adhere to specific requirements or constraints.

By offering a user-friendly and efficient way of
specifying preferences and constraints, Low-code
LLM contributes to research on task automation
with LLMs, while further bridging the gap between
users and LLMs for achieving more structured and
fine-grained control.

5 Limitations

While the Low-code LLM framework promises
a more controllable and user-friendly interaction
with LLMs, there are some limitations.

One such limitation is the increase in the cogni-
tive load for users, who now need to understand
and modify the generated workflows.

Furthermore, accurate and effective structured
planning within the Planning LLM may be chal-
lenging, and bad structured planning poses a heavy
user editing burden. But we believe with the evolu-
tion of LLMs and research on task automation, the
planning ability will be getting satisfactory.

Lastly, the current design assumes that users
have sufficient domain knowledge and skills to
modify the generated workflows effectively.

6 Conclusion

We proposed a novel human-LLM interaction
framework, which aims to improve the control and
efficiency of utilizing large language models for
complex tasks. Low-code LLM allows users to
better understand and modify the logic and work-
flow underlying the LLMs’ execution of instruc-
tions. Compared with traditional prompt engineer-
ing, the proposed Low-code LLLM framework ad-
vances the state-of-the-art in human-LLM interac-
tions by bridging the gap of communication and
collaboration between humans and LLMs. We be-
lieve the Low-code LLM framework presents a
promising solution to many of the challenges faced
by LLM users today and has the potential to greatly
impact a wide range of industries and applications.

References
Auto-GPT. 2023. Auto-gpt.

David Baidoo-Anu and Leticia Owusu Ansah. 2023. Ed-
ucation in the era of generative artificial intelligence
(ai): Understanding the potential benefits of chatgpt
in promoting teaching and learning. Available at
SSRN 4337484.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Ali Borji. 2023. A categorical archive of chatgpt fail-
ures. arXiv preprint arXiv:2302.03494.

Samuel R Bowman. 2023. FEight things to know
about large language models. arXiv preprint
arXiv:2304.00612.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Tingfeng Cao, Chengyu Wang, Bingyan Liu, Ziheng
Wu, Jinhui Zhu, and Jun Huang. 2023. Beautiful-
Prompt: Towards automatic prompt engineering for
text-to-image synthesis. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pages 1-11, Sin-
gapore. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jonathan H Choi, Kristin E Hickman, Amy Monahan,
and Daniel Schwarcz. 2023. Chatgpt goes to law
school. Available at SSRN.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P.
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.

18

Tao Ge, Jing Hu, Li Dong, Shaoguang Mao, Yan Xia,
Xun Wang, Si-Qing Chen, and Furu Wei. 2022. Ex-
tensible prompts for language models. arXiv preprint
arXiv:2212.00616.

A Shaji George and AS Hovan George. 2023. A review
of chatgpt ai’s impact on several business sectors.
Partners Universal International Innovation Journal,
1(1):9-23.

Martin Hirzel. 2022. Low-code programming models.
arXiv preprint arXiv:2205.02282.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Microsoft. 1991. Visual basic.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work?

Harsha Nori, Nicholas King, Scott Mayer McKinney,
Dean Carignan, and Eric Horvitz. 2023. Capabili-
ties of gpt-4 on medical challenge problems. arXiv
preprint arXiv:2303.13375.

OpenAl. 2022. Chatgpt.
OpenAl. 2023. Gpt-4 technical report.

Mitchel Resnick, John Maloney, Andrés Monroy-
Hernéandez, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, et al. 2009. Scratch: programming
for all. Communications of the ACM, 52(11):60-67.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan
Hu, Yongrui Chen, and Guilin Qi. 2023. Evalu-
ation of chatgpt as a question answering system
for answering complex questions. arXiv preprint
arXiv:2303.07992.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840-9855,
Singapore. Association for Computational Linguis-
tics.

https://github.com/Significant-Gravitas/Auto-GPT
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2023.emnlp-industry.1
https://doi.org/10.18653/v1/2023.emnlp-industry.1
https://doi.org/10.18653/v1/2023.emnlp-industry.1
http://arxiv.org/abs/2205.12548
http://arxiv.org/abs/2205.12548
https://learn.microsoft.com/en-Us/dotnet/visual-basic/getting-started/
http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2023b. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. arXiv preprint arXiv:2302.11382.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-
aodong Wang, Zecheng Tang, and Nan Duan.
2023. Visual chatgpt: Talking, drawing and edit-
ing with visual foundation models. arXiv preprint
arXiv:2303.04671.

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff
Gray, Alejandra Molina, Michael Terry, and Carrie J
Cai. 2022. Promptchainer: Chaining large language
model prompts through visual programming. In CHI
Conference on Human Factors in Computing Systems
Extended Abstracts, pages 1-10.

Yongchao Zhou, Andrei loan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

Guido Zuccon and Bevan Koopman. 2023. Dr chatgpt,
tell me what i want to hear: How prompt knowledge
impacts health answer correctness. arXiv preprint
arXiv:2302.13793.

A Appendix

A.1 Pliot Cases

Figure 4, Figure 5 and Figure 6 demonstrate the
details of pilot case 2, 3 and 4 in Section 3.2.

A.2 Workflow Example

Table 2 is an example of workflow generated by
Planing LLM.

A.3 Discussion on System Robustness

Although the proposed Low-code LLM framework
offers a user-friendly and easy-to-control environ-
ment for managing complex tasks with large lan-
guage models, LLMs sometimes generate unex-
pected results, which may affect the robustness of
the Low-Code LLM framework. We have observed
the following potential problems in the system: (1)
The generated workflows from Planing LLM may
be either too sketchy or overly detailed. Users may
need to regenerate the workflow or specify some
key points. (2) Planning LLM might generate work-
flow that does not adhere to format requirements,

19

potentially impacting subsequent processes. How-
ever, with the enhancement of LLMs such as GPT-
4, their instruction following ability is continuously
improving, thus mitigating this issue. Furthermore,
rule-based post-processing methods can also ad-
dress such problems. (3) In rare cases, despite be-
ing aware of all existing hierarchical levels of the
workflow, LLMs may still generate sub-workflow
that contains redundant content and logical incon-
sistencies compared to the original workflow, even
when instructed to avoid such errors in the prompt.
We believe this limitation is inherent to the model’s
capabilities. In such instances, users have the op-
tion to regenerate the workflow to obtain a satisfac-
tory result.

Overall, the potential uncertainty in the outputs
of large language models (LLMs) may affect the
robustness of the system. However, in our experi-
ments, such cases are very rare. These situations
can be simply resolved by clicking the ‘Regenerate’
button. We believe that as the capabilities of foun-
dation models improve, low-code LLMs will offer
more robust, user-friendly, and efficient services.

Low-code N

Prompt:
Write a two-person battle game with python where both game characters have two attributes: health and combat power.
Player 1 has only two skills about attacking and plays 2 has only two skills about healing.

The user-specified preferences :
Defining parent class and implementing each game character by inheriting can improve the scalability and flexibility of the code.

Flowchart generated by Planning LLM and then
))) Low-code LLM:
revised by user: (The red text is the part edited

by the user)

Sure, here is the code for the two person battle game:

Define parent class =
class GameCharacter:
def _init__(self, health, combat_power):
¢ self.health = health
self.combat_power = combat_power

Define a parent class describe game characters

Define player 1 class =

Define player 1 class by inheriting, and add class Player1(GameCharacter):
methods for his attacking skills def __init__(self, health, combat_power):
¢ super().__init__(health, combat_power)

Define player 2 class

Define player 2 class by inheriting, and add def skill1(self, player2): .
methods for his healing skills player2.health -= self.combat_power * 2

‘ def skill2(self, player2):
player2.health -= self.combat_power * 3

Player 1's turn
Player 1 chooses a skill to use and attacks Player 2
class Player2(GameCharacter):
¢ if Player 2's health <= 0 def __init__(self, health, combat_power):

super().__init__(health, combat_power)
Player 2's turn

Player 2 chooses a kil to use or attacks def skill1(self):
Player 1 with normal attack self health 4= 20
l if Player 1's health <= 0
_ def skill2(self):
Repeat E
epe self.health += 50
Go back to STEP 4
def main():
¢ player1 = Player1(100, 20)
Game over = player2 = Player2(100, 10)

Display the winner based on remaining health

while player1.health > 0 and player2.health > 0:
print("Player 1's turn.")

_________________________ - choice = input("Choose a skill to use (1 or 2):)
Utilizing ChatGPT directly: if choice == "1":
player1.skill1(player2)
python elif choice == "2":

import random player1.skill2(player2)
class Player:
def _init__(self, name, health, combat_power):
self.name = name
self.health = health
self.combat_power = combat_power

if player2.health <= 0:
break

print("Player 2's turn.")
choice = input("Choose a skill to use (1 or 2) or attack normally (3):)

def attack(self, other_player): if c;;;:rz.skm]w O'
damage = random.randint(1, self.combat_power) elif choice == "2":
print(f” {self.name} attacks player2.skill2(

{other_player.name} for else:

{damage} dainage!") damage = random.randint(5, 15)
other_player.health -= damage player1 health -= damage
def heal(selfy: print("Player 2 attacked normally and dealt", damage, "damage to Player 1.")
heal_amount = random.randint(1, 10)
print(f"{self.name} heals for {heal_amount} health!")
self.health += heal_amount

if player1.health <= 0:
break

if player1.health > 0:
print("Player 1 wins!")
else:
print("Player 2 wins!")

Create the two players
player1 = Player("Player 1", 100, 20)
player2 = Player("Player 2", 100, 10)

Game loop

if _name__=="__main__":
Omitted due to limited space

main()

\ J

Figure 4: This case demonstrates how to empower LLMs coding using object-oriented programming patterns via
the proposed approach. Architecture design is a professional skill for deveoping large scale project. With Low-code
LLM, architects can easily educate the model about well-designed architecture, allowing Executing LLM to generate
code based on flowcharts. The results from ChatGPT performed poorly in object design. After incorporating a
human-edited workflow, the model was able to generate correct codes.

20

Low-code N

Prompt: You are a hotel customer service, and someone calls to reserve a room.

The pecified 'y requir

» Necessary processes: warm greeting, check on the availability of rooms, and confirmation of reservations
+ Necessary information: name, check-in and check-out date, room options, contact information, payment method

Flowchart generated by Planning LLM and then revised by user : (The red text is the part edited by the user)

Greet the customer = End =

Welcome the customer and ask for their name and
desired check-in and check-out dates

¢ T If there are no suitable Alternatives

Apologize and end the call

Check availability = if "o availability’ Alternative dates =
Check the availability of rooms for the desired dates Ask for alternative dates or the customer provides
Offer room options = If there are suitable Alternatives

r

Provide the customer with available room
options and their corresponding rates

v

Confirm reservation =

Confirm the customer's desired room and dates, and ask for their
contact information and payment method

v

Provide confirmation

Provide the customer with a confirmation
number and details of their reservation

Low-code LLM:

Customer: Hi.

Service: Hello! Thank you for calling. How may | assist you today?

Customer: | want to reserve a room.

Service: Of course! May | have your name and the dates you would like to check in and check out?

Customer: Sure, my name is David Lee, and | will check in next Monday, and check out next Friday.

Service: Thank you, David Lee. Let me check our availability for those dates.

Customer: OK.

Service: | apologize, but we do not have any available rooms for those dates. Would you like me to check for any other dates?
Customer: What if | check out one day earlier?

Service: Let me check for you. Yes, we do have availability if you check out on Thursday instead of Friday. Would you like me to proceed with the
reservation?

Customer: Sure.

Service: Great! We have a few room options available for those dates. We have a standard room available for $150 per night, a deluxe room for $200
per night, and a suite for $300 per night. Which one would you like to reserve?

Customer: Standard room is OK.
Service: Great choice! Can | have your contact information and payment method to confirm the reservation?
Customer: My phone number is 123456, and | will pay in cash.

Service: Thank you, David Lee. Your reservation for a standard room from next Monday to Thursday has been confirmed. Your confirmation number is
123456. We look forward to seeing you soon!

Customer: OK, many thanks.

Service: You're welcome! If you have any further questions or concerns, please don't hesitate to contact us. Have a great day!
\.

Figure 5: A virtual hotel service using Low-code LLM allows users, such as hotel managers, to clearly define the
execution logic through interaction with the structured planning flowchart, ensuring that the conduction logic strictly
follows the user’s intent. The red part in the flowchart shows how the user edits the workflow. As a result, the
generated system is highly aligned with the user’s specified requirements (refer to the highlighted part). Without the
low-code LLM interaction, it becomes difficult to control how virtual hotel service communicates with customers.

21

Low-code N

Prompt: Help me to make a formal resume.

The user-specified necessary requirements:
* Necessary information : personal information, education information, work experience, other skills

Low-code LLM:

Flowchart generated by Planning LLM and
then revised by user: (The red text is the
part edited by the user)

User: What information do you need about me?

Resume helper: | would need your personal details such as your full name, address, phone
number, and email address. Additionally, | would need information about your education,
work experience, skills, achievements, and references.

H|

Gather Information
Collect all necessary information about yourself,
including personal details, education, work experience,
skills, achievements, and references

User: My name is David Lee, and | live in Beijing.

Resume helper: Great, thank you for sharing that information. Can you please provide me
with your phone number and email address as well?

User: 123456, 123456@mail.com
Choose a Format = Resume helper: Thank you for providing your phone number and email address. Can you

please tell me about your educational qualifications, including the name of the institution,

Select a suitable format for your CV, such as chronological, degree major, a nd grad uation date?

functional, or combination

v

User: Sure, | received my Bachelor’s degree from the Department of A., T. University in 2022.

Resume helper: Thank you for sharing your educational qualifications. Can you please tell
me about your work experience, including the name of the company, job title, employment
dates, and key responsibilities and achievements?

Create a Header =

Include your name, address, phone number, and
email address in the header section

v

User: | was a machine learning research intern at B. company from 2021 to 2022. | did lots of
research about large language models.

Write a P stat t = Resume helper: Thank you for sharing your work experience. Can you please tell me about
rite a Personal Statemen your relevant skills, including technical, language, and soft skills?
Craft a brief statement that summarizes your

career goals, skills, and experience

'

List Education =
List your educational qualifications in reverse chronological

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: User: Sure, | can speak Chinese and English, | am good at C, C++, and Python. | have some

|

|

|

|

|

|
order, including the name of the institution, degree, major, :

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

experience with making videos.

Resume helper: Thank you for sharing your skills. Can you please tell me about any notable
achievements, awards, or publications that demonstrate your skills and experience?

User: Sorry, | do not have any of them.

and graduation date Resume helper: No problem, thank you for letting me know. Based on the information you
have provided, | can help you create a formal personal CV. Would you like me to proceed
with that?
Detail Work Experience =

User: Sure, show me, please.
List your work experience in reverse chronological order,

including the name of the company, job title, employment dates, Resume helper;

and key responsibilities and achie
David Lee
Beijing, China
Highlight Skills = Phone: 123456

Email: 123456@mail.com

List your relevant skills, including technical,
language, and soft skills

v

Personal Statement:

As a machine learning research intern, | have gained experience in conducting research on
large language models. | am proficient in C, C++, and Python, and have experience in video
production. | am seeking a position where | can utilize my skills and experience to contribute

Include Achievements = to a team.
Include any notable achievements, awards, or publications that
demonstrate your skills and experience Education:

Bachelor's Degree in A, T. University, 2022

'

Proofread and Edit

Work Experience:

Machine Learning Research Intern, B. Company, 2021-2022
- Conducted research on large language models

- Collaborated with team members to develop new models
- Presented research findings to team and management

H]

Review your CV for errors and ensure that it is
well-organized and easy to read

Skills:

- Proficient in C, C++, and Python —
- Fluent in Chinese and English

- Experience in video production

Thank you for using my services. Let me know if you need any further assistance.

\ J

Figure 6: Resume Helper via Low-code LLM. In this case, domain experts, maybe human resource experts, can
embed their resume-creating knowledge into a workflow. With the embedding of expert knowledge, Executing LLM
can scaffold users to complete their resumes. Similar examples may also include psychological counseling, medical
diagnosis, interview mock, etc.

22

Table 2: A workflow generated by Planing LLM when the user inputs “Write an essay titled ‘Drunk Driving As A
Social Issue’". STEP 3 is appointed by the user to provide a more detailed sub-workflow.

STEP Step Name Step Description Jump Logic

STEP 1 Research Gather information on drunk
driving as a social issue, includ-
ing statistics, causes, and effects

STEP 2 Outline Organize the information and ma- If lack of materials,
terials into an outline, including jump to STEP 1
an introduction, body, and con-
clusion

STEP 3 Write Write the essay, including an
introduction that defines drunk
driving as a social issue, a body
that discusses the causes and ef-
fects of drunk driving, and a con-
clusion that emphasizes the im-
portance of addressing this issue

STEP 3.1 Write the introduction Write an introduction that pro-
vides background information on
drunk driving as a social issue
and clearly states the purpose of
the essay

STEP 3.2 Write the body Write the body of the essay, in-
cluding paragraphs that discuss
the causes and effects of drunk
driving, as well as any relevant
statistics or research

STEP 3.3 Write the conclusion ~ Write a conclusion that summa-
rizes the main points of the essay
and emphasizes the importance
of addressing drunk driving as a
social issue

STEP 4 Proofread Check the essay for spelling and
punctuation errors

23

A4 Prompts

Planning LLM

PLANNING_LLM_PREFIX = Planning LLM is designed to provide a standard operating procedure
so that an abstract and difficult task will be broken down into several steps, and the task will be easily
solved by following these steps.

Planning LLM is a powerful problem-solving assistant, so it only needs to analyze the task
and provide standard operating procedure as guidance, but does not need actually to solve the problem.

Sometimes there exists some unknown or undetermined situation, thus judgmental logic is
needed: some “conditions"” are listed, and the next step that should be carried out if a “condition” is
satisfied is also listed. The judgmental logics are not necessary, so the jump actions are provided only
when needed. Planning LLM MUST only provide standard operating procedure in the following format
without any other words:

STEP 1: [step name][step descriptions][[[if ‘condition]’][Jump to STEP]], [[[if ‘condition]’][Jump to
STEP]], [[if ‘condition2’][Jump to STEP]], ...]

STEP 2: [step name][step descriptions][[[if ‘condition]’][Jump to STEP]], [[[if ‘condition]’][Jump to
STEP]], [[if ‘condition2’][Jump to STEP]], ...] ...

For example:

STEP 1: [Brainstorming][Choose a topic or prompt, and generate ideas and organize them
into an outline][]

STEP 2: [Research][Gather information, take notes and organize them into the outline][[[lack of
ideas][Jump to STEP 1]]] ...

EXTEND_PREFIX = Some steps of the SOP provided by Planning LLLM are too rough, so Planning
LLM can also provide a detailed sub-SOP for the given step.

Remember, Planning LLM take the overall SOP into consideration, and the sub-SOP MUST
be consistent with the rest of the steps, and there MUST be no duplication in content between the
extension and the original SOP. Besides, the extension MUST be logically consistent with the given step.

For example: If the overall SOP is:

STEP 1: [Brainstorming][Choose a topic or prompt, and generate ideas and organize them
into an outline][]

STEP 2: [Research][Gather information from credible sources, and take notes and organize them into
the outline][[[if lack of ideas][Jump to STEP 1]]]

STEP 3: [Write][write the text][]

If the STEP 3: “write the text" is too rough and needs to be extended, then the response
could be:

STEP 3.1: [Write the title][write the title of the essay][]
STEP 3.2: [Write the body][write the body of the essay][[[if lack of materials][Jump to STEP 2]]]
STEP 3.3: [Write the conclusion][write the conclusion of the essay][]

Remember:
1. Extension is focused on the step descriptions, but not on the judgmental logic;
2. Planning LLM ONLY needs to response the extension.

PLANNING_LLM_SUFFIX = Remember: Planning LLM is very strict to the format and NEVER
reply any word other than the standard operating procedure. The reply MUST start with “STEP".

24

Executing LLM

EXECUTING_LLM_PREFIX = Executing LLM is designed to provide outstanding responses.

Executing LLM will be given a overall task as the background of the conversation between
the Executing LLM and human.

When providing response, Executing LLM MUST STICTLY follow the provided standard op-
erating procedure (SOP). the SOP is formatted as:

STEP 1: [step name][step descriptions][[[if ‘condition]’][Jump to STEP]], [[if ‘condition2’][Jump to
STEP]], ...]
STEP 2: [step name][step descriptions][[[if ‘condition]’][Jump to STEP]], [[if ‘condition2’][Jump to
STEP]], ...]

Here “[[[if ‘condition]’][Jump to STEP n]], [[if ‘condition2’][Jump to STEP m]], ...]" is
judgmental logic. It means when you’re performing this step, and if ‘conditionl’ is satisfied, you will
perform STEP n next. If ‘condition2’ is satisfied, you will perform STEP m next.

Remember:

Executing LLM is facing a real human, who does not know what SOP is. So, Do not show
him/her the SOP steps you are following, or the process and middle results of performing the SOP. It
will make him/her confused. Just response the answer.

EXECUTING_LLM_SUFFIX = Remember:

Executing LLM is facing a real human, who does not know what SOP is.

So, Do not show him/her the SOP steps you are following, or the process and middle results
of performing the SOP. It will make him/her confused. Just response the answer.

25

