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Abstract

POS tagging plays a fundamental role in numer-
ous applications. While POS taggers are highly
accurate in well-resourced settings, they lag
behind in cases of limited or missing training
data. This paper focuses on POS tagging for
languages with limited data. We seek to iden-
tify the characteristics of datasets that make
them favourable for training POS tagging mod-
els without using any labelled training data
from the target language. This is a zero-shot
approach. We compare the accuracies of a
multilingual large language model (mBERT)
fine-tuned on one or more languages related
to the target language. Additionally, we com-
pare these results with models trained directly
on the target language itself. We do this for
three target low-resource languages. Our re-
search highlights the importance of accurate
dataset selection for effective zero-shot POS
tagging. Particularly, a strong linguistic rela-
tionship and high-quality datasets ensure opti-
mal results. For extremely low-resource lan-
guages, zero-shot models prove to be a viable
option.

1 Introduction

In recent years, a lot of progress has been made
in Natural Language Processing (NLP). However,
certain fundamental technologies such as Part-of-
Speech (POS) tagging or dependency parsing are
still only available for a small part of the world’s
languages. This is mostly for languages with sig-
nificant amounts of available data. For languages
with limited or no available data (low-resource lan-
guages), these technologies are highly inaccurate
or sometimes even nonexistent (Joshi et al., 2020).
Advancements in multilingual language models
have shown impressive cross-lingual transfer abili-
ties (Wu and Dredze, 2019). In this paper, we build
on these advancements to explore zero-shot POS
tagging for low-resource languages.

We investigate two questions:

RQ1 What are the essential characteristics of
datasets for effectively fine-tuning zero-shot
POS tagging models for low-resource lan-
guages?

RQ2 Are zero-shot models useful in realistic low-
resource settings when compared to models
fine-tuned with target language data?

We explore these questions by fine-tuning a
multilingual pretrained language model for zero-
shot POS tagging, using related languages (which
we call support languages) to the target language.
We start by fine-tuning POS tagging models for
Afrikaans, using Dutch, German, and English
as support languages. We test the models on
Afrikaans and compare the results in an attempt
to identify the characteristics of the datasets that
affect the performance of the models. We then
experiment with two additional target languages:
Faroese (supported by Icelandic, Danish, Norwe-
gian and Swedish) and Upper Sorbian (supported
by Czech, Polish and Slovak). We aim to determine
whether our findings for Afrikaans also apply to
these languages.

In relation to RQ1, we find that when mul-
tiple supporting languages are available, high-
quality datasets (Kulmizev and Nivre, 2023) that
are closely related to the target language result in
better performance. Using the most closely related
language leads to consistently better accuracy, espe-
cially with a limited number of training sentences.
For an optimal training dataset size, using between
100 and 5000 sentences helps to avoid under- or
overfitting.

Regarding RQ2, we find that zero-shot POS
tagging models can certainly be a viable option
for low-resource languages. Nevertheless, models
trained on annotated data from the low-resource tar-
get language itself remain superior, similarly to pre-
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vious findings in the literature (Meechan-Maddon
and Nivre, 2019).

As we will discuss in the conclusion, these find-
ings can be translated into concrete guidelines for
different scenarios.

This paper starts with background information
on low-resource zero-shot POS tagging. We then
discuss the technical components and methodology
used. Finally, we present the results and attempt
to answer the previously mentioned research ques-
tions.

2 Background

Part-of-Speech tagging with Universal
Dependencies

Part-of-Speech tagging is an essential application
within NLP. It is used in machine translation, word
meaning disambiguation, parsing, among other ap-
plications (Chiche and Yitagesu, 2022). It is a
highly researched task for which there are many
annotated datasets, in many languages. Universal
Dependencies (UD; de Marneffe et al., 2021) is a
collection of treebanks which include POS tags for
hundreds of languages, with a unified POS tagging
scheme. UD distinguishes between 17 different
tags, called the Universal POS tags (Zeman et al.,
2023). This unified annotation scheme allows the
development and comparative evaluation of POS
taggers across the languages included in UD. In
addition, UD makes it possible to build multilin-
gual POS taggers and dependency parsers which
can deal with multiple languages within a single
model (e.g. Kondratyuk and Straka, 2019), and
this enables cross-lingual transfer. A limitation of
UD is that the annotation quality varies consider-
ably across treebanks (Kulmizev and Nivre, 2023).
This may negatively impact cross-lingual transfer,
a question we investigate in this paper.

Zero-shot learning

A zero-shot model is a learning model that can per-
form a task without having seen examples or data
of that task during the fine-tuning phase. In the con-
text of this paper, a zero-shot POS tagging model
refers to a model that is trained to POS tag sen-
tences in one or more support training languages.
The performance of this model is then evaluated
on data from a different language, also known as
the target language. Importantly, the model does
not encounter the data of this target language dur-
ing the fine-tuning phase (although it may have

seen target language data during pre-training). One
could compare it to a student who has an Afrikaans
exam scheduled but is only allowed to prepare by
studying, for instance, Dutch and German. This
approach is useful in NLP to fill gaps in the avail-
ability or correctness of data for a target language.
Thus, for extremely low-resource languages, or es-
pecially languages for which no annotated data is
available, POS tagging could be performed using a
zero-shot model trained on related languages.

We use the zero-shot strategy here because we
are interested in scenarios where no data is avail-
able for certain languages. This provides a better
understanding of the situation because all models
developed for this purpose would, by definition, be
zero-shot.

Low-resource languages

While there is no general definition of the term low-
resource, researchers have attempted to define it
(Joshi et al., 2020). However, this definition has
not yet been widely adopted. We consider a dataset,
and thus a language, to be low-resource if it con-
tains fewer than 50,000 tokens in UD. This mainly
concerns indigenous languages, but can also in-
clude languages that are more broadly used. In
UD, a token is a syntactic word used for analysis,
which might differ from orthographic or phonolog-
ical words (de Marneffe et al., 2021).

3 Methodology

Through our experiments, we hope to gain insights
into the characteristics of datasets that contribute to
the performance of zero-shot POS tagging models
for low-resource languages.

Our experiments focus on fine-tuning POS tag-
ging models based on mBERT, a large language
model (LLM; Devlin et al., 2019). This process
involves fine-tuning the model on annotated tree-
banks to enable it to perform POS tagging. The
model’s performance is then evaluated on a test
dataset. We specifically chose mBERT because of
its multilingual capabilities. Additionally, mBERT
has shown good results in zero-shot scenarios
(Pires et al., 2019).

The fine-tuning of mBERT is done using the tool
MaChAmp (van der Goot et al., 2021). MaChAmp
is a user-friendly tool that enables the fine-tuning of
LLMSs on various NLP tasks from diverse datasets
and languages. The latter functionality in partic-
ular is valuable for our research. This enables us
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Language Treebank # Sents Rank
Afrikaans AfriBooms 1.5k 46
Dutch Alpino 12k 29
German GSD 15k 19
English EWT 16k 23
Faroese FarPaHC 1.6k 62
Icelandic Modern 3.5k 34
Danish DDT 5.5k 53
Norwegian Bokmaal 20k 14
Swedish Talbanken 6.0k 57
Upper Sorbian UFAL 0.6k

Czech FicTree 12.7k 24
Polish LFG 17.2k 20
Slovak SNK 10.6k 42

Table 1: Languages with corresponding treebanks (UD
v2.13) ranked according to their relatedness to the target
language, including the number of sentences (# Sents)
in each treebank and their respective quality rankings
(Rank; Kulmizev and Nivre, 2023).

to jointly train POS tagging models on multiple
languages.

Languages and treebanks

We select three different groups from Universal
Dependencies v2.13 (Zeman et al., 2023). These
groups are shown in Table 1. For each group, we
select one low-resource language and a few related
languages for which larger treebanks are available.

Our focus is primarily on Afrikaans. For this,
we use the AfriBooms treebank (Augustinus et al.,
2016). The supporting languages are Dutch, Ger-
man, and English. To verify our observations of
Afrikaans, we use two other clusters. One cluster
includes Scandinavian languages, with Faroese as
the low-resource language. The related languages
are Icelandic, Danish, Norwegian, and Swedish.
We also use a West Slavic cluster, with Upper Sor-
bian as the low-resource language, supported by
Czech, Polish, and Slovak.

Characteristics

To answer RQ1 (What are the essential characteris-
tics of datasets for effectively fine-tuning zero-shot
POS tagging models for low-resource languages?),
we consider two main characteristics: the linguistic
relatedness between languages and the quality of
the treebank. The relevance of the linguistic relat-
edness is already evident from previous work (see
section 5), but the treebank quality has not been
taken into consideration before in spite of being a

clear differentiating factor between UD treebanks
(see section 2 & 5). Firstly, we take a look at the
linguistic relatedness. The support languages are
consistently chosen to be of the same genus as the
target language. This results in an intrinsic related-
ness. In the first cluster, Dutch shows the closest
relatedness to Afrikaans (van Zaanen et al., 2014).
In the Scandinavian cluster, Faroese is most closely
related to Icelandic (Snabjarnarson et al., 2023).
In the West Slavic cluster, Upper Sorbian is most
closely related to Czech (Howson, 2017), followed
by Polish.

For the second characteristic of the treebanks,
we rely on a ranking developed by Kulmizev and
Nivre (2023). This ranking is based on three crite-
ria: how difficult or easy the treebanks are to parse,
how much information they contain that is actually
usable by a parser, and how sample efficient they
are. We report the rank of the languages considered
in this work in Table 1. The supporting languages
for Afrikaans, for example, can be ranked as fol-
lows: German > English > Dutch. Throughout
this paper, we refer to this as the ‘quality’ of a
treebank.

As an additional characteristic, we use the size
of the dataset. With this, we investigate whether
overfitting might occur and determine the optimal
number of sentences a model should use.

Experimental setup

We train zero-shot models for each of the three
clusters. We fine-tune these models in several ways.
First, we fine-tune separate zero-shot models for
each distinct supporting language. Then, we fine-
tune models based on different combinations of
these languages. We repeat this process for the
different clusters.

We conduct learning curve experiments to dis-
play the performance of the models as they are fine-
tuned on increasingly more data. The fine-tuning
starts with five sentences and gradually reaches the
maximum available number of sentences from the
treebanks. For each cluster and each model within
the cluster, we repeat this process three times. Dur-
ing each iteration, the sentences of the training
dataset of each language are shuffled. This allows
for random selection of sentences, which is crucial
for ensuring generalisability.

We determine the accuracy of each model using
the F1-score, a common metric for assessing the
performance of classifiers such as POS tagging
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models (Jurafsky and Martin, 2009). The results of
these experiments and the associated observations
are discussed in the following section.

Finally, we also look at monolingual non-zero-
shot models that are fine-tuned on the respective
target languages themselves. This means that we
fine-tune three distinct models, each using only
Afrikaans, Faroese, or Upper Sorbian. This can
then provide us with an answer to our second ques-
tion (RQ2): Are zero-shot models useful in realis-
tic low-resource settings compared to monolingual
non-zero-shot models in terms of accuracy?

4 Results and discussion

First, we analyse the learning curves of all clusters
to identify which characteristics of datasets seem
to have the most impact on the results and could
therefore be more suitable for a zero-shot model.
Then, we evaluate the effective usability of our
models and results to determine whether the zero-
shot approach is effective.

4.1 RQ1: Dataset characteristics

Afrikaans

First and foremost, we take a look at the accura-
cies of the models that have Afrikaans as the target
language and that were trained on one supporting
language. This can be seen in Figure 1. It can
be clearly seen that when fine-tuning the zero-shot
model using a language more closely related to the
target language, the initial accuracies are higher.
Initial accuracies are the accuracies that occur with
a smaller number of training sentences. A one-
to-one correspondence can be seen between how
closely related the training language is to the tar-
get language and how accurate the corresponding
model is for a very small subset of the dataset.

As more sentences are added to the training
dataset of the models, it can be seen that the accu-
racies of the three models converge. This is most
likely due to the fact that the supporting languages
are all Germanic languages and there is a high sim-
ilarity to the target language. However, it can be
seen that the Dutch model performs better overall
and also achieves the best accuracy of the three
models. The model that performs the worst overall
is the English model. This is not surprising, as
English is least closely related to Afrikaans among
the three supporting languages, and its quality falls
in the middle range.

Next, we add the models that were trained with
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Figure 1: Accuracy of fine-tuned models on Afrikaans,
represented through learning curves.
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Figure 2: Accuracy of fine-tuned models on Afrikaans,
represented through learning curves.

combinations of supporting languages and analyse
these separately. This can be seen in Figure 2. It
is immediately noticeable that the added models
using the most closely related language initially
achieve higher accuracies. The model with the
highest initial accuracy here is the Dutch-German
model. This seems logical since Dutch and German
follow each other as most related to Afrikaans. In
second place is the Dutch-English model, again be-
cause Dutch is in the training dataset and has a sig-
nificant influence. The worst-performing model is
the German-English model. This is not surprising
since German and English are the two languages
that are least related to Afrikaans.

As the size of the training datasets of the mod-
els increases, there is a greater shift between the
accuracies of the different models. The model that
performs best overall is the German-English model.
This is unexpected, given that Dutch is the closest
language to Afrikaans (Heeringa et al., 2015). One
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explanation for this might be that when a model
is trained on more than one language, the quality
of the datasets becomes more important than the
language relatedness. The Dutch-German model
performs slightly better across the board than the
Dutch-English model, which suggests that relat-
edness still plays a role. When we look at all the
models in Figure 2 globally, we can make several
observations:

If a model has a language in the training dataset
that is more closely related to the target language,
the model has a higher initial accuracy. When mul-
tiple closely related languages are used, such as the
Dutch-German model, this accuracy increases even
further.

The most performant model is one trained on
multiple languages. In the case of Afrikaans, this is
the German-English model. This can be attributed
to the quality of the datasets used. This model
quickly achieves better results and consistently
maintains a high accuracy.

There seems to be a plateau at which all mod-
els achieve accuracies that neither increase nor de-
crease, usually between 100 and 5000 sentences.
What is also notable is that within this interval, the
Dutch model generally performs the best, while the
German-English model achieved the highest peak
accuracy prior to this interval.

Faroese

Secondly, we take a look at all the models we have
fine-tuned that have Faroese as the target language.
This can be seen in Figure 3. What stands out im-
mediately is that all models that contain the most
related language - Icelandic - consistently achieve
the best results. This results in two distinct groups:
one group with models containing Icelandic, and a
second group with the other models. Just as with
Afrikaans, it can also be seen here that the mod-
els that contain a more related language achieve a
higher initial accuracy.

Regarding dataset quality, the model fine-
tuned using the highest-quality datasets (Icelandic-
Norwegian) ranks among the best performing mod-
els, while the model trained on the lowest-quality
datasets (Danish-Swedish) ranks among the worst.
Interestingly, the model that achieves the overall
peak accuracy is the Icelandic-Danish model, again
highlighting the importance of language related-
ness, not only for lower training sizes, but through-
out the entire process.

Here, a plateau between about 100 and 5000
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Figure 3: Accuracy of fine-tuned models on Faroese,
represented through learning curves.

sentences can also be clearly seen. This is espe-
cially noticeable in the accuracies of the models
that do not include Icelandic. The curves start with
an increase, followed by a stagnation and then a
decline in accuracy. This is particularly noticeable
in the models trained on Swedish and Norwegian.
In the case of Swedish, this is not surprising as the
treebank is of relatively low quality and not very
closely related to Faroese. Norwegian, on the other
hand, is closely related and of high quality, which
makes this trend all the more striking.

Some further observations also become clear
here. As more sentences are added to the training
dataset of the models, the accuracies of the models
converge. This again highlights the idea of intrinsic
relatedness between languages within the same lan-
guage family. Furthermore, it can be seen that the
best performing model is one that is fine-tuned on
multiple supporting languages, although the model
solely fine-tuned on Icelandic is also among the
better performing models.

Upper Sorbian

Lastly, we look at the accuracies of models whose
target language is Upper Sorbian. This can be seen
in Figure 4. Here, largely the same trends are seen
as in the two previous clusters. The initial accura-
cies of models trained with the most closely related
language (Czech) are higher, although Polish takes
the lead when the model is trained on a single sup-
porting language. The statement holds true for
models trained on multiple supporting languages:
the greater the relatedness and the higher the qual-
ity, the better the model performs. In addition, the
trend between 100 and 5000 sentences can be seen
again here, although it is slightly less pronounced.
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Figure 4: Accuracy of fine-tuned models on Upper Sor-
bian, represented through learning curves.

Language Zero-shot Non-zero-shot
Afrikaans 90.9 98.5
Faroese 78.2 97.3
Upper Sorbian 79.7 70.7

Table 2: Peak accuracies of zero-shot & non-zero-shot
models.

4.2 RQ2: Usefulness of zero-shot models in
realistic settings

In order to answer RQ2, we compare our zero-
shot models with those that have been fine-tuned
directly on the respective target languages (non-
zero-shot).

Comparing zero-shot and non-zero-shot
performance

Firstly, we examine the practical relevance of zero-
shot models in the context of low-resource lan-
guages. The peak accuracies for both our zero-shot
and non-zero-shot models can be seen in Table 2.
For Afrikaans and Faroese, we observe that the
non-zero-shot models outperform their zero-shot
counterparts, with the Faroese model showing a
nearly 20 percentage point improvement over the
zero-shot model. This suggests that, given enough
training data, fine-tuning on the target language can
lead to substantially better results, as also discussed
by Meechan-Maddon and Nivre (2019).

However, when we take a look at Upper Sor-
bian, an extremely low-resource language with
only 23 training sentences, we observe a different
trend. Here, the zero-shot model actually surpasses
the non-zero-shot model by 9 percentage points,
achieving a peak accuracy of 79.7% compared to
the non-zero-shot model’s 70.7%. This result sug-
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Figure 5: Accuracy of models fine-tuned on the target
languages Afrikaans, Faroese, and Upper Sorbian, rep-
resented through learning curves accompanied by the
peak accuracies of the respective zero-shot models.

gests that our zero-shot models are certainly a vi-
able option for extremely low-resource languages
or languages for which no data is available.

Upper Sorbian is not a unique case; we counted
82 languages in UD v2.14 that have fewer than
23 training sentences. This widespread scarcity
highlights the importance of zero-shot models in
real-world applications where data is often hard to
come by.

Amount of annotated data needed to surpass
zero-shot performance

Secondly, we take a look at how much annotated
data is necessary to improve upon zero-shot per-
formance through monolingual fine-tuning (non-
zero-shot). In Figure 5, the accuracies of the POS
tagging models are shown when they are fine-tuned
on the respective target languages, alongside the
peak accuracies of the respective zero-shot models.
Using these lines, and the intersection they make
with the learning curves of the non-zero-shot mod-
els, we can estimate when a non-zero-shot model
becomes strictly better than a zero-shot model for
the same target language.

For Afrikaans, the intersection occurs between
50 and 60 training sentences, indicating that at
least this amount is necessary for the non-zero-
shot model to outperform the zero-shot model.
Similarly, for Faroese, the intersection point is
around 40 sentences, suggesting a slightly lower
data requirement to achieve better performance.
Again, the Upper Sorbian models are slightly dif-
ferent. The learning curve for the non-zero-shot
model does not intersect with the peak accuracy of
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the zero-shot model, simply because there is not
enough targeted data available.

Meechan-Maddon and Nivre (2019) made sim-
ilar observations in a similar context. They com-
pared dependency parsers trained on treebanks
from several support languages (akin to our zero-
shot setting) with those trained solely on target lan-
guage data (similar to our non-zero-shot setting).
They found that the non-zero-shot models required
between 100 and 200 sentences to reach the perfor-
mance of the zero-shot models. This is higher than
what we found, but can likely be explained by the
fact that they do not make any use of pretraining
and use a BILSTM instead of a transformer. We use
mBERT, which has a greater number of parameters
than a BILSTM and which already has acquired
cross-lingual transfer capabilities by virtue of be-
ing trained on multilingual data. This may reduce
the need for annotated target language data. This
should be verified in future research, however.

5 Related work

Dealing with the limited availability of training
data for low-resource languages is an active area of
research within NLP. Thanks to the UD treebanks,
a large collection of data in numerous languages
with varying data sizes, POS tagging and depen-
dency parsing have become highly researched top-
ics within this context

Closest to our work, de Vries et al. (2021) inves-
tigated zero-shot transfer for two target languages:
Gronings and West Frisian. They also fine-tuned
mBERT on related languages, as well as monolin-
gual language models in related languages. They
found the latter to be superior to the former. Relat-
edly, de Vries et al. (2022) did an extensive evalu-
ation of zero-shot POS tagging across 105 target
languages. They fine-tuned mBERT using 65 dif-
ferent support languages, testing all possible com-
binations of support and target languages, with one
support language used each time. They found that
related languages are generally the best support
languages.

Our work is complementary to these by consid-
ering a number of target languages that is in be-
tween these two extremes (2 versus 105). It allows
a targeted evaluation, looking at learning curves
and trying multiple support languages in different
combinations, while still providing results that gen-
eralize to more than two closely related languages.
We confirm that, among related languages, the ones

that are the most closely related to the target lan-
guage are the best support languages. This finding
is consistent with many other earlier works in POS
tagging and dependency parsing using different
types of models (Smith et al., 2018; Pires et al.,
2019; Lauscher et al., 2020).

Our learning curve experiments take inspira-
tion from earlier work in dependency parsing by
Meechan-Maddon and Nivre (2019). They investi-
gated zero- and few-shot learning of multilingual
parsers to find out how much can be gained from
cross-lingual transfer versus annotating target lan-
guage data. They use a BILSTM parser trained only
on treebank data, in multiple languages, including
and excluding target language data. Their results
showed that the zero-shot approach is inferior to
the other approaches, provided at least 200 training
sentences are available from the target language.
We confirm this finding in the context of fine-tuning
a multilingual transformer model, although we find
that fewer training sentences are necessary in this
context.

Finally, a dataset property which has not yet been
investigated in the context of cross-lingual trans-
fer (to our knowledge) is data quality. Kulmizev
and Nivre (2023) thoroughly evaluated the quality
of UD treebanks using three different metrics and
found that the quality varies considerably across
treebanks. They found some treebanks to perform
consistently low across metrics, making them prac-
tically unusable. This raises the question of how
this quality impacts results in cross-lingual transfer:
a low-quality treebank may be too noisy to use for
cross-lingual transfer. We investigated this ques-
tion and found a subtle link between the quality of
the UD Treebanks and the peak accuracies of the
corresponding zero-shot models. Of course, more
research is needed to confirm this by investigating
a larger set of treebanks.

6 Conclusion

Initially, we can conclude that developing zero-
shot POS tagging models is a viable option for
low-resource languages. Nevertheless, using the
low-resource dataset of a specific language remains
superior for constructing a POS tagging model for
that language, similar to what Meechan-Maddon
and Nivre (2019) found in the context of depen-
dency parsing. If the amount of data for a language
is so scarce and/or a zero-shot model is still desired,
the following guidelines can be followed:
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One language can be used as a support language.
In this case, always use the language that is most
closely related to the target language. This gener-
ally gives better accuracies with a low number of
training sentences. Even with larger numbers of
training sentences, these models tend to perform
well. The quality plays a lesser role here.

Multiple support languages can be used. In this
case, use as many languages as possible that are
closely related to the target language and are of
high quality. High relatedness gives the best results
with a limited number of training sentences, and
high quality generally gives the best results with
higher numbers of training sentences.

What is the most suitable number of training
sentences? If enough data is available from the
support languages, preferably use a training num-
ber of 100 to 5000 sentences. Below 100 sentences,
the models are often ‘underfitted’. Above 5000 sen-
tences, the models can overfit and the accuracies
may decrease.

7 Limitations

This work considered only three target languages,
each paired with three to four related source lan-
guages, selected somewhat arbitrarily. While this
restricted number allowed in-depth analysis, our
findings need to be verified using more languages
with various degrees of relatedness. To keep the
number of languages manageable while ensuring
generalizability of the results, a sample of typolog-
ically diverse languages could be selected using
the recently proposed framework by Ploeger et al.
(2024).

Additionally, we relied on the linguistic litera-
ture to describe the degree of relatedness between
the languages considered. It would be informative
to quantitatively define language distances, as done
by Ploeger et al. (2024).

Finally, we only evaluated one pretrained lan-
guage model, mBERT. Our findings should be veri-
fied with other models.
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