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Abstract
An idiom refers to a special type of multi-word expression whose meaning is figurative and cannot be deduced from
the literal interpretation of its components. Idioms are prevalent in almost all languages and text genres, necessitating
explicit handling by comprehensive NLP systems. Such phrases are referred to as Potentially Idiomatic Expressions
(PIEs) and automatically identifying them in text is a challenging task. In this paper, we propose using a BERT-based
model fine-tuned with custom objectives, to improve the accuracy of detecting idioms in text. Our custom loss func-
tions capture two important properties (word cohesion and language translation) to distinguish PIEs from non-PIEs.
We conducted several experiments on 7 datasets and showed that incorporating custom objectives while training
the model leads to substantial gains. Our models trained using this approach also have better sequence accuracy
over DISC, a state-of-the-art PIE detection technique, along with good transfer capabilities. Our code and datasets
can be downloaded from https://github.com/siddharthyayavaram/BERT-Based-Idiom-Detection
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1. Introduction

An idiom refers to a special type of multi-word ex-
pression (Baldwin and Kim, 2010) whose meaning
is figurative and cannot be deduced from the literal
interpretation of its components. Idioms often ex-
hibit peculiar behavior by violating selection restric-
tions or altering the default semantic roles of syn-
tactic categories. Consequently, they pose signifi-
cant challenges for Natural Language Processing
(NLP) systems. Idioms are prevalent in almost all
languages and text genres, necessitating explicit
handling by comprehensive NLP systems. We re-
fer to these phrases as potentially idiomatic expres-
sions (PIEs) to account for the contextual semantic
ambiguity in their expression. Better detection of
PIEs can enhance numerous machine translation
tasks.

Techniques to automatically detect and iden-
tify PIEs need to do many tasks accurately – i)
automatically detect if an idiomatic expression is
present in a sentence (Briskilal and Subalalitha,
2022; Tan and Jiang, 2021; Liu and Hwa, 2019), ii)
if yes, identify the idiomatic tokens (Zeng and Bhat,
2021, 2022). Both of these are challenging tasks.
For instance, in the sentence“Oh — for about four
years, on and off, he said vaguely”, the potentially
idiomatic expression “on and off” is used figura-
tively, whereas, it is used literally in the sentence
“Participate in training, both on and off station”. Ex-
isting techniques for idiom detection rely on syntac-
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tic patterns, knowing the PIE being classified cor-
rectly, and lack generalization. In this paper, we
address the above-mentioned problems and show
that improvement in i) improves ii) substantially.

We employ a BERT-based fine-tuning approach
with custom objectives to improve accuracy on all
3 tasks. We define our objectives in Section 4.2
based on language translation and word cohesion.

Our salient contributions are:
1: Introduction of a language translation-based
metric to detect the presence of idioms.
2: A novel loss function to selectively penalize ex-
amples using sentence translation and word cohe-
sion that can be used with any architecture for id-
iom detection.
3: Our models trained with custom loss functions
exhibit improved generalization capabilities, evi-
dent in identifying unseen PIEs.

2. Related Work

MWE, short for Multi Word Expressions are no-
table collocations with multiple words, for instance
“all at once” or “look something up”. (Baldwin and
Kim, 2010; Constant et al., 2017). IEs (Idiomatic
Expressions), are a subset of MWEs, which ex-
hibit non-compositionality (Baldwin and Kim, 2010;
Fadaee et al., 2018; Liu et al., 2017; Biddle et al.,
2020). Metaphors, such as “heart of gold” and
“night owl” compare unrelated things implicitly.
While some MWEs and IEs use metaphorical fig-
uration, not all metaphors are IEs; they can be di-
rect comparisons with single words (e.g., “I am ti-
tanium”). In this paper, we study IEs.

https://github.com/siddharthyayavaram/BERT-Based-Idiom-Detection
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IE Classification broadly falls under two cat-
egories – standalone phrase classification and
context-based classification. Standalone classifi-
cation tasks decide if a phrase could be used as
an idiom without specifically considering its context
(Fazly and Stevenson, 2006; Shutova et al., 2010;
Tabossi et al., 2008, 2009; Reddy et al., 2011;
Cordeiro et al., 2016) as opposed to context-based
idiom classification techniques which take into ac-
count the entire sentence to detect the presence of
idiom (Peng et al., 2014; Nedumpozhimana et al.,
2022; Peng and Feldman, 2017; Tan and Jiang,
2021; Verma and Vuppuluri, 2015; Briskilal and
Subalalitha, 2022; Liu and Hwa, 2019). Earliest
known context-based phrase classification tech-
niques developed per idiom classifiers, which are
not scalable (Liu and Hwa, 2017). Context-based
phrase classification techniques can additionally
detect which tokens are idiomatic/nonidiomatic
(Zeng and Bhat, 2021; Salton et al., 2016; Zeng
and Bhat, 2022). Typically, the latter is dependent
on the former task – only if an idiom is detected to
be present in a sentence, does the classification
of idiomatic and non-idiomatic tokens follow. Ef-
forts to build complementary resources to support
this task include constructing a knowledge graph
(Zeng et al., 2023) and an information retrieval sys-
tem to search for idiomatic expressions (Hughes
et al., 2021).

Detecting idioms in the text has also become
popular in non-English languages. In (Itkonen
et al., 2022), authors leverage various models pro-
vided by HuggingFace in conjunction with the stan-
dard BERT model for the idiom detection task in
English, Portuguese, and Galician. They empha-
size on feature engineering using traits that define
idiomatic expressions. These additional features
result in enhancements compared to the baseline
performance. In (Tedeschi et al., 2022), a multi-
lingual transformer based model and a dataset of
idioms in 10 languages is presented. A rule-based
intra-sentential idiom detection system in Hindi
was presented in (Priyanka and Sinha, 2014).

3. Problem Statement

We are given the following:
• A sentence S with n tokens w1, w2, . . . , wn,

where each wi represents a tokenized unit. S
is an syntactic ordering over wi’s.

• Labels L = {I,NI} where I and NI represent
<idiom> and <not idiom> (or literal) classes,
respectively.

This labelling produces a sequence of class la-
bels Z = z1, z2, . . . , zn where zi = f(wi). The high-
level objective of this work is to learn the function
f(·)

• A successful prediction occurs when an id-
iomatic subsequence wi:j is identified in S,
and the corresponding labels zi:j are labelled
as I. There can be more than one such sub-
sequences.

• If the subsequence wi:j is literal, all corre-
sponding labels zi:j are NI.

• If the sentence lacks an idiom, all z1:n are cat-
egorized as NI.

4. Methodology

4.1. BERT-based Idiom Identification
Figure 1 shows the high-level architecture of our
method. Our loss functions are implemented
over BERT (Devlin et al., 2018), a pre-trained
transformer-based model developed by Google.
Due to its effectiveness in capturing context and
semantics for various NLP tasks, we re-use its pre-
trained architecture for fine-tuning our model us-
ing binary cross-entropy loss. Despite its success,
cross entropy loss is sensitive to outliers and class-
imbalance. We observe class imbalance in idiom
classification where the label I is far less frequent
than label NI leading to poor accuracy for I tokens.
To fix this, we propose to use language translation
and word cohesion to manipulate the loss. In the
following sections, we define two novel loss func-
tions for the task of idiom token classification. The
merit of our work lies in the fact that these custom
loss functions can be used with any architecture.

4.2. Language Translation and
Cohesion for Idioms

4.2.1. Translation-based Loss Function

An important property exhibited by an idiom is the
difference between its literal and actual meaning.
However, a phrase that is an idiom in language
L1 is improbable to be an idiomatic phrase in an-
other language L2.For example, take the English
idiom, “raining cats and dogs”, its Hindi translation
is “भारी वषार्”, which when translated back to English
gives “heavy rain” which is the meaning of our ini-
tial idiom but is quite different lexically. Let SL1 de-
note a sentence containing an idiom in language
L1, SL1−→L2

a translation of SL1
in L2, and SL1⇄L2

a translation of SL1−→L2
back to L1. When SL1

is
translated to SL1−→L2

, the idiomatic tokens in SL1

will be expressed through their actual meaning in
SL1−→L2 because of a lack of corresponding idiom
in L2. Re-translating it to L1 will force the idiom
to be expressed with its actual meaning in SL1⇄L2

.
Lexically, the actual meaning of an idiom and the
surface form of an idiom differ substantially from
each other. We employ this simple trick to detect
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Figure 1: Architecture of our proposed method

the presence of an idiom in a sentence – if SL1⇄L2

and SL1
differ lexically by some margin, S is likely

to contain an idiom. A sentence that contains no
idiom is likely to have the same lexical representa-
tion in the original and back-translated sentence.
We leverage the METEOR (Banerjee and Lavie,
2005) metric to quantify this observation by com-
puting a score to reflect the lexical and syntac-
tic similarity between the translated and refer-
ence sentences. METEOR incorporates a penalty
mechanism for longer matches by organizing sys-
tem translation unigrams mapped to reference
translation unigrams into minimal chunks. These
chunks consist of adjacent unigrams in the sys-
tem translation that align with adjacent unigrams
in the reference translation. Longer n-grams result
in fewer chunks. In the extreme case of a com-
plete match, only one chunk exists, while in the
absence of bigram or longer matches, the number
of chunks equals the count of unigram matches.
An alignment is created between the system trans-
lation and the reference translation by mapping
unigrams based on different criteria, such as ex-
act match, stemming, or synonymy. The align-
ment is formed by selecting the most extensive
subset of unigram mappings, ensuring that each
unigram maps to at most one unigram in the other
string. The chosen alignment is the one with the
fewest “unigram mapping crosses”, which occur
when lines connecting mapped unigrams intersect
in a vertical arrangement of the two strings.

Unigram Precision: P =
Ncorrect
Nbacktrans

Unigram Recall: R =
Ncorrect
Noriginal

Here, Ncorrect represents the number of correctly
mapped unigrams, Nbacktrans represents the total

number of unigrams in the back-translated sen-
tence, and Noriginal represents the total number of
unigrams in the original sentence.

Harmonic Mean: Fmean =
10 · P · R
R+ 9 · P

Penalty = 0.5×
(
C

U

)3

where C represents the number of chunks and U
represents the number of unigrams matched.

Score = Fmean × (1− Penalty)

It evaluates the quality of a translation by compar-
ing it to one or more reference translations. ME-
TEOR considers various factors such as unigram
precision, recall, and alignment errors to compute
a score that reflects the lexical and syntactic sim-
ilarity between the translated and reference sen-
tences. For instance, the sentence “The early
morning flight required them to hit the sack much
earlier than usual”, is translated into Italian “Il volo
mattutino li obbligava a coricarsi molto prima del
solito.”, and its back-translation to English “The
morning flight forced them to go to bed much
earlier than usual.”, the idiomatic usage causes
a large syntactic change during back-translation
which will lead to a high alignment error term and
comparatively lower METEOR score of 0.5919.

During the training of the BERT-based model for
idiom recognition, the translation-based loss func-
tion incorporates the METEOR score as a penalty
term. If the METEOR score falls below a certain
threshold, it indicates that the back-translation pro-
cess has significantly altered the original sentence,
which we posit is due to the presence of idiomatic
expressions.

Lretranslation = L(1 + λ11(MS < λ2)) (1)
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where MS is the meteor score for the sentence,
L is the original binary cross entropy loss, and
1(|MS| < λ2) is an indicator function. It takes a
value of 1 if it is low (< λ2) which scales the loss λ1

times. Otherwise, it defaults to regular loss L.
By increasing the loss for examples where id-

ioms are not accurately retained through back-
translation, the model is encouraged to better un-
derstand and retain the meaning of idiomatic ex-
pressions. This, in turn, leads to improved per-
formance metrics such as precision and recall, as
the model becomes more adept at recognizing and
appropriately handling idiomatic language during
inference, resulting in better generalization to un-
seen data.

4.2.2. Cohesion based Loss Function

Idioms exhibit a lack of semantic compositional-
ity or cohesion among its words also reported in
earlier work (Baldwin and Kim, 2010). Given a
sentence S where all tokens in the subsequence
wi:j are tagged as I, we quantify the cohesion CS
among the words in S using Equation 2. It cap-
tures the mean similarity among the words in S.

CS =
1

N

∑
wi,wj∈S,i ̸=j

sim(V (wi), V (wj)) (2)

where V (wi) is an embedding vector for wi, N
is the total number of pairs of tokens in S, and
sim(V (wi), V (wj)) captures semantic similarity be-
tween wi and wj using V (wi) and V (wj). The ’sim’
score is computed as the cosine similarity between
the high dimensional vectors for each word. Its val-
ues range from -1 to 1, where 1 indicates high sim-
ilarity and lexical cohesion, 0 represents dissimilar
or orthogonal tokens, and -1 suggests that the vec-
tors are in opposite directions. Similarly, we com-
pute CS′ , where S ′ is a sentence with the idiom
tokens wi:j removed. The key idea is if CS′ is sub-
stantially higher than CS , then the S is highly likely
to contain an idiomatic phrase. This follows from
the intuition that idiomatic tokens are remotely re-
lated semantically to non-idiomatic tokens in S and
their removal should increase the cohesion score.

We introduce this idea as loss during the fine-
tuning objective. By penalizing examples with
I classifications that are not likely to contain
idioms, it is guiding the model to differentiate
between idiomatic and non-idiomatic sentences.
Our cohesion-based loss function Lcohesion is ex-
pressed in Equation 3.

Lcohesion = L(1 + λ31(|CS1
− CS2

| > λ4)) (3)

where CS1
and CS2

are the cohesion scores for sen-
tence S without and with the target idiom, respec-
tively, L is the original binary cross entropy loss,

and 1(|CS1 − CS2 | > λ4) is an indicator function.
It takes a value of 1 if there is sufficient difference
between cohesion scores CS1

and CS2
(> λ4) which

scales the loss λ3 times. Otherwise, it defaults to
regular loss L.

4.3. Final Loss
The final loss is a linear combination of
Lretranslation and Lcohesion.

Lfinal = τ1Lretranslation + τ2Lcohesion (4)

τ1 and τ2 (0 ≤ τi ≤ 1) are parameters to control the
effect of both losses. These parameters depend
on the accuracy of CS and MS, which is deter-
mined by the quality of underlying embedding vec-
tors (Equation 2) and translation API used. More
weight can be given to the more accurate value.

5. Experiments

In this section, we present an empirical evaluation
of our models on synthetic and real-world datasets
to show the capabilities of our custom loss func-
tions. We also compare our models with state-
of-the-art techniques like DISC (Zeng and Bhat,
2021) — and we observed that using our custom
loss functions leads to improved accuracies.

5.1. Experimental Setup
For training and testing our models, we make use
of a 32× 2 cores AMD EPYC5037532 server with
1 TB of RAM, and 8x A100 SXM4 80GB504. We
used bert-based-uncased as our base model
which we finetune.

In our experiments, we adapted the pre-trained
bert-base-uncased (Devlin et al., 2018) model
from Hugging Face 1 and proceed with fine-tuning.
We selected this model primarily for its moder-
ate size, which strikes a balance between perfor-
mance and computational efficiency. Additionally,
the ”uncased” variant simplifies text processing by
disregarding case sensitivity, making it faster to
process. These factors make it a practical choice
for token classification tasks without compromising
performance. We selected Hindi as the language
we translate to.

We partitioned each dataset into training (80%),
validation (10%), and test sets (10%). Next, we
applied a BERT tokenizer on the texts for generat-
ing tokens. This step is essential because it trans-
forms the raw text data for input into the BERT
model, which operates at the token level rather

1https://huggingface.co/docs/trl/en/
models

https://huggingface.co/docs/trl/en/models
https://huggingface.co/docs/trl/en/models
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than the word level. By converting words into to-
ken IDs, the tokenizer enables the model to under-
stand and process the text effectively.

After tokenization, we aligned the labels with
tokens to establish the correspondence between
input tokens and the corresponding class labels.
This alignment ensures that each token in the in-
put text is associated with the correct entity label,
allowing the model to learn the mapping between
tokens and entity types during training. The align-
ment function handles cases where words are split
into subwords by the tokenizer, ensuring that the
labels are assigned appropriately to each token,
even in the presence of subwords. We excluded
special tokens representing separation between
sentences and the start of the sentence from the
training loss calculation by assigning them special
labels.

We trained our model for three epochs, observ-
ing a sharp drop in loss over each epoch with a
learning rate of ‘2e-5‘. The training and evaluation
batch sizes were set to 16. Weight decay was set
to ‘0.01‘ to avoid overfitting. We set λ1, λ2, λ3, and
λ4 all to 999, and τ1 and τ2 to 0.01. We repeated
our experiments for three seeds and reported av-
erage accuracy values (Table 2). Additionally, it
is worth noting that we observe minimal deviation
in accuracy across different random seeds which
underscores the robustness of the results.

5.2. Baselines
BERT-based approach (without custom
loss). We fine-tuned the BERT model with
binary cross-entropy loss.

BERT-based approach (with loss). We
used translation, cohesion, and combination
losses (described in Section 4.2) to fine-tune our
BERT model.

DISC. The DISC model is based on BERT, it
uses contextualized and static embeddings to en-
code tokens using attention, and performs token-
level literal/idiomatic classification, resulting in the
final output. We compare DISC with our models on
the Sequence Accuracy metric described in Sec-
tion 5.4.

5.3. Datasets
Table 1 describes statistics of all the datasets we
have used.

1) magpie. Derived from the British National
Corpus (BNC) and annotated for idiomatic ex-
pressions (PIEs)(Haagsma et al., 2020)(Consor-
tium, 2007), the MAGPIE corpus comprises 1756

Dataset

total
number
of
sentences

#idioms
#sentences
containing
idioms

average
sentences
per
idiom

MAGPIE 36192 1727 27727 16.05
VNC-Tokens 2571 48 2111 43.97
theidioms 7380 1606 7830 4.87
formal 3136 358 3136 8.76
gtrans 440 22 440 20
gpt+gtrans 880 22 440 20
theidioms 1-1 1606 1606 1606 1

Table 1: Statistics of the datasets used

PIEs across various syntactic patterns, alongside
56622 annotated instances (32.24 per PIE). We fo-
cused on fully figurative or literal samples, ensur-
ing unambiguous tagging reflected in confidence
scores. The resulting dataset includes approxi-
mately 37000 complete sentences, excluding those
longer than 50 tokens.

2) VNC-Tokens Dataset. The VNC (Verb-
Noun Combinations) corpus, sourced from
the British National Corpus (BNC)(Cook et al.,
2008)(Consortium, 2007), comprises 53 poten-
tially idiomatic expressions (PIEs) with about
2500 annotated sentences, categorized as literal
or figurative. Using regular expression libraries
and the NLTK library 2, we annotated tokens
as idiomatic or non-idiomatic, leveraging prior
knowledge of the idiomatic expressions for pattern
matching(Cook et al., 2008) .

3) theidioms. We scraped 1606 of the most
common English idioms from theidioms.com
website using the Beautiful Soup library, resulting
in a dataset of 7830 sentences. A few example
sentences accompany each idiom. We use the
NLTK library for lemmatization and text process-
ing. We used a function to identify positions in
sentences where a phrase similar to the idiomatic
phrase occurs based on the lemmatized tokens
and a similarity threshold. We use a similarity
threshold of 0.9, ensuring that even slight varia-
tions of the idiomatic phrases are selected and an-
notated, as the idioms in the example sentences
do not maintain the same format across all ex-
amples or instances of its usage. We have re-
leased a file containing the unfiltered sentences
corresponding to particular idiomatic expressions.

4) formal. We utilized the EPIE corpus (En-
glish Possible Idiomatic Expressions)(Saxena and
Paul, 2020), consisting of 25027 sentences. The
corpus is divided into Formal and Static idioms,
with 3136 sentences containing 358 Formal idioms
and 21891 sentences containing 359 Static idioms.
Static idioms are expressed using the exact phrase

2https://www.nltk.org/

https://www.nltk.org/
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in all sentences, whereas formal idioms undergo
lexical changes across instances. The token label-
ing follows the BIO convention with tags B-IDIOM
(beginning of PIE), I-IDIOM (continuation of PIE),
and O (Non-Idiom token). We merged B-IDIOM
and I-IDIOM into one token to match our other
datasets and treat this problem as a binary token
classification task. We only focus on the formal
portion of this dataset as the lexical changes to the
expressions address a more robust task.

5) gtrans. We compiled a dataset of 440 sen-
tences using GPT-3.5, featuring 22 English idioms
sourced manually from online platforms. Each id-
iom was paired with 20 example sentences. After
translating these idioms to Hindi and then back to
English, we observed that Google Translate accu-
rately retained their meanings, demonstrating its
understanding of these idioms.

6) gpt+gtrans. We added 440 sentences
generated by GPT-3.5 without idiomatic expres-
sions to the gtrans dataset, resulting in a total
of 880 sentences. 440 with idiomatic expressions
present, and 440 without idioms. Token labeling
and annotation followed similar methods as in pre-
vious datasets. Additionally the sentences without
idioms have all tokens labeled as 0.

7) theidioms 1-1. The dataset, sourced
from theidioms.com, contains 1606 idioms
(also present in theidioms), each with a sin-
gle instance, ensuring a 1-1 mapping between
sentences and idioms. We labeled tokens using
pattern matching and text processing with the
NLTK library. This dataset tests the model’s
generalization by including idioms unseen during
training.

5.4. Metrics
Precision, Recall, F1. We calculated precision,
recall, and F1-scores for both I and NI classes,
presenting them as ordered pairs.
Macro and Weighted Average F1. We calculated
macro average as a mean of the values of the or-
dered pair, and the weighted average considering
the relative number of each token in the complete
dataset.
Weighted-Averaged Formulae

P =

∑N
i=1(TPi + FPi)× Pi∑N

i=1(TPi + FPi)

R =

∑N
i=1(TPi + FNi)×Ri∑N

i=1(TPi + FNi)

F1− score =

∑N
i=1(2× Pi ×Ri)× (TPi + FNi)∑N

i=1(Pi +Ri)× (TPi + FNi)

Where P: Precision; Pi: Precision of the ith ex-
ample; R: Recall; Ri: Recall of the ith example;
N: Number of classes (2 in our case); TPi: True
Positives for class i; FPi: False Positives for class
i; FNi: False Negatives for class i; TNi: True Neg-
atives for class i.
Sequence Accuracy. A sentence is only consid-
ered correct if all of its constituent tokens are cor-
rectly marked. This metric can be considered as
a much more stringent metric than normal F1 and
accuracy scores (Zeng and Bhat, 2021).

5.5. Results
5.5.1. With Regular Loss

Table 2 shows our results. Our base models utiliz-
ing regular binary cross entropy loss display good
baseline results, however the results are consis-
tently the lowest across all datasets and experi-
ments compared to using custom loss functions.
Our base results on EPIE formal show a large in-
crease in metrics over the results proposed (Gam-
age et al., 2022). We see an increase of 1.24% in
precision, 19.6% in recall and 10.9% in F1-score
for the minority idiomatic class.

5.5.2. With Re-translation based Loss

Using re-translation based loss improves preci-
sion, recall, and F1 scores over binary cross en-
tropy loss on all the datasets. It leads to large
gains on theidioms, theidioms 1-1, formal,
gtrans, and gpt&gtrans. This can be ex-
plained by the fact that these datasets are char-
acterized by more comprehensive and meaningful
sentences compared to MAGPIE and VNC, which
often contain phrases and incomplete sentences.
We also observe that the translation-based loss
exhibits the highest performance on our in-house
dataset, gtrans, and this outcome is anticipated,
as the expressions included in the dataset primar-
ily rely on the translation model’s capacity to grasp
the genuine meaning of the idiom in its context
and substitute it with a literal phrase conveying
the same intended meaning. For the formal cor-
pus, we see further increases of 3.3% in precision,
3.11% in recall and 3.22% in F1-score over our reg-
ular loss model. This clearly shows the superiority
of translation-based loss function.

5.5.3. With Cohesion based Loss

We conducted an initial study to use cohesion
based score to classify sentences into contain-
ing an idiom or not. It showed results of around
70% accuracy and varied according to the qual-
ity of the datasets. Incorporating it as an ob-
jective during training improved the accuracy fur-
ther on all the datasets compared to regular
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Precision Recall F1

Dataset Method Precision
Precision
Macro
Avg

Precision
Weighted
Avg

Recall
Recall
Macro
Avg

Recall
Weighted
Avg

F1
F1
Macro
Average

F1
Weighted
Average

Accuracy

MAGPIE Regular Cross
Entropy Loss [94.1,99.27] 96.68 98.74 [93.64,99.32] 96.48 98.74 [93.87,99.3] 96.58 98.74 98.74
Translation
Retranslation Loss [93.96,99.31] 96.64 98.76 [93.99,99.31] 96.65 98.76 [93.98,99.31] 96.64 98.76 98.76
Cohesion
based Loss [94.22,99.28] 96.75 98.76 [93.77,99.34] 96.55 98.76 [93.99,99.31] 96.65 98.76 98.76
Combination [94.5,99.29] 96.89 98.79 [93.78,99.37] 96.58 98.8 [94.14,99.33] 96.73 98.79 98.8

VNC Regular Cross
Entropy Loss [97.19,99.64] 98.41 99.43 [96.14,99.74] 97.94 99.43 [96.66,99.69] 98.17 99.43 99.43
Translation
Retranslation Loss [97.99,99.81] 98.9 99.66 [97.99,99.81] 98.9 99.66 [97.99,99.81] 98.9 99.66 99.66
Cohesion
based Loss [98.13,99.76] 98.94 99.62 [97.37,99.83] 98.6 99.62 [97.75,99.79] 98.77 99.62 99.62
Combination [98.45,99.81] 99.13 99.7 [97.99,99.86] 98.92 99.7 [98.22,99.83] 99.03 99.7 99.7

theidioms Regular Cross
Entropy Loss [86.61,95.33] 92.07 95.75 [87.37,97.37] 92.36 95.73 [86.98,97.45] 92.21 95.74 95.73
Translation
Retranslation Loss [91.60,98.68] 95.13 97.52 [93.24,98.33] 95.78 97.5 [92.40,98.50] 95.45 97.51 97.5
Cohesion
based Loss [91.62,98.83] 95.22 97.65 [94.03,98.32] 96.17 97.62 [92.8,98.57] 95.69 97.63 97.62
Combination [91.76,98.77] 95.26 97.63 [93.73,98.36] 96.05 97.61 [92.73,98.56] 95.65 97.61 97.61

formal Regular Cross
Entropy Loss [90.04,99.18] 94.6 97.89 [95.02,98.29] 96.65 97.82 [92.46,98.73] 95.59 97.84 97.83
Translation
Retranslation Loss [93.34,99.69] 96.52 98.8 [98.13,98.86] 98.49 98.76 [95.68,99.27] 97.48 98.77 98.75
Cohesion
based Loss [92.47,99.75] 96.11 98.73 [98.51,98.69] 98.6 98.67 [95.39,99.22] 97.31 98.68 98.67
Combination [93.71,99.70] 96.71 98.87 [98.22,98.92] 98.57 98.82 [95.92,99.31] 97.61 98.84 98.83

gtrans Regular Cross
Entropy Loss [85.93,93.87] 89.9 92.38 [72.39,97.27] 84.83 92.61 [78.54,95.53] 87.04 92.36 92.61
Translation
Retranslation Loss [86.94,96.71] 91.83 94.89 [85.68,97.03] 91.36 94.91 [86.30,96.87] 91.59 94.9 94.91
Cohesion
based Loss [86.76,96.71] 91.74 94.85 [85.69,96.99] 91.33 94.87 [86.21,96.85] 91.53 94.86 94.87
Combination [86.86,96.58] 91.72 94.76 [85.07,97.03] 91.05 94.79 [85.94,96.80] 91.38 94.77 94.79

gpt&gtrans Regular Cross
Entropy Loss [80.4,97.84] 89.12 96.09 [80.79,97.78] 89.29 96.06 [80.53,97.81] 89.17 96.07 96.07
Translation
Retranslation Loss [83.91,98.85] 91.38 97.34 [89.83,98.06] 93.94 97.23 [86.74,98.45] 92.59 97.27 97.23
Cohesion
based Loss [83.05,99.02] 91.03 97.41 [91.37,97.91] 94.62 97.25 [86.99,98.46] 92.73 97.3 97.25
Combination [83.97,98.83] 91.4 97.33 [89.64,98.08] 93.86 97.23 [86.70,98.45] 92.58 97.26 97.22

theidioms 1-1 Regular Cross
Entropy Loss [66.53,92.80] 79.67 88.91 [57.58,94.97] 76.27 89.44 [61.73,93.87] 77.8 89.12 89.44
Translation
Retranslation Loss [72.47,93.24] 82.85 90.17 [59.90,96.05] 77.97 90.7 [65.58,94.63] 80.1 90.33 90.56
Cohesion
based Loss [71.88,93.49] 82.69 90.3 [61.59,95.82] 78.71 90.75 [66.37,94.64] 80.18 90.45 90.75
Combination [72.84,93.40] 83.11 90.36 [60.89,96.05] 78.47 90.85 [66.31,94.71] 80.51 90.51 90.85

Table 2: Results of applying idiom-based custom loss function on several datasets

binary cross entropy loss. As observed for
translation-based loss, it leads to large gains
on the theidioms, theidioms 1-1, formal,
gtrans, and gpt&gtrans, and performs the best
on the theidioms and gpt&gtrans datasets
because these datasets contain sentences which
are more complete than MAGPIE and VNC. For
formal corpus, we see further increases of 2.43%
in precision, 3.49% in recall and 2.93% in F1-score
over our regular loss model. This observation
aligns perfectly with the fundamental concept of
our metric. It underscores that idioms embedded
within highly cohesive sentences are more read-
ily identifiable as being idiomatic usages of those
phrases.

5.5.4. With combination of losses

Using a combination of both losses improves the
accuracy values on MAGPIE, VNC, formal, and

theidioms 1-1 and is very close to the accura-
cies of translation-based or cohesion-based loss
functions for other datasets. In formal corpus,
we observe notable improvements: precision in-
creases by 3.67%, recall by 3.2%, and F1-score by
3.46% compared to our regular loss model. These
discoveries validate the efficacy of utilizing both
semantic cohesion and dissimilarity of idiomatic
phrases within their contextual environments for
our task. Instances penalized by both metrics typ-
ically represent confidently idiomatic expressions,
which the model should strive to accurately clas-
sify.

5.5.5. Cross-domain performance across
datasets

We trained our models on one dataset and tested
them on another to measure the generalization ca-
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Precision Recall F1

Train, Test Method Precision
Precision
Macro
Avg

Precision
Weighted
Avg

Recall
Recall
Macro
Avg

Recall
Weighted
Avg

F1
F1
Macro
Average

F1
Weighted
Average

Accuracy

theidioms, gtrans
Regular Cross
Entropy Loss [84.73,96.41] 90.39 94.11 [84.78,96.29] 90.54 94.1 [84.57,96.35] 90.46 94.11 94.1
Translation
Retranslation Loss [89.3,98.21] 93.76 96.51 [92.46,97.39] 94.93 96.45 [90.85,97.8] 94.33 96.48 96.45
Cohesion
based Loss [89.3,98.39] 93.84 96.65 [93.21,97.37] 95.29 96.57 [91.21,97.87] 94.54 96.6 96.57
Combination [89.20,97.97] 93.59 96.3 [91.42,97.39] 94.4 96.25 [90.28,97.68] 93.98 96.27 96.25

Table 3: Results showing transfer capabilities of our models. The model is trained on theidioms and
tested on gtrans.

pabilities of the model and how our methodology
may improve this capability. We trained the model
on the theidioms dataset and tested on gtrans
dataset. Table 3 shows the result. Our custom
loss function based approach showcases impres-
sive transfer capabilities.

5.5.6. Comparison with DISC

We compared our models with DISC (Zeng and
Bhat, 2021), a state-of-the-art approach for idiom
token classification. We refer to the accuracy val-
ues reported in the paper to compare our tech-
nique with theirs. We kept the same train-test split
for MAGPIE and VNC dataset. It should also be
noted that DISC was trained for 600 epochs while
our models were trained for only 5 epochs. Table
4 compares the sequence accuracies of DISC
and our model. Sequence accuracy is considered
as a better metric to capture the performance of
such models (Zeng and Bhat, 2021). It is clear
that our model outperforms DISC in sequence ac-
curacy. This can be explained by our model’s ca-
pabilities in distinguishing between the literal and
figurative idiomatic usages, possible through cus-
tom loss function training.

Dataset Method Sequence Accuracy
MAGPIE Regular Cross Entropy Loss 90.19

Translation Retranslation Loss 91.31
Cohesion based Loss 91.46
Combination 91.51
DISC3 87.47

VNC Regular Cross Entropy Loss 93.75
Translation Retranslation Loss 96.88
Cohesion based Loss 96.88
Combination 96.88
DISC 93.31

Table 4: Comparing DISC, a state-of-the-art idiom
detection model with our technique on 2 datasets

6. Discussion

When we consider the examples where the DISC
approach is making incorrect predictions, for in-
stance - “Dragons can lie for dark centuries brood-

ing over their treasures, bedding down on frozen
flames that will never see the light of day.” The
DISC approach incorrectly predicts only a portion
of the complete expression - “see the light of day”
as idiomatic, whereas our model correctly identi-
fies the entire expression. Similarly for - “Given a
method, we can avoid mistaken ideas which, con-
firmed by the authority of the past, have taken deep
root, like weeds in men’s minds.” where the DISC
model predicts “weeds in men’s minds” as the id-
iomatic expression with the correct instance being
“taken deep root”. Our models do not falter in this
case and predict all tokens for this example cor-
rectly.

In instances where the cohesion-based ap-
proach outperforms combined approaches, it
is noteworthy that the Multi-Word Expressions
(MWEs) are not consistently translated as ex-
pected. Consequently, the incorporation of the
translation score tends to diminish overall per-
formance. On the other hand, the translation-
only model demonstrates an ability to enhance
results compared to the baseline, as it success-
fully captures anticipated translations for certain
expressions, contributing to improved overall per-
formance.

We manually analyze the different errors that
our models make on the VNC and EPIE formal
datasets to gain insights into the idiom identifica-
tion abilities and shortcomings in Table 5. We have
categorized the errors into 5 major cases and we
present examples of each type. Case 1 is where
the correct idiomatic expression is identified fully
but an alternate expression has also been tagged
as idiomatic. This can be thought of as a limita-
tion of the datasets rather than that of our mod-
els, as our datasets label at most one expression
as idiomatic in each sentence. The second case
is where an alternate expression is labeled. The
reasoning for this is similar to the previous case
as there may be multiple expressions that could
possibly be idiomatic and our model is identifying
one of them. In the third case, our model correctly
identifies the idiom but also tags words surround-
ing the idiom. This can be ascribed to the alterna-
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Error Type Sentence with PIE Prediction

Multiple Expressions Predicted I then walked across to the photogra-
phers and lost my temper and then
lost my head.

lost my temper , lost my head

Alternate expression detected Cantona will have to kick his heels
on the sidelines if the manager had
his way.

had his way

Extra tokens surrounding expression Julia had her attention caught by the
commotion.

attention caught by

Partial His blistering turn of speed and atti-
tude made him an instant hit with the
fans.

hit

Predicting Nothing Everyone talks about hitting a wall at
the 24 mile mark.

Empty String

Table 5: Different error types along with examples and the incorrect prediction. The ground truth values
have been colored blue in sentences.

tive labeling of the identical expression in different
occurrences. The fourth case ”Partial”, constitutes
instances where only a segment of the idiomatic
expression is identified, with the specific localiza-
tion of the entire idiom boundary remaining impre-
cise. The last error category involves the absence
of predictions when the model fails to recognize id-
iomatic usage, even when it is present. The effec-
tiveness of our model is contingent upon the cal-
iber of annotation and various other external fac-
tors.

7. Future Work

The latest advancements in Natural Language Pro-
cessing (NLP) have led to the extensive utilization
of a range of transformer-based models. We can
adjust our own loss functions to refine different ar-
chitectures effectively. We can create an intuitive
and efficient tool utilizing these fine-tuned models
to detect an idiom in a given sentence. This tool
should offer a straightforward and accessible ex-
perience for a broad range of users, with minimal
technical expertise required. To continuously im-
prove the overall performance of our models, we
can systematically address each identified error
category. This might involve analyzing error pat-
terns and refining the fine-tuning process accord-
ingly.
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