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Abstract

Large language models (LLMs) demonstrate
exceptional proficiency in both the comprehen-
sion and generation of textual data, particularly
in English, a language for which extensive pub-
lic benchmarks have been established across
a wide range of natural language processing
(NLP) tasks. Nonetheless, their performance
in multilingual contexts and specialized do-
mains remains less rigorously validated, rais-
ing questions about their reliability and gen-
eralizability across linguistically diverse and
domain-specific settings. The second edition
of the Shared Task on Multilingual Multitask
Information Retrieval aims to provide a com-
prehensive and inclusive multilingual evalua-
tion benchmark which aids assessing the ability
of multilingual LLMs to capture logical, fac-
tual, or causal relationships within lengthy text
contexts and generate language under sparse
settings, particularly in scenarios with under-
resourced languages. The shared task consists

of two subtasks crucial to information retrieval:
Named entity recognition (NER) and read-
ing comprehension (RC), in 7 data-scarce lan-
guages: Azerbaijani, Swiss German, Turkish
and Yorùbá, which previously lacked annotated
resources in information retrieval tasks. This
year specifally focus on the multiple-choice
question answering evaluation setting which
provides a more objective setting for compar-
ing different methods across languages.

1 Introduction

Recent advancements in organizing online knowl-
edge facilitated by Large Language Models (LLMs)
have fundamentally reshaped the way we approach
information retrieval. This functionality creates ex-
citing potential for new applications for education
and media supporting seamless access to informa-
tion on diverse subjects. However, this functional-
ity is largely to limited in high-resourced languages,
preventing equal access to potential applications in



many under-resourced or studied languages across
the world (Yong et al., 2023). Recently, initiatives
for creating standardized benchmarks for evaluat-
ing natural language processing (NLP) systems in
a more linguistically inclusive setting had been pro-
posed by corpora like XTREME (Hu et al., 2020)
and XTREME-UP (Ruder et al., 2023). Although
these data sets bring together large multilingual cor-
pora they lack in generative human prepared data
related to information access.

The 2nd Shared Task on Multi-lingual Multi-task
Information Retrieval (MMIR), provides a bench-
mark for evaluating multi-lingual large language
models (LLMs) in terms of their applicability for
information retrieval in various under-resourced
and typologically diverse languages. Purely con-
structed using human annotated data consisting of
examples of reading comprehension questions and
named entity recognition in various context and
languages, MMIR benchmark presents a challeng-
ing new task for testing and improving LLMs. As
evaluation resource we use Wikipedia which we
find representative of the inclusion of languages
online. We pick five languages with varying de-
grees of resources and linguistic typology from
three different language families: Azerbaijani and
Turkish (Turkic), Igbo and Yoruba, (Niger-Congo)
and Swiss German (Germanic), and produce an-
notations in two tasks crucial for IR: named en-
tity recognition (NER) and reading comprehension
(RC). We present our data curation and annotation
process as well as the findings of the evaluation
in the resulting benchmark including prominent
LLMs trained on multi-lingual multi-task settings:
LLAMA (Dubey et al., 2024), Aya (Üstün et al.,
2024) and Gemini (Reid et al., 2024). Extending
the data sets and competition from 2023, this year’s
edition allowed submissions both in open-ended
and multiple-choice question answering to allow
a more fine-grained and objective analysis. we re-
ceived 3 submissions in the multiple-choice and
2 submissions in the open-ended RC tasks. The
NER task also received 2 submissions. We provide
more details on the data sets and a comparison of
competing systems.

2 Tasks

MMIR shared task provides a multi-task evaluation
format to assess information retrieval capabilities
of LLMs in terms of two tasks: named entity recog-
nition (NER) and reading comprehension (RC).

Narendrabhai Damodardas Modi ni Mínśítà àgbà
India ke.rìnlá àti mínísítà àgbà tí India ló.wó.

ló.wó. lati o.dun 2014. O je. oloselu kan lati
Bharatiya Janata Party , agbari-is.e. oluyo. o.da ara ilu

Hindu kan. Oun ni Prime Minister ako.ko. ni ita ti Ile-
igbimo. jo. ti Orile. -ede India lati s.e.gun awo. n ofin ite. lera
meji pe. lu opoju to kun ati ekeji lati pari die. sii ju o.dun
marun ni o. fiisi le.hin Atal Bihari Vajpayee .

Table 1: Example of named entities in Yorùbá language.
PER , LOC , and ORG are in colours red, green, and

blue respectively. We make use of Label Studio for
annotation (Tkachenko et al., 2020-2022).

2.1 Named Entity Recognition (NER)
Named Entity Recognition (NER) is a classifica-
tion task that identifies text phrases referring to
specific entities or categories (e.g., dates, names
of people, organizations, or locations). This is es-
sential for systems handling entity look-ups for
tasks like knowledge verification, spell-checking,
or localization. Our training data in the shared task
relies on the XTREME-UP dataset (Ruder et al.,
2023) which is the most comprehensive data set
that combines annotated data from MasakhaNER
(Adelani et al., 2021b) and MasakhaNER 2.0 (Ade-
lani et al., 2022) in a wide range of under-resourced
languages including: Amharic, Ghomálá, Bambara,
Ewe, Hausa, Igbo, (Lu)Ganda, (Dho)Luo, Mossi
(Mooré), Nyanja (Chichewa), Nigerian Pidgin, Kin-
yarwanda, Shona, Swahili, Tswana (Setswana),
Twi, Wolof, Xhosa, Yorùbá and Zulu.

The objective of the system is to tag the named
entities in a given text, either as a person (PER),
organization (ORG), or location (LOC). The NER
data this year remains as same with 2023.

2.2 Reading Comprehension (RC)
RC is a challenging task often requiring different
levels of natural language comprehension and rea-
soning for answering a given question based on a
span of information distributed across a given con-
text. Here we focus on the information-seeking sce-
nario where questions can be asked without know-
ing the answer. It is the system’s task to locate
a suitable answer passage (if any). We provide 4
options for each question, where the systems are
asked to pick one of the 4 answers as the correct
one. Examples can be found in Table 2.

Information-seeking question-answer pairs typi-
cally display limited lexical and morphosyntactic
overlap between the question and answer, as they



Context Question Options

Zaqatala" qәzeti redaksiyası 1923-cü ilin mart
ayından fәaliyyәtә başlamışdır. İlk әvvәllәr "Za-
qatala kәndlisi" adlanan qәzet sonralar "Kolx-
ozun sәsi", "Bolşevik kolxozu uğrunda", "Qır-
mızı bayraq" vә s. başlıqlarla fәaliyyәt
göstәrmişdir. 1991-ci ilin oktyabr ayından isә
"Zaqatala" adı ilә fәaliyyәtini davam etdirir. Hal-
hazırda "Zaqatala" qәzeti redaksiyasında 5 nәfәr
çalışır.

İndi qәzetdә neçә nәfәr
çalışır?

(1) İndi "Zaqatala"
qәzetindә 5 nәfәr
işlәyir. (2) "Zaqatala"
qәzetinin hal-hazırki
işçi sayı 7-dir. (3) İndi
"Zaqatala" qәzetindә
20 nәfәr işlәyir. (4)
"Zaqatala" qәzetinin
işçilәrinin sayı bilinmir.

Noch de jüngere Version isch de Eurytos vom
Herakles töödt woore. Us Raach nämmli, well
de em sini Töchter Iole nöd hett wöle gee, hett
er d Stadt Oichalia eroberet, de Eurytos und all
sini Söö töödt und d Iole graubt.

Was isch de Grund gsi
für di tötig vom Eury-
tos?

(1) Will de Eurytos de
Herakles ermordet het.
(2) Will das eh jüngeri
Version vo de Gschicht
isch gsi. (3) Will de Eu-
rytos am Herakles nöd
sis Töchterli - d Iole -
het welle geh. (4) Will
de Eurytos vom Herak-
les töödt woore isch.

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je. o.mo.binrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo

˙
Amina Augie (JSC). Augie-

Kuta bere si ni nife
˙

si fo
˙
toyiya nigbati baba re

˙fun u ni kame
˙
ra ni o

˙
do

˙
.

Ki ni ibas.epo
˙

to wa
laarin Aisha Adamu
Augie ati Senator
Adamu Baba Augie?

(1) Aisha Adamu j
ìyàwó Senator Adamu
Baba Augie (2) Aisha
Adamu je

˙
o
˙
mo

˙
fun

Senator Adamu Baba
Augie (3) Aisha Adamu
je
˙

àbúrò Senator Adamu
Baba Augie (4) Aisha
Adamu j o

˙
bàkan Senator

Adamu Baba Augie

Table 2: Examples from the RC validation data in different languages. Correct answers indicated in bold.



Language Family

Azerbaijani Turkic
Igbo Niger-Congo

Swiss German Indo-European
Turkish Turkic
Yorùbá Niger-Congo

Table 3: List of languages and language families.

are composed independently. This makes them
ideal for evaluating languages with diverse typo-
logical features. In this task, the system receives
a question, title, and passage, and must either pro-
vide the correct answer or indicate that no answer
is present in the passage. Currently, the XTREME-
UP benchmark includes data in Indonesian, Ben-
gali, Swahili, and Telugu (Ruder et al., 2023), re-
quiring competing systems to infer information
from different language annotations. Our bench-
mark also contains correct text answers from 2023
edition (Tinner et al., 2023) for open-ended RC
evaluation. This year we extend the benchmark
in four languages with multiple-choice RC annota-
tions. We allow both types of output for submission
to the shared task.

3 Languages

Table 3 provides an overview of the variety in our
data set in terms of language families.

3.1 Azerbaijani (AZ)

Azerbaijani, part of the Turkic language family, is
mainly spoken in Azerbaijan and Iran. It shares
many linguistic traits with other Turkic languages,
particularly those in the Western Oghuz group like
Turkish, Gagauz, and Turkmen. Azerbaijani fea-
tures agglutinative morphology, uses a Subject-
Object-Verb (SOV) word order, and lacks gender
in its grammar. In Azerbaijan, the Latin script has
been used since 1991, while Iranian Azerbaijanis
use the Arabic script. This study’s data preparation
focuses on texts in the Latin script.

3.2 Igbo (IG)

Igbo, part of the Benue-Congo group within the
Niger-Congo language family, is spoken by over
27 million people, primarily in southeastern Nige-
ria, as well as parts of Equatorial Guinea and
Cameroon. While there are several dialects, Cen-
tral Igbo, standardized in 1962, is the most widely

used. Standard Igbo includes 28 consonants and 8
vowels, with two tones: high (marked by an acute
accent) and low (marked by a grave accent), though
these tones are usually not represented in writing.
Igbo has been featured in various language bench-
marks, such as MasakhaNER (Adelani et al., 2021b,
2022), AfriQA (Ogundepo et al., 2023), Masakha-
POS (Dione et al., 2023), AfriSenti (Muhammad
et al., 2023).

3.3 Swiss German (ALS)
Swiss German, part of the Alemannic dialects
within the Germanic language family, poses a sig-
nificant challenge for multilingual NLP due to its
non-standardized nature. It varies greatly in lexi-
con, phonetics, morphology, and syntax, with no
official orthography. Individuals often write words
based on their interpretation of phonetics, result-
ing in inconsistent spellings. Unlike Standard Ger-
man, Swiss German is not an official language of
Switzerland and is primarily used in spoken or in-
formal contexts, with formal writing done in Stan-
dard German. Due to this, textual resources are
scarce. A notable exception is a text corpus for
PoS tagging, compiled from sources like Aleman-
nic Wikipedia, novels, reports, and articles (Hollen-
stein and Aepli, 2014). Further resources are only
available in spoken format, including the SDS-200
corpus (Plüss et al., 2022), Swiss Parliaments Cor-
pus (Plüss et al., 2020), SwissDial corpus (Dogan-
Schönberger et al., 2021), Radio Rottu Oberwal-
lis corpus (Garner et al., 2014), ArchiMob corpus
(Samardžić et al., 2016), SST4SG-350 (Plüss et al.,
2023).

3.4 Turkish (TR)
Turkish, the most widely-resourced language in
the Turkic family, is known for its agglutinative
morphology and Subject-Object-Verb (SOV) word
order. It has no grammatical gender but includes a
complex case system. Verbs are inflected to show
tense, mood, and person, while personal pronouns
are used for person reference. Key linguistic fea-
tures include vowel harmony, palatalized conso-
nants, and phonemic vowel length, which influ-
ences word meaning. Turkish lacks definite or
indefinite articles, relying on context for clarity.
Despite its uniqueness compared to Indo-European
languages, its use of the Latin script allows for eas-
ier comparisons. Corpus studies in Turkish include
plenty monolingual (Aksan et al., 2012) and par-
allel resources (Tyers and Alperen, 2010; Cettolo



et al., 2012; Ataman, 2018). Turkish NLP resources
include many inclusive tree banks, such as for
Universal Dependencies (Sulubacak et al., 2016;
Sulubacak and Eryiğit, 2018), semantic parsing
(Şahin and Adalı, 2018) and a WordNET (Ehsani
et al., 2018). It is also included in prominently used
public multilingual benchmarks including the mc4
corpus (Raffel et al., 2019), and it is recognized in
benchmarks, such as for machine translation (Cet-
tolo et al., 2013; Bojar et al., 2017) and morpho-
logical analysis (Pimentel et al., 2021). There are
also annotated resources for Turkish which were
created through automatic annotation using label
transfer from other languages or translating exist-
ing resources, in tasks including natural language
inference (Conneau et al., 2018), NER (Sahin et al.,
2017), and summarization (Scialom et al., 2020).

# Sentences/ # Tokens
# Passages

Lang Task Val Test Val Test

AZ NER 126 124 7,774 8,200
RC-OE 202 291 13,268 25,487
RC-MC 202 291 16,147 31,447

IG NER 711 143 54,526 11,668
RC-OE 202 748 15,620 58,963
RC-MC 202 748 21,987 79,761

ALS NER 130 166 8,761 11,610
RC-OE 202 651 16,949 50,045
RC-MC 202 651 21,113 58,182

TR NER 113 151 7,375 11,736
RC-OE 197 148 16,336 12,384
RC-MC 197 148 22,059 16,169

YO NER 100 303 4,166 11,490
RC-OE 202 673 20,497 67,816
RC-MC 202 673 22,891 79,529

Table 4: Dataset statistics for the validation and test
splits. NER annotations are at the sentence level while
RC questions include passages and questions related to
the passage. RC-MC denote the multiple-choice setting
where the question is accompanied with 4 potential
answers for systems to pick the correct answer.

3.5 Yorùbá (YO)

Yorùbá part of the Volta-Niger subgroup of the
Niger-Congo language family, is spoken by over 45
million people, primarily in southwestern Nigeria,
as well as in Benin and Togo. It ranks among the
top five most spoken African languages, after Nige-
rian Pidgin, Swahili, Hausa, and Amharic (Eber-
hard et al., 2021). Yorùbá makes use of the Latin
script with modified alphabet: it omits the letters

“c,q,v,x,z” and adds “e. , gb, o. , s.”. The language
is tonal, the tones includes high, low, and neutral.
The high (as in à) and low (as in á) tones are in-
dicated when writing texts in the language. The
tones are important for the correct understanding
and pronunciation of the words in Yorùbá. Despite
the importance of the tones, many texts written on-
line do not support the writing of the tonal marks,
and this may pose a challenge on some downstream
NLP applications e.g. machine translation (Adelani
et al., 2021a) and text-to-speech (Ogunremi et al.,
2023).

4 Data Preparation

The textual data for the generative task are based
on Wikimedia downloads1. RC annotations
are prepared by sampling articles, splitting
into paragraph-wise for question and answer
annotations. In the extension of the benchmark this
year, we annotate additional questions and wrong
answer options for creating the multiple-choice
QA setting (Tinner et al., 2023). For the NE
annotation, we ensure we sample only biographical
articles and also only include articles available in
all six languages.
We use Label Studio for RC and NER annotation
(Tkachenko et al., 2020-2022) with the tag set
(Person (PER), Organization (ORG), Location
(LOC)) and ensure an annotation overlap of 2%
for NER. The question-answer pairs were always
produced from two separate annotators. We
recruited two annotators per language, for IG and
TR respectively four annotators contributed, and
five persons annotated YO. The resulting data
statistics for the validation and test splits can be
found in Table 4. The scripts used to obtain the
data, as well as pre- and post-processing methods
required to create and export Label Studio annota-
tion projects is included in this GitHub repository 2.

5 Experimental Methodology

5.1 Baseline Systems
GPT-4 OpenAI (2023) is a large-scale, multi-
modal AI model capable of processing both text
and image inputs to generate text outputs. GPT-
4 achieves human-like performance on various
professional and academic benchmarks. It is a

1https://dumps.wikimedia.org/
2https://github.com/Fenerator/

wikiDataProcessingForQAandNER

https://dumps.wikimedia.org/
https://github.com/Fenerator/wikiDataProcessingForQAandNER
https://github.com/Fenerator/wikiDataProcessingForQAandNER


Transformer-based model, pre-trained to predict
the next word in a sequence. A post-training align-
ment phase enhances its factual accuracy and en-
sures it behaves according to specific guidelines.
Key to its development was creating infrastruc-
ture and optimization methods that scale reliably.
The instruction training is based on Reinforcement
Learning from Human Feedback (RLHF), similar
to InstructGPT (Ouyang et al., 2022).

Gemini-1.5 Pro (Reid et al., 2024) is a mid-size
multimodal model optimized for scalability across
various tasks, performing on par with the 1.0 Ultra,
the largest model to date. It introduces a break-
through feature in long-context understanding, with
a standard 128,000 token context window. Built on
cutting-edge research in Transformer and Mixture
of Experts (MoE) architecture, Gemini 1.5 uses
multiple smaller "expert" neural networks instead
of a single large one, enhancing efficiency and per-
formance.

LLAMA-3.2 (Touvron et al., 2023) is a set of
large language models (LLMs) that have been pre-
trained and fine-tuned, with 1B and 3B models
handling multilingual text only, while the 11B and
90B models accept both text and image inputs and
produce text outputs.

Claude 3.5 SonnetV2 is an AI language model
developed by Anthropic, designed to handle com-
plex tasks and conversations while prioritizing user
safety and ethical AI use. It is named after Claude
Shannon, a pioneer in information theory. The
model is built with a focus on creating helpful, hon-
est, and harmless interactions, with an emphasis on
reducing biased or harmful outputs. Its architecture
supports advanced reasoning, summarization, and
in-depth conversations, making it ideal for a wide
range of applications.

Prompt Template

mT0 <CONTEXT> <QUESTION>
GPT-4 I will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>

Table 5: Zero-shot prompt template used to obtain open-
ended answers from the systems.

Prompt Template

mT0 <CONTEXT> <QUESTION>
GPT-4 I will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>
Answers:
<A> ...
<B> ...
<C> ...
<D> ...

Table 6: Zero-shot prompt template used to obtain an-
swers in the multiple-choice setting.

5.2 Evaluation

We evaluate and report results in the generative
task using ROGUE-L (Lin and Hovy, 2003), chrF
(Popović, 2015), chrF+, chrF++ (Popović, 2017),
and BERTScore (Zhang et al., 2019) F1 computed
with RoBERTaBase (Liu et al., 2019) 3 embed-
dings. Implementation is based on HuggingFace’s
evaluate library4. Overall performance in the NER
task is computed in terms of precision, recall and
F-1 scores using the CoNLL Evaluation Scripts5,
implemented in accordance with (Tjong Kim Sang
and Buchholz, 2000). We obtain a final score per
task and system by weighting the performance per
language inversely by the total number of tokens in
the test sets per language.

5.3 Submissions

The shared task received five submissions in the
NER task, including CUNI-LMU (Charles Univer-
sity and LMU Munich) and McGill (McGill Uni-
versity) with system descriptions, and three sub-
missions without descriptions, labeled as (Ifeoma,
Omkar, SandboxAQ. RC task received three submis-
sions in the multiple-choice QA subtask (RC-MC),
from McGill, SandboxAQ and CUNI, and two sub-
missions in the open-ended RC task by CUNI and
McGill (RC-OE).

6 Results

We evaluate the overall system performance on the
generative task using automatic metrics weighted
by the number of articles in the test set contain-
ing individual context used for answering the RC
questions Table 7 and Table 9. Detailed results per

3https://huggingface.co/roberta-base
4https://github.com/huggingface/evaluate
5https://github.com/sighsmile/conlleval

https://huggingface.co/roberta-base
https://github.com/huggingface/evaluate
https://github.com/sighsmile/conlleval


System ChrF ChrF+ ChrF++ RougeL BERT F1

Claude 3.5 SonnetV2 0.51 0.50 0.47 0.42 0.89
GPT-4 0.45 0.44 0.42 0.36 0.87
Gemini 1.5 Pro 0.42 0.41 0.38 0.40 0.86
Llama 3.2 90B 0.45 0.43 0.41 0.41 0.87
CUNI 0.48 0.46 0.45 0.42 0.88
McGill 0.33 0.32 0.31 0.36 0.84

Table 7: RC-OE system evaluation. Results indicate weighted average of the metrics over 6 languages. Results are
weighted by the number of paragraphs in the testset.

system and language for the open-ended RC task
are presented in Table 8. We also present NER
results for the system submission in Table 10.

NER The winning system in the NER task is
McGill University system which deploys an en-
semble of XLM-R-Large (Conneau et al., 2020),
AfroXLMR (Alabi et al., 2022), and AfroXLMR-
76L (Adelani et al., 2024) models fine-tuned on
the collection of NER data sets, if we consider
the median performance, winning 4 (out of the 5
languages).

RC-OE The RC-OE task is a competitive chal-
lenge and both McGill and CUNI, although
CUNI has a slightly better performance. In this
case, McGill system is comprised of fine-tuned
mt5-large (Xue et al., 2021) and AfriTeVA V2
large (Oladipo et al., 2023) models, fine-tuned as
ensemble on the publicly available multilingual QA
data sets. CUNI system , on the other hand, uses an
ensemble of LLAMA models and Aya-101 (Üstün
et al., 2024). In the overall evaluation, we find
CUNI system performs best across languages.

RC-MC The winning team for the multi-choice
QA is SandboxAQ achieving an average perfor-
mance of 95% accuracy score. The performance of
the CUNI team is competive with only −2.0 point
less than that of the winner. On the otherhand,
McGill team came third with worse overall result
especially for ALS.

7 Conclusion and Future Work

We presented a new multi-lingual multi-task bench-
mark on information retrieval from Wikipedia in
five languages from typologically-diverse and low-
resourced language families in the open-ended or
multiple-choice QA and NER tasks. We organized
a shared task to call for system development on
this challenging benchmark where we conducted

a detailed analysis on how state-of-the-art LLMs
perform in language understanding and generation
under low-resourced settings. In addition to find-
ing strong evidence on fall backs in both under-
standing and generation capabilities of LLMs in
low-resourced languages, we also find it crucial
to invest in better automatic evaluation metrics for
generation in different languages. While we do not
find this task to be solved, we plan to keep the com-
petition open and promote more investment into the
progress of information retrieval for languages with
non-prominent and low-resourced characteristics.

Limitations

We have presented a multilingual evaluation bench-
mark for information retrieval which was created
relying on Wikipedia articles in different languages.
Using Wikipedia has inherent limitations such as
limitations in variety of content and styles across
languages making it challenging to ensure a uni-
form difficulty level for comprehension questions.
Additionally, relying solely on Wikipedia may in-
troduce biases, as certain languages might have
more comprehensive or detailed articles than oth-
ers. Moreover, evaluating language models on
Wikipedia-centric benchmarks may not fully reflect
their generalization abilities, as the models might
excel at leveraging the more structured and well-
formulated information found on Wikipedia but
may struggle more with more diverse and unstruc-
tured text from other sources. These limitations
underscore the need for diverse and contextually
rich benchmarks to provide a comprehensive as-
sessment of LLMs across multiple languages.

Ethics Statement

All annotators were provided with clear instruc-
tions and guidelines to ensure the responsible and
unbiased annotation of the data. We ensured eth-



System Language ChrF ChrF+ ChrF++ RougeL BERT F1

CUNI ALS 0.37 0.37 0.34 0.24 0.85
CUNI AZ 0.55 0.55 0.52 0.51 0.92
CUNI IG 0.63 0.63 0.61 0.62 0.91
CUNI TR 0.48 0.48 0.45 0.43 0.90
CUNI YO 0.38 0.38 0.36 0.35 0.86

McGill ALS 0.32 0.31 0.30 0.32 0.84
McGill AZ 0.29 0.27 0.26 0.33 0.85
McGill IG 0.35 0.35 0.34 0.39 0.83
McGill TR 0.24 0.24 0.23 0.26 0.83
McGill YO 0.34 0.34 0.33 0.39 0.84

Claude 3.5 SonnetV2 ALS 0.33 0.34 0.31 0.20 0.84
Claude 3.5 SonnetV2 AZ 0.59 0.58 0.55 0.50 0.91
Claude 3.5 SonnetV2 IG 0.68 0.68 0.66 0.65 0.92
Claude 3.5 SonnetV2 TR 0.51 0.51 0.47 0.41 0.89
Claude 3.5 SonnetV2 YO 0.42 0.41 0.39 0.36 0.86

Gemini 1.5 Pro ALS 0.36 0.35 0.32 0.29 0.84
Gemini 1.5 Pro AZ 0.51 0.50 0.47 0.48 0.90
Gemini 1.5 Pro IG 0.45 0.44 0.42 0.48 0.87
Gemini 1.5 Pro TR 0.42 0.41 0.37 0.35 0.87
Gemini 1.5 Pro YO 0.38 0.37 0.35 0.36 0.86

Llama 3.2 90B ALS 0.41 0.40 0.37 0.32 0.86
Llama 3.2 90B AZ 0.52 0.51 0.48 0.49 0.91
Llama 3.2 90B IG 0.45 0.45 0.44 0.48 0.86
Llama 3.2 90B TR 0.47 0.46 0.43 0.42 0.90
Llama 3.2 90B YO 0.44 0.43 0.41 0.43 0.87

Table 8: RC-OE system evaluations for all languages.

ical practices by providing clear guidelines and
obtaining informed consent. We appreciate their
contributions, and ethical treatment remains a key
focus in our research.
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Gözde Gül Şahin and Eşref Adalı. 2018. Annotation
of semantic roles for the turkish proposition bank.
Language Resources and Evaluation, 52:673–706.
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