
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 137–147

June 16-21, 2024 ©2024 Association for Computational Linguistics

RedCoast: A Lightweight Tool to Automate Distributed Training
of LLMs on Any GPU/TPUs

Bowen Tan1, Yun Zhu2, Lijuan Liu2, Hongyi Wang1, Yonghao Zhuang1,
Jindong Chen2, Eric Xing1,3,5, Zhiting Hu4

1Carnegie Mellon University, 2Google Research, 3Petuum Inc., 4UC San Diego,
5Mohamed bin Zayed University of Artificial Intelligence

Abstract

The recent progress of AI can be largely at-
tributed to large language models (LLMs).
However, their escalating memory require-
ments introduce challenges for machine learn-
ing (ML) researchers and engineers. Address-
ing this requires developers to partition a large
model to distribute it across multiple GPUs
or TPUs. This necessitates considerable cod-
ing and intricate configuration efforts with ex-
isting model parallel tools, such as Megatron-
LM, DeepSpeed, and Alpa. These tools require
users’ expertise in machine learning systems
(MLSys), creating a bottleneck in LLM de-
velopment, particularly for developers without
MLSys background. In this work, we present
RedCoast (Redco), a lightweight and user-
friendly tool crafted to automate distributed
training and inference for LLMs, as well as to
simplify ML pipeline development. The design
of Redco emphasizes two key aspects. Firstly,
to automate model parallelism, our study iden-
tifies two straightforward rules to generate ten-
sor parallel strategies for any given LLM. In-
tegrating these rules into Redco facilitates ef-
fortless distributed LLM training and inference,
eliminating the need of additional coding or
complex configurations. We demonstrate the
effectiveness by applying Redco on a set of
LLM architectures, such as GPT-J, LLaMA,
T5, and OPT, up to the size of 66B. Secondly,
we propose a mechanism that allows for the cus-
tomization of diverse ML pipelines through the
definition of merely three functions, avoiding
redundant and formulaic code like multi-host
related processing. This mechanism proves
adaptable across a spectrum of ML algorithms,
from foundational language modeling to com-
plex algorithms like meta-learning and rein-
forcement learning. Consequently, Redco im-
plementations exhibit much fewer code lines
compared to their official counterparts. 1

1RedCoast (Redco) has been released under Apache 2.0
license at https://github.com/tanyuqian/redco.

1 Introduction
In recent years, the field of AI has witnessed pro-
found advancements, predominantly attributed to
the advent of LLMs with an impressive number
of parameters, spanning from billions to hundreds
of billions (Zhao et al., 2023a). Notable examples
include GPT-4 (OpenAI, 2023) and LLaMA (Tou-
vron et al., 2023). Yet, the size of these LLMs
presents distinct challenges in terms of model de-
ployment for ML researchers and engineers. The
primary challenge arises from the substantial mem-
ory requirements of LLMs, often exceed the capa-
bility of a single GPU or TPU. This necessitates the
use of model parallelism, a technique that partitions
the LLMs into various shards, subsequently dis-
tributing them across multiple devices or even dif-
ferent hosts. However, achieving this partitioning
requires intricate engineering, including the formu-
lation of a tensor-specific splitting strategy. While
several specialized tools like DeepSpeed (Rasley
et al., 2020), Alpa (Zheng et al., 2022), and FSDP
(Zhao et al., 2023b) provide diverse model paral-
lelism solutions, but they demand significant ad-
ditional coding and intricate configurations based
on model architecture and hardware specifics, re-
quiring in-depth understanding of MLSys. Such
additional efforts make the deployment of LLMs
particularly challenging, especially for users with-
out MLSys expertise, such as algorithm developers
or researchers. At times, the intricacy of coding for
model parallelism proves to be even more daunting
than the algorithm design itself.

In this work, we introduce RedCoast (Redco)2,
a lightweight and user-friendly tool designed to
automate the distributed training and inference of
LLMs, thereby users without MLSys expertise can
also effortlessly use the tool without additional cod-
ing or intricate configurations. Furthermore, we

2For simplicity, we will use Redco more frequently in the
rest of this paper.
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Figure 1: With a number of shards specified by user, Redco automatically conduct the model partitioning and
distribution across hosts and devices.

propose a novel and neat mechanism to implement
ML algorithms. This method necessitates users
to define merely three functions as their pipeline
design, with Redco managing all the remaining
details in execution, such as data parallelism, multi-
host related processing, checkpointing, etc.

Redco’s design emphasizes two key aspects. The
first is the automatic model parallelism. We iden-
tify two straightforward rules to generate the model
parallel strategy for arbitrarily given transformer
architecture, and integrate them into Redco. Un-
like tools such as Megatron (Shoeybi et al., 2019)
and DeepSpeed (Rasley et al., 2020) which re-
quire users to manipulate model forward func-
tion for different architecture and system specifics,
Redco automates the process, where users only
need to specify the desired number of shards to
partition the model. We verified the effective-
ness of Redco’s model parallel strategy on mul-
tiple LLMs including LLaMA-7B (Touvron et al.,
2023), T5-11B (Raffel et al., 2020), and OPT-66B
(Zhang et al., 2022). Moreover, pipelines driven
by Redco demonstrate efficiency superior to those
implemented with FSDP (Zhao et al., 2023b), and
closely matching the performance of Alpa (Zheng
et al., 2022), the tool with state-of-the-art model
parallel efficiency.

Another pivotal feature of Redco is the neat
mechanism for ML pipeline development. With
Redco, users only need to write three intuitive func-
tions to define a ML pipeline: a collate function
to convert raw data examples into model inputs
(e.g., text tokenization); a loss function to execute
the model and compute loss (e.g., cross-entropy);
and a predict function to run the model and deliver
outcomes (e.g., beam search). With the defined
pipeline from a user, Redco automates all the re-
maining of pipeline execution such as data paral-
lelism, multi-host related processing, checkpoint-
ing, log maintenance, and so forth. We demon-
strate this neat mechanism is applicable to vari-
ous ML paradigms, spanning from basic language

modeling and sequence-to-sequence (seq2seq), to
more complex algorithms like meta-learning and
reinforcement learning. Redco-based implementa-
tions consistently exhibit substantially fewer lines
of code compared to their official counterparts.

2 Related work
Distributed Machine Learning. Distributed ma-
chine learning refers to the utilization of multiple
computing devices, typically GPUs or TPUs, for
the efficient training and inference of ML mod-
els with large datasets or large models. It usually
includes data parallelism and model parallelism.
Data parallelism involves dividing a large dataset
into multiple subsets, with each subset processed
independently by a separate computing device, and
every device maintains a full copy of the model pa-
rameters. However, data parallelism is limited in its
ability to handle large models that exceed the mem-
ory constraints of individual devices. Model par-
allelism addresses this limitation by splitting and
distributing the model across multiple devices, with
each responsible for a portion of the model. Al-
though it offers a solution for large models, model
parallelism is more complex to implement than data
parallelism due to the necessity of careful model
partitioning. Tools such as Megatron-LM (Shoeybi
et al., 2019; Narayanan et al., 2021), DeepSpeed
(Rasley et al., 2020), FSDP (Zhao et al., 2023b),
and Alpa (Zheng et al., 2022), have been developed
to facilitate model parallelism. These tools sup-
port the model partitioning but still require signifi-
cant coding and configuration efforts based on spe-
cific model architecture and hardware settings. In
this work, Redco offers automatic data parallelism
by default, and provides automatic model paral-
lelism for LLMs, which is the majority of model
parallelism use cases. Prioritizing user-friendliness,
Redco enables users to execute distributed LLM
training and inference by simply specifying the
number of model shards for partitioning, without
requiring users’ MLSys expertise.
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Pipeline development tools. In the development
process using neural network libraries such as
PyTorch (Paszke et al., 2019) and Flax (Heek
et al., 2023), certain boilerplate code is consis-
tently present. Common operations, such as back-
propagation, gradient application, and batch iter-
ation, recur in nearly every ML pipeline. A va-
riety of tools aim to streamline pipeline develop-
ment by eliminating repetitive code while main-
taining as much development flexibility as possi-
ble. PyTorchLightning (Falcon et al., 2019) offers
a default training loop within PyTorch, allowing
users to customize their pipelines by inheriting a
Trainer class and modifying hook functions such
as loss function and checkpoint saving. However,
this mechanism may not be intuitive for all users.
For some people, it requires a learning curve to be-
come comfortable. Furthermore, it may be unclear
how to implement these hook functions for more
complex algorithms, such as federated learning.
HuggingFace-Transformers (Wolf et al., 2020) pro-
vides a Trainer for PyTorch models, but it heavily
relies on models defined in its specific transformer
classes and primarily focuses on natural language
processing pipelines. Keras (Chollet et al., 2015)
delivers higher-level APIs on top of TensorFlow
(Abadi et al., 2015), enabling users to specify data,
model, and loss functions. However, it is not well-
suited for handling complex pipelines. Our pro-
posed Redco is based on Flax, and uses a more
intuitive and flexible approach for users to design
their pipelines. This mechanism can be applied to
a wide array of ML algorithms together with the
automatic support for distributed training, includ-
ing complex algorithms such as federated learning,
meta-learning, and reinforcement learning.

3 Automatic Model Parallelism for LLMs

Model parallelism refers to distributing the com-
putation of a large model across multiple GPUs
or TPUs, in order to address the memory limita-
tions of a single device. Two sub-paradigms within
model parallelism are pipeline parallelism and ten-
sor parallelism. Pipeline parallelism partitions the
layers of the model across different devices, and
tensor parallelism distributes every tensor in the
model across multiple devices.

Model parallel tools like Megatron or Alpa re-
quire a bunch of intricate configurations and exten-
sively modifying users’ code based on the model
architecture and the hardware setting. For exam-

ple, Megatron requires users rewriting the model
forward function to customize the tensor shard-
ing for tensor parallelism and annotate breakpoints
for pipeline parallelism. This demands substantial
MLSys expertise, which is not possessed by most
algorithm developers or researchers.

In this work, we develop an automatic model
parallel strategy in Redco that applies across LLMs
without requiring users’ MLSys expertise or extra
coding efforts.

3.1 Rules to Automate Tensor Parallelism
In Redco, we automate model parallelism via ten-
sor parallelism. A tensor sharding strategy requires
a dimension specified for each tensor. Along the
dimension, the tensor is sharded and distributed
across multiple devices. The objective of shard-
ing strategy design is to minimize memory and
time overhead associated with inter-device commu-
nication, which is usually brought by reduce or
gather operations. For example, consider a tensor
t is defined either as t = t1 + t2 or t = (t1, t2)
(concatenation), with t1 and t2 being stored on dis-
tinct devices. In this case, the computation of t
requires message passing between the two devices
(GPUs or TPUs).

Consider a dense layer in a neural network

y = σ(xA)

where x denotes the input tensor, σ is an element-
wise activation function (e.g., ReLU, SiLU), and A
is to the weight matrix, which is the model parame-
ter of the dense layer. 3 When the weight matrix A
is divided along its first dimension (dimension 0),
a reduce operation becomes necessary to compute
y. Formally,

A =

(
A1

A2

)
=⇒ y = σ(x1A1 + x2A2)

where x1 and x2 represent the first and second
halves of the input tensor x’s dimensions, respec-
tively. The computation on two devices are indi-
cated by the colors.

Conversely, when A is partitioned along its sec-
ond dimension (dimension 1), a gather operation
is required to obtain y:

A = (A1, A2) =⇒ y = (σ(xA1), σ(xA2))

Therefore, when the weight parameter of each
dense layer is partitioned across an arbitrary dimen-
sion, operations for reduction or gathering would

3The bias term is omitted here because its computation is
non-significant.
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Server 2 × 1080Ti 4 × A100 2 × TPU-v4 16 × TPU-v4
Device Memory 2 × 10G 4 × 40G 2 (hosts) × 4 (chips) × 32G 16 × 4 × 32G

Models BART-Large (1024) LLaMA-7B (1024) T5-XXL-11B (512) OPT-66B (512)
GPT2-Large (512) GPT-J-6B (1024) OPT-13B (1024)

Table 1: Runnable model finetuning on different servers. Numbers inside the brackets are the maxinum length in
training. All the settings are with full precision (fp32) with AdamW optimizer.

occur within every dense layer. However, by exam-
ining a pair of consecutive dense layers

y = σ(σ(xA)B)

where A and B denote the respective weights, and
partitioning A and B across dimensions 1 and 0, it
becomes feasible to consolidate these operations
with a single time of reduce operation:

A = (A1, A2), B =

(
B1

B2

)

=⇒y = σ(σ(xA)B)

= σ

(
(σ(xA1), σ(xA2))

(
B1

B2

))

= σ(σ(xA1)B1 + σ(xA2)B2)

Consequently, the operations σ(xA1)B1 and
σ(xA2)B2 can be performed independently on sep-
arate devices, which takes only a single reduce
operation for two dense layers.

Based on the observation above, we get heuris-
tic insights in terms of inter-device communica-
tion on the transformer architecture, specifically
within feed-forward and attention layers. For feed-
forward layers, given the nature of matrix multi-
plication, dividing two consecutive matrices along
different dimensions is expected to require less
inter-device communication than if they are divided
along a same dimension. For the attention layers,
the output matrix O is multiplied with each of the
Q,K, V matrices, so the matrix O should be split-
ted along a dimension distinct from that chosen for
Q,K, V . Based on these insights, we write two
rules to determine the dimension along which to
split each tensor in a model:

1. For fully-connected layers, alternate between
splitting the parameter along dimension 1 and
dimension 0.

2. For attention layers, split Q,K, V along di-
mension 0, and split the output projection ma-
trix O along dimension 1.

Leveraging the rules above enables Redco to
devise a model parallel strategy tailored for any
given LLM architecture. This enables the dis-
tributed training of LLMs with almost zero user
effort. Users only specify the number of shards to

split the given model, without additional coding or
configuration efforts.

Note that our proposed rules are similar to a part
of suggested configurations of Megatron (Shoeybi
et al., 2019), but they don’t summarize their sep-
arate configurations into rules, so that only a few
LLM architectures (BERT, GPT, and T5) are sup-
ported in their implmentation4. To customize any
new architectures under Megatron, users still have
to rewrite the model’s forward function and manu-
ally implement their model parallel strategy.

3.2 Implementation inside Redco

We implement tensor parallelism with the pro-
posed strategy on top of jax.pjit function. This
function compiles the computational graph and it
merges operations on the same device to reduce
unnecessary communication overhead 5.

To integrate the proposed tensor parallel strat-
egy, Redco has a function that takes in an arbitrary
transformer architecture and produces a parame-
ter sharding strategy based on the proposed rules.
Moreover, in addition to automatically generating
sharding strategies, Redco also enables their cus-
tomization. This allows users with more advanced
strategies to execute their approaches. Practical
examples of the sharding strategies produced by
Redco, applied to GPT-J and LLaMA, are show-
cased in the Appendix.

3.3 Evaluation

Applicability test We assess the applicability of
our proposed automatic model parallel approach
by applying Redco on an assorted collection of
LLMs across various GPU and TPU servers. We
conduct distributed training for LLMs without com-
promising the optimizer settings or precision. More
precisely, we execute the distributed training un-
der full precision (fp32) with the widely-used, yet
memory-intensive, AdamW optimizer. We report
all operable LLMs on GPU and TPU servers with
varying memory capacities.

4https://github.com/NVIDIA/Megatron-LM/tree/main
5https://jax.readthedocs.io/en/latest/

notebooks/Distributed_arrays_and_automatic_
parallelization.html
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def collte_fn():
return model_inputs

def loss_fn(model_inputs, model):
return loss

def predict_fn(model_inputs, model):
return prediction

deployer = redco.Deployer(n_model_shards=4)

# launch your distributed LLM training
trainer = redco.Trainer(deployer, collate_fn, loss_fn)
trainer.fit(examples, batch_size, n_epochs)

collate function
e.g., tokenization

Pipeline design via functions
e.g., language modeling

loss function
e.g., cross entropy

predict function
e.g., beam search

raw example

model input

loss prediction

Automatic low-level supports via
redco.Deployer

• data and model parallelism
• multi-host related processing
• randomness, logging, etc.

def apply_model():
def loss_fn(params):
return loss

# compute gradients, maintaining training state
grad_fn = jax.value_and_grad(loss_fn)
logits, grads = grad_fn(state.params)
state = state.apply_gradients(grads=grads)
return state

def train_and_evaluate():
# randomness controlling
rng = jax.random.PRNGKey(0)

# maintaining a training state
rng, init_rng = jax.random.split(rng)
state = create_train_state(init_rng, config)
# process data
training_batches = process(training_examples)
for epoch in range(1, config.num_epochs + 1):
rng, input_rng = jax.random.split(rng)
for batch in training_batches:
# run model, get gradients
state = apply_model()

# logging
logging.info("epoch, loss, etc.")
summary_writer.scalar('train_loss', train_loss)

Distributed Training with Redco

Normal Flax code for a training loop
(without distributed training)

v.s.

Figure 2: The template code of using redco to implement distributed training, where users only have to design a
pipepine through three fucntions, without concerning data and model parallelism, multi-host related processing,
randomness control, etc., which eliminates a lot of boilerplate coding.
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Figure 3: The comparison of throughput in the running
of GPT-J-6B on a 4× A100 server. Redco’s perfor-
mance surpasses that of FSDP and is close to that of
Alpa, the tool with state-of-the-art model parallel effi-
ciency but intricate engineering.

The findings, as displayed in Table 1, indicate
that our straightforward, yet effective, automatic
model parallel strategy is highly applcable across
LLMs. For example, on small servers, such as
those equipped 2 × 1080Ti, our strategy success-
fully runs large versions of BART and GPT-2 with
text lengths up to 512 and 1024, respectively. On
the larger servers such as the one with 16 TPU-v4
hosts, Redco effectively handles the training of the
giant OPT-66B.
Efficiency test We evaluate the efficiency of our
proposed automatic model parallelism strategy in
Redco on a server equipped 4 × A100 GPUs. We
perform experiments by finetuning OPT-2.7B and
GPT-J-6B, on the WikiText dataset, with full pre-
cision and AdamW optimizer. We compare Redco
with two advanced model parallel tools: FSDP and
Alpa. The experimental results are summarized
in Figure 3. The observed throughput reveals that
Redco surpasses FSDP and is close to Alpa, the
state-of-the-art model parallel tool. Notably, Alpa’s
implementation requires advanced MLSys exper-
tise and significant coding efforts.

4 RedCoast: Library Design

In addition to the complexities of implementing
model parallelism, ML pipelines often contain
repetitive boilerplate code that demands signifi-
cant effort from developers. Examples of such
code include back-propagation, gradient applica-
tion, batch iteration, and so forth. Furthermore,
the hardware upgrades usually require patches on
existing codebase. For example, a code developed
within a single-GPU setting needs data parallelism
and multi-host related processing to be added when
adapted to multi-GPU machines or clusters.

In Redco, we design a neat and user-friendly
mechanism to simplify ML pipeline developments.
Users only have to define their pipeline through
three design functions, and Redco handles all the
remaining of the pipeline execution. In this section,
we will introduce the software design of Redco that
enables this mechanism.

4.1 Pipeline Design Through Three Functions
As shown in the yellow brick in Figure 2, in our
proposed mechanism, every ML pipeline can be
decoupled into three simple functions: collate func-
tion to convert raw examples to model inputs, e.g.,
converting text sentences to be a batch of token in-
dices via tokenization; loss function to convert the
model inputs to a scalar loss; and predict function
to convert the model inputs to the desired model
outputs, such as running beam search for the lan-
guage model. We demonstrate this framework with
the implementation of image captioning and a meta-
learning algorithm, MAML, as shown in Figure 4
and Figure 5. These examples showcase that both
simple and complex algorithms can be naturally
defined under the proposed mechanism.
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def collate_fn(raw_examples):
return {

"pixel_values": # pixel values of the images
"token_ids": # token indicies of captions

}

def loss_fn(batch , params):
logits = model(params , batch['pixel_values '], batch['token_ids ']) # run model and get logits
return cross_entropy(logits , batch['token_ids '])

def pred_fn(batch , params):
return model.beam_search(params , batch['pixel_values '])

Figure 4: Pipeline design functions of image captioning under Redco.

def collate_fn(raw_examples):
return {

"train_data": # a batch of few -shot training tasks
"eval_data": # a batch of few -shot evaluation tasks

}

def loss_fn(batch , params):
params_inner = params - alpha * jax.grad(inner_loss)(params , batch['train_data '])
return inner_loss(params_inner , batch['eval_data '])

def pred_fn(batch , params , model):
params_inner = params - alpha * jax.grad(inner_loss)(params , batch['train_data '])
return model(params_inner , batch['eval_data '])

Figure 5: Pipeline design functions of meta-learning (MAML) for few-shot learning under Redco. MAML’s loss
L = L(Teval, θ′) and θ′ = θ − α∇θL(Ttrain, θ), where Ttrain, Teval refer to the data of training and evaluation
tasks, and L(·, ·) refers to the original loss function (inner_loss), such as the cross-entropy loss for classification.

4.2 Pipeline Execution with Automatic
Low-level Supports

For user-friendliness, there are merely three
classes in Redco, i.e., Deployer, Trainer, and
Predictor. As shown in the orange brick in Fig-
ure 2, Redco streamlines the management of low-
level and boilerplate processing in pipeline devel-
opment through the Deployer class. This includes
automatic model parallelism, as discussed in the
previous section, as well as automatic data paral-
lelism, multi-host related processing, checkpoint-
ing, and other convenient features such as ran-
domness control and logging management. The
final execution of the pipeline is carried out by
Trainer and Predictor of Redco. Supported by
Deployer, they execute the training and inference
of the pipeline defined by users via the functions
as mentioned in Section 4.1. 6

4.2.1 Multi-host Supports
Large-scale distributed training typically involves
intricate processes to accommodate multiple hosts.
These processes include allocating data samples
to each node and aggregating gradients or param-
eters across hosts, etc. Redco offers automatic
support for multi-host environments and demon-
strates compatibility with various platforms, includ-
ing SLURM (Yoo et al., 2003), XManager7, as well
as bare nodes interconnected via IP addresses. No-
tably, Redco allows users to maintain their existing

6We include a complete example in the Appendix imple-
menting a distributed seq2seq pipeline with Redco.

7https://github.com/google-deepmind/xmanager

pipeline design and execution code without addi-
tional efforts for multi-host environments.

4.2.2 Checkpointing
In distributed training frameworks, each typically
employs a distinct formatting for checkpoint sav-
ing and loading, leading to a closed-loop system.
For instance, Megatron utilizes a unique approach
where model parameters and optimizer states are
segmented based on the configuration of model par-
allelism. These checkpoints are inherently tied to
Megatron, necessitating considerable effort for con-
version into standard PyTorch checkpoint formats.
Conversely, in Redco, we adopt a standardized and
well-accepted checkpointing method. Here, both
model parameters and optimizer states are encap-
sulated comprehensively within dictionaries of ten-
sors. This approach is independent of the specific
distributed training configurations, offering the ad-
vantage of simplicity in loading and utilization,
even without Redco installation.

4.2.3 Lightweight and Flexible Dependency
Distributed training frameworks, such as Megatron
and Alpa, often include modifications to founda-
tional Python packages or CUDA kernels, result-
ing in stringent environment installation require-
ments. For instance, Alpa modifies the fundamen-
tal jaxlib8 library, thereby limiting its compati-
bility to jaxlib version 0.3.22 and CUDA version
11.3. They have been outdated compared to ad-
vanced versions of jaxlib 0.4.32 and CUDA 12.2,

8https://pypi.org/project/jaxlib/
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Figure 6: The comparison of code lines across a diverse set of ML algorithms. (There is no well-accepted official
Flax implementations for FedAvg and MAML.)

which are prevalent in many cluster environments
today. In contrast, Redco is developed on top of
Jax and Flax, without any modification to existing
packages. Consequently, Redco is able to support
a wider range of versions of jax, flax, and CUDA,
in addition to accommodating various device types,
including GPUs and TPUs.

4.3 Evaluation
We implement a variety of machine learning
paradigms using Redco, ranging from fundamental
supervised learning techniques such as classifica-
tion and regression, to more sophisticated algo-
rithms including reinforcement learning and meta-
learning. Figure 6 illustrates a comparison between
the number of code lines in our implementation and
those in officially published versions. The majority
of these paradigms can be efficiently implemented
using Redco with only 100 to 200 lines of code.
This efficiency boost of development can be at-
tributed to Redco’s ability to significantly reduce
the need for writing boilerplate code.

5 Conclusion
In this work, we present a lightweight and user-
friendly toolkit, RedCoast (Redco), designed to
automate the distributed training of LLMs and sim-
plify the ML pipeline development process. Redco
incorporates an automatic model parallelism strat-
egy, fundamentally based on two intuitive rules,
without requiring additional coding efforts or ML-
Sys expertise from the users. We evaluate its effec-
tiveness on an array of LLMs, such as LLaMA-7B,
T5-11B and OPT-66B. Furthermore, Redco has a
novel and neat pipeline development mechanism.
This mechanism requires users to specify only three
intuitive pipeline design functions to implement a
distributed ML pipeline. Remarkably, this mech-
anism is general enough to accommodate various
ML algorithms and needs significantly fewer lines
of code compared to their official implementations.
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A Tensor Parallel Strategy Examples

We provide examples of the generated sharding strategies by Redco toward different architec-
tures, where PartitionSpec(’mp’, None) indicates partioning a parameter by dimension 0 and
PartitionSpec(None, ’mp’) indicates partioning a parameter by dimension 1, and None means saving
a copy of the parameter across every device.

params_sharding_rules_gptj = [
(('fc_in ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 1 in Section 3.1
(('fc_out ', 'kernel '), PartitionSpec('mp', None)),
(('k_proj ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 2 in Section 3.1
(('out_proj ', 'kernel '), PartitionSpec('mp', None)),
(('q_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('v_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('(bias|scale)',), None), # Parameters other than transformer blocks or bias or scale terms
(('embedding ',), PartitionSpec('mp', None)),
(('lm_head ', 'kernel '), PartitionSpec(None , 'mp'))

]

Figure 7: Sharding strategy for GPT-J generated by Redco.

params_sharding_rules_llama = [
(('down_proj ', 'kernel '), PartitionSpec('mp', None)), # Rule 1 in Section 3.1
(('gate_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('up_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('k_proj ', 'kernel '), PartitionSpec(None , 'mp')), # Rule 2 in Section 3.1
(('o_proj ', 'kernel '), PartitionSpec('mp', None)),
(('q_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('v_proj ', 'kernel '), PartitionSpec(None , 'mp')),
(('(bias|scale)',), None), # Parameters other than transformer blocks or bias or scale terms
(('embedding ',), PartitionSpec('mp', None)),
(('lm_head ', 'kernel '), PartitionSpec(None , 'mp')),
(('norm', 'weight '), None),
(('input_layernorm ', 'weight '), None),
(('post_attention_layernorm ', 'weight '), None)

]

Figure 8: Sharding strategy for LLaMA generated by Redco.

B A Complete Distributed Training Example with Redco

We provide a complete example for the distributed training of a T5-XXL model, which is able to run on
multi-host environments. It uses a modeling from HuggingFace, on a summarization dataset, evaluated by
rouge scores, and it saves the checkpoints with best rouge-2 and rouge-L scores.
from functools import partial
import fire
import numpy as np
import jax
import jax.numpy as jnp
import optax
import datasets
from transformers import AutoTokenizer , FlaxAutoModelForSeq2SeqLM
import evaluate
from redco import Deployer , Trainer

def collate_fn(examples ,
tokenizer ,
decoder_start_token_id ,
max_src_len ,
max_tgt_len ,
src_key='src',
tgt_key='tgt'):

model_inputs = tokenizer(
[example[src_key] for example in examples],
max_length=max_src_len ,
padding='max_length ',
truncation=True ,
return_tensors='np')

decoder_inputs = tokenizer(
[example[tgt_key] for example in examples],
max_length=max_tgt_len ,
padding='max_length ',
truncation=True ,
return_tensors='np')

if tokenizer.bos_token_id is not None:
labels = np.zeros_like(decoder_inputs['input_ids '])
labels[:, :-1] = decoder_inputs['input_ids '][:, 1:]
decoder_input_ids = decoder_inputs['input_ids ']
decoder_input_ids [:, 0] = decoder_start_token_id

else:
labels = decoder_inputs['input_ids ']
decoder_input_ids = np.zeros_like(decoder_inputs['input_ids '])
decoder_input_ids [:, 1:] = decoder_inputs['input_ids '][:, :-1]
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decoder_input_ids [:, 0] = decoder_start_token_id

model_inputs['labels '] = labels
decoder_inputs['input_ids '] = decoder_input_ids

for key in decoder_inputs:
model_inputs[f'decoder_{key}'] = np.array(decoder_inputs[key])

return model_inputs

def loss_fn(train_rng , state , params , batch , is_training):
labels = batch.pop("labels")
label_weights = batch['decoder_attention_mask ']

logits = state.apply_fn(
**batch , params=params , dropout_rng=train_rng , train=is_training)[0]

loss = optax.softmax_cross_entropy_with_integer_labels(
logits=logits , labels=labels)

return jnp.sum(loss * label_weights) / jnp.sum(label_weights)

def pred_fn(pred_rng , params , batch , model , gen_kwargs):
output_ids = model.generate(

input_ids=batch['input_ids '],
attention_mask=batch['attention_mask '],
params=params ,
prng_key=pred_rng ,
** gen_kwargs)

return output_ids.sequences

def output_fn(batch_preds , tokenizer):
return tokenizer.batch_decode(batch_preds , skip_special_tokens=True)

def eval_rouge(examples , preds , tgt_key):
rouge_scorer = evaluate.load('rouge ')

return rouge_scorer.compute(
predictions=preds ,
references =[ example[tgt_key] for example in examples],
rouge_types =['rouge1 ', 'rouge2 ', 'rougeL '],
use_stemmer=True)

def main(n_processes=None ,
host0_address=None ,
host0_port=None ,
process_id=None ,
n_local_devices=None ,
dataset_name='xsum',
src_key='document ',
tgt_key='summary ',
model_name_or_path='facebook/bart -base',
n_model_shards =1,
n_epochs=2,
per_device_batch_size =8,
eval_per_device_batch_size =16,
accumulate_grad_batches =2,
max_src_len =512,
max_tgt_len =64,
num_beams =4,
learning_rate =4e-5,
warmup_rate =0.1,
weight_decay =0.,
jax_seed =42,
workdir='./ workdir ',
run_tensorboard=False):

deployer = Deployer(
n_model_shards=n_model_shards ,
jax_seed=jax_seed ,
workdir=workdir ,
run_tensorboard=run_tensorboard ,
n_processes=n_processes ,
host0_address=host0_address ,
host0_port=host0_port ,
process_id=process_id ,
n_local_devices=n_local_devices)

dataset = datasets.load_dataset(dataset_name)
dataset = {key: list(dataset[key]) for key in dataset.keys()}

with jax.default_device(jax.devices('cpu')[0]):
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(

model_name_or_path , from_pt=True)
model.params = model.to_fp32(model.params)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
gen_kwargs = {'max_length ': max_tgt_len , 'num_beams ': num_beams}

lr_schedule_fn = deployer.get_lr_schedule_fn(
train_size=len(dataset['train ']),
per_device_batch_size=per_device_batch_size ,
n_epochs=n_epochs ,
learning_rate=learning_rate ,
schedule_type='linear ',
warmup_rate=warmup_rate)
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optimizer = optax.adamw(
learning_rate=lr_schedule_fn , weight_decay=weight_decay)

if accumulate_grad_batches > 1:
optimizer = optax.MultiSteps(

optimizer , every_k_schedule=accumulate_grad_batches)

trainer = Trainer(
deployer=deployer ,
collate_fn=partial(

collate_fn ,
tokenizer=tokenizer ,
decoder_start_token_id=model.config.decoder_start_token_id ,
max_src_len=max_src_len ,
max_tgt_len=max_tgt_len ,
src_key=src_key ,
tgt_key=tgt_key),

apply_fn=model ,
loss_fn=loss_fn ,
params=model.params ,
optimizer=optimizer ,
lr_schedule_fn=lr_schedule_fn ,
accumulate_grad_batches=accumulate_grad_batches ,
params_sharding_rules=deployer.get_sharding_rules(params=model.params))

predictor = trainer.get_default_predictor(
pred_fn=partial(pred_fn , model=model , gen_kwargs=gen_kwargs),
output_fn=partial(output_fn , tokenizer=tokenizer))

trainer.fit(
train_examples=dataset['train '],
per_device_batch_size=per_device_batch_size ,
n_epochs=n_epochs ,
eval_examples=dataset['validation '],
eval_per_device_batch_size=eval_per_device_batch_size ,
eval_loss=True ,
eval_predictor=predictor ,
eval_metric_fn=partial(eval_rouge , tgt_key=tgt_key),
save_last_ckpt=True ,
save_argmax_ckpt_by_metrics =['rougeL '])

if __name__ == '__main__ ':
fire.Fire(main)
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