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Abstract

Ancient manuscripts are frequently damaged,
containing gaps in the text known as lacunae.
In this paper, we present a bidirectional RNN
model for character prediction of Coptic char-
acters in manuscript lacunae. Our best model
performs with 72% accuracy on single charac-
ter reconstruction, but falls to 37% when recon-
structing lacunae of various lengths. While
not suitable for definitive manuscript recon-
struction, we argue that our RNN model can
help scholars rank the likelihood of textual re-
constructions. As evidence, we use our RNN
model to rank reconstructions in two early Cop-
tic manuscripts. Our investigation shows that
neural models can augment traditional methods
of textual restoration, providing scholars with
an additional tool to assess lacunae in Coptic
manuscripts.

1 Introduction

Ancient manuscripts are an invaluable resource for
linguists and historians, offering insights into the
cultures and languages of the ancient world. Un-
fortunately, these manuscripts are often damaged,
with sections of text missing, known as lacunae. In
recent years, neural models have made significant
advances in various areas of linguistic research.
Nevertheless, attempts to apply neural methods to
manuscript reconstruction have been limited, and
none have specifically targeted Coptic (see Section
2.2).

In this paper, we explore the potential for neural
language models to be utilized in the reconstruction
of Coptic manuscripts. Leveraging a bidirectional
RNN language model trained for Coptic character
prediction, we explore how the model can be in-
tegrated into the workflow of scholars attempting
textual reconstruction. We consider the ability of
the model to predict the missing characters of la-
cunae directly, as well as to provide rankings for
the likelihood of reconstruction candidates already

under consideration. We show that scholars can
use judgments from neural models as additional
quantitative evidence, in conjunction with more
traditional qualitative methods, to work towards
manuscript reconstruction.

2 Background and Related Work

2.1 Coptic

Coptic belongs to the Afro-Asiatic language family
and is the latest stage of the Egyptian language, the
longest continuously attested language on Earth.
Coptic utilizes the 24 glyphs of the Greek alpha-
bet and adds additional Demotic (Egyptian) glyphs
(a minimum of 6 depending on dialect) to repre-
sent sounds not found in Greek. In late antiquity,
more than a dozen regional dialects were spoken
and written (Layton, 2011). Owing to these di-
alect variations, the use of superlinear strokes and
other diacritical marks, and irregular orthography
of Greek loan words, Coptic provides a highly com-
plex dataset.

Coptic manuscripts preserve the diverse textual
tradition of late-antique and medieval Egypt. In-
scribed on papyrus and other perishable media,
many Coptic manuscripts contain small gaps or
holes (lacunae), which often cannot be restored
on the basis of other extant manuscripts. Scholars
use qualitative methods to restore lacunae, chiefly
through study of the manuscript’s context and
(con)textual parallels. Occasionally, appeal is made
to traditional canons of textual criticism, but here
too the scholar’s own judgment guides the restora-
tion (Wasserman, 2013). Initial testing has shown
that human methods of textual restoration have a
high error rate at both the word level and the char-
acter level (Sommerschield et al., 2023, 711–712).

2.2 Manuscript Reconstruction

Following early attempts using n-gram models to
approach the Indus Valley script (Rao et al., 2009),
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most previous work on reconstructing lacunae in
manuscripts, as well as in epigraphic data, has fo-
cused on Greek and Latin (Novokhatko and Maier,
2022; Matsumoto, 2022). Early projects included
eAQUA (Schubert, 2011), which pioneered propos-
ing automatic reconstructions of lacunae based on
statistical methods from larger datasets (in the con-
text of ancient languages). More recently, stud-
ies using neural methods for the reconstruction of
Greek (Assael et al., 2019) and Latin (Brunello
et al., 2023) have appeared, with papers in the last
three years specifically proposing to leverage trans-
former based language model architectures for both
born-digital and (OCRed) handwritten inputs in a
range of languages (Vogler et al., 2022).

We are not aware of previous papers applying
language models to the reconstruction of Coptic
texts, though a recent Web page prepared by the
CoptOT project1 provides a ‘Manuscript Specula-
tion Tool’ which helps in laying out missing letters
on predefined digitized manuscript spaces. How-
ever, in the tool’s operating scenario, a base text to
be laid out is known (e.g. a chapter of the Bible),
and the question is how many letters of each verse
might fit into each missing line or part of a line.
To our knowledge, this paper is the first attempt to
leverage language modeling for lacuna reconstruc-
tion in Coptic.

2.3 Masked Language Models
In 2019, Devlin et al. introduced BERT, a foun-
dational masked language model (MLM), where
random tokens in the input were masked, and the
model was trained to predict the masked token
based on the context. For 15% of the tokens in train-
ing, each one is replaced with either [MASK], a ran-
dom token, or the original token, without change.
Masking mimics gaps and teaches the model to
fill in missing segments of strings, which makes
the MLM approach highly applicable to our lacuna
reconstruction task.

In the same paper, Devlin et al. found that a
model with only left to right context performed
worse than a bidirectional masked language model,
which is able to use context from before and after
the masked token. They advocate for a bidirec-
tional model that can use left and right context at
every layer over concatenating a left to right model
and a right to left model, as proposed earlier in
ELMo (Peters et al., 2018). As we are framing

1https://coptot.manuscriptroom.com/
manuscript-speculation-tool

our lacuna reconstruction task as a prediction of
masked characters, parallel to the masked token
prediction done by models such as BERT, this find-
ing regarding bidirectionality leads us to adopt a
bidirectional strategy for our model as well.

As the masked language model strategy was pop-
ularized with transformer based models such as
BERT, there is not much existing work regarding
the implementation of masked language models
with an RNN-based architecture. However, in sce-
narios with relatively small quantities of data and
limited long distance dependencies, it can still be
preferable to use an RNN-based architecture over
a transformer-based architecture (Mishra, 2021).
Considering that we have almost 1.22 million to-
kens of Coptic data, and we are looking to fill in
character gaps at the sentence level, we consider
our Coptic lacuna prediction task to be one such
scenario, and we opt to use an RNN based architec-
ture in our model.

While we have done some preliminary prototyp-
ing with transformer based architectures, such as
ELECTRA (Clark et al., 2020), so far our exper-
iments with RNN-based architectures have made
the most progress. As such, we present those find-
ing here. However, we still believe it would be
worthwhile to return to the exploration of various
transformer architectures in future work.

3 Data

For training and testing the model, we leverage
the data from the Coptic SCRIPTORIUM Corpora
(Schroeder and Zeldes, 2016). This project com-
piles text from a variety of manuscript sources and
totals almost 1.22 million tokens of Sahidic Coptic.
The Coptic SCRIPTORIUM project is an ongoing
effort to create an open online database and tool set
for digital research in Coptic. This effort includes
creating normalized, machine readable versions
of Coptic manuscripts with a variety of linguistic
annotations created using the online, version con-
trolled GitDox annotation tools (Zhang and Zeldes,
2017). The full data set is publicly available on
GitHub2 in various machine readable formats, and
the corpora are searchable via an online query in-
terface.3

The digitized manuscripts have a normalized
version (with regard to spelling, etc.) of the text

2https://github.com/CopticScriptorium/corpora
3https://annis.copticscriptorium.org/annis/

scriptorium
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as well as a version representing the original text.
We leverage the original text version, annotated as
orig_group, as we are creating a system to aid
scholars who want a reconstruction of the origi-
nal text of the manuscripts. Within the digitized
original text, damaged and missing sections of the
manuscripts are represented with brackets and dots,
which can be used to convey different levels of dam-
age and manual reconstruction in the manuscript.
This information is represented in the Leiden+4

documentation format: missing sections are de-
noted with brackets with dots inside, where the
number of dots is equal to the estimated number of
characters missing in the line of text (so [...] would
indicate 3 missing characters); brackets with letters
inside indicate a damaged section which was re-
constructed by a scholar; and characters with some
damage that have been manually reconstructed by
a scholar can appear outside of brackets with a
dot beneath them. Immediately below are example
sentences from the data showing these formatting
styles:

Blank Lacunae:
afbeebe[...]af;ice[...]

Reconstructed Lacunae:
auwafylhl[af]tnnoouf

auwmnp.etc/ouortep.etconcmpnute

The completely blank sections are the target use
case for our system, and we use the manually recon-
structed lacunae as the gold standard test data for
our model. As this gold standard test data is a lim-
ited proportion of the corpora, we also mask char-
acters from the sentences of the corpora without
lacunae to create training data and additional test
data for our model. The Coptic SCRIPTORIUM
Corpora have a total of 36,252 complete sentences
(no lacunae) with over 2.8 million characters. The
lengths of these sentences range from 5 characters
to 1067 characters, with an average sentence length
of 80 characters. We created a train/dev/test data
partition from these complete sentences, with the
proportions 90:5:5, giving us a training data set of
32,676 sentences, a dev data set of 1,815 sentences,
and a test set of 1,816 sentences.

In addition to the complete sentences, there is a
portion of sentences in the Coptic SCRIPTORIUM
Corpora which contain lacunae. There are a total
of 792 sentences, with approximately 60,000 char-
acters, which contain only those lacunae that have

4https://papyri.info/docs/leiden_plus

Figure 1: Model architecture and preprocessing

been manually reconstructed by Coptic language
scholars. This set of sentences is our gold stan-
dard test data. The average sentence length in this
set is 75 characters. The total number of missing
characters in this test set is 3,594, with an average
gap length of ~2 characters. There are also 780
sentences, with approximately 52,000 characters,
that contain at least one empty lacuna which has
not been reconstructed by a scholar. This set of
sentences is the target data that we are building our
system to fill in, so there is no gold standard to eval-
uate against directly. The average sentence length
in this set is 68 characters, and the total number of
missing characters is 3,658, with an average gap
length of ~3 characters. The similarities in average
sentence length and average lacuna gap length be-
tween these two data sets suggest that the model
should be able to perform well on the target data
set if it performs well on the test data set.

4 Model Architecture

For our lacuna prediction model, we implement a
character based bidirectional RNN model, trained
with a character-level masked language modeling
task. We start with a character-level vocabulary and
embedding layer, generated with SentencePiece
(Kudo and Richardson, 2018). The vocabulary is
134 characters, including some control symbols,
the mask token, the lower-cased Coptic alphabet,
and some punctuation. Our final model has an
embedding size of 200, hidden size of 300, and
projection size of 150. For the body of the model,
we then create a four layer bidirectional LSTM, an
AdamW optimizer, and learning rate of 0.0003 (se-
lected as the optimal parameters after conducting
an extensive hyperparameter search). The LSTM
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architecture was chosen over other architectures,
such as GRU, for its ability to capture long distance
dependencies, which provide relevant context for
lacuna reconstruction. We use categorical cross
entropy for our loss criterion, evaluating only on
predictions for masked characters. A diagram of
our model architecture and preprocessing is shown
in Figure 1.

The resulting model is fairly small model, and
training on the full training data set can be ac-
complished in a few hours, with or without GPU
hardware. As such, with our model code and the
publicly available data from the Coptic SCRIPTO-
RIUM project, models at the performance level
presented in this paper will be accessible to in-
terested parties. The code for our model is avail-
able on GitHub5, and instructions for recreating
the data partition, training the model, and run-
ning/interacting with the model are included in the
README.

We explore several different masking strategies
in the training of our model. For the first masking
strategy, which we refer to as "random masking",
we used the BERT masking strategy of randomly
masking 15% of the characters. When creating the
index vector for the sentence, each character has
a 15% chance of being masked. If the character is
masked, there are three possible masking options.
80% of the time, the character is replaced with a
special mask token, while 10% of the time it is
replaced with a random character, and finally, 10%
of the time, the character is not replaced.

We also implement a masking strategy called
"smart masking", which mimics the distribution of
lacunae in the gold standard test set (described in
Section 3). In the reconstructed lacuna test set, the
sentences range from having one gap to as many
as twenty. Over 60% of the sentences have just
one gap, 35% have two to nine gaps, and just 5%
have more than nine gaps. To mimic the variable
number of gaps, we randomly incorporate one to
five gaps per sentence. Of the 1,470 gaps in the
782 sentences, almost half of them are just one
character long. The length of each gap has 48%
of being just one character long, 22% chance of
being two characters long, 12% chance of being 3
characters long, and for the final 18% of the time,
the gap length is randomly generated to be between
four and thirty-four characters.

5https://github.com/lauren-lizzy-levine/
coptic_char_generator.git

In addition to the two different masking strate-
gies for distribution, we also had two strategies re-
lating to the re-masking frequency of the data. The
first strategy is to mask one time, when loading the
data initially, which we call "once masking". The
second option is to re-mask the training data at each
epoch, which we call "dynamic masking". Between
the two masking distribution strategies and these
two re-masking frequency strategies, we ended
up with four different model types: random-once,
random-dynamic, smart-once, and smart-dynamic.
For training, we auto-generated masked dev data
that matched the distribution masking strategy (ran-
dom or smart) of the model being trained.

5 Evaluation

For evaluation, we had three different test sets.
From the test partition made from the complete
sentences that had no lacunae, we created two test
sets: one with random masking and one with smart
masking. Our final test data set was the gold stan-
dard data of manually reconstructed lacunae de-
scribed in Section 3. We had our models predict
on the data in all three test sets and scored their
performance with a simple accuracy metric (num-
ber of masked characters correctly predicted / total
number of masked characters in data set).

5.1 Baselines
We applied three rudimentary heuristic baselines
to our three test data sets, the results of which are
shown in the bottom half of Table 1. The first
baseline selected a random character from the Sen-
tencePiece character model vocabulary for each
character prediction. The second baseline always
predicted the most common letter in the data set
(mode character), "e". The third baseline is a sim-
ple tri-gram language model. Results for "Test
Random" and "Test Smart" are the performance of
the baselines on the auto-generated random masked
test data and smart masked test data respectively,
while "Test Reconstructed Lacunae" is the perfor-
mance on the gold standard data of manually re-
constructed lacunae.

5.2 RNN Evaluation
We started our model training by doing hyper-
parameter searches on four different model con-
figurations, using combinations of the masking
strategies for masking distribution and re-masking
frequency (random-once model, random-dynamic
model, smart-once model, smart-dynamic model).

64

https://github.com/lauren-lizzy-levine/coptic_char_generator.git
https://github.com/lauren-lizzy-levine/coptic_char_generator.git


Test Random Test Smart Test Reconstructed Lacunae
Models
Random-Once 0.703 0.323 0.336
Random-Dynamic 0.722 0.338 0.369
Smart-Once 0.610 0.366 0.334
Smart-Dynamic 0.603 0.359 0.319
Baselines
Tri-gram 0.259 0.134 0.155
Mode Character 0.126 0.124 0.121
Random 0.008 0.007 0.007

Table 1: Model and baseline accuracy results on the three test sets

After we selected the best performing hyperparam-
eters for each masking configuration with regard to
accuracy scoring on the correspondingly masked
dev data, we ran the four best performing models
(one for each masking configuration) on the three
test data sets outlined at the top of this section. The
results from these runs are shown in the top section
of Table 1.

The random test set has the highest scores on
average, while the reconstructed lacuna test set has
the lowest scores on average, indicating that the re-
constructed lacuna test set is the more difficult sce-
nario. However, it is also the most realistic scenario
out of all three test sets, so performance on this test
set should be considered the most significant. We
observe that all of the tested model configurations
outperform the baselines, showing a substantial in-
crease in performance on all test sets. Out of the
four different masking strategies we explored, we
found that the model utilizing the random-dynamic
masking strategy had the highest performance on
the random test set and the reconstructed lacuna
test set, while the smart-once masking strategy had
the highest performance on the smart test set.

It is somewhat surprising that the model utilizing
the random strategy outperforms the model using
the smart strategy on the reconstructed lacuna set,
considering that the smart masking strategy was
developed to better reflect the conditions in which
actual lacunae occur. This result is likely because
the reconstructed lacuna data set is composed of
only sentences with fully reconstructed lacunae,
and thus is biased towards containing shorter la-
cunae than we might otherwise expect. As such,
in Figure 2 we consider the accuracy of each of
our models with respect to the length (in charac-
ters) of the lacuna being reconstructed, and we
observe that overall performance decreases as la-

Figure 2: Accuracy of the various model configurations
and tri-gram baseline relative to lacuna length in charac-
ters

cuna length increases. We also see that while the
random-dynamic model has the best performance
for lacunae of length 1-2, the smart-once model ac-
tually has better performance for lacunae of length
6+. For this reason, we recommend the smart-once
model configuration for cases where the lacuna is
more than a few characters. For our use case stud-
ies in Section 6, we consider outputs from both the
random-dynamic model and the smart-once model.

5.3 Relative Ranking
As we saw in the previous section evaluating the
quality of our RNN model outputs, performance
on the more realistic reconstructed lacuna test set
was relatively low, peaking at 37% accuracy. As
such, we cannot consider the model by itself to be a
definitive means of manuscript reconstruction. The
model is better thought of as an additional tool in
the toolbox of scholars attempting to reconstruct
manuscript lacunae. To this end, we propose to
use the RNN model as a means of ranking the
likelihood of potential candidates for the lacuna
reconstruction.

If a scholar has several candidates for a lacuna
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from various qualitative methods of reconstruction,
in addition to getting the model to predict what
it considers to be the most likely reconstruction,
we can also extract the probabilities associated
with each of the scholar’s potential reconstructions.
Once we have these probabilities, we can sort them
in descending order to get a ranking of which po-
tential reconstructions the model considers to be
more likely.6 This will give a sense of which op-
tion is statistically the most likely considering the
distribution of characters present in the training
data of the model. While still not definitive, this
ranking gives scholars another piece of evidence to
consider when putting forward an argument for a
particular reconstruction.

6 Case Studies

In this section, we demonstrate how our RNN
model may be integrated into the workflow of a
Coptic scholar working on manuscript reconstruc-
tion by looking at use cases in two early Coptic
manuscripts. We use the model to predict recon-
structions, or to produce relative rankings of po-
tential reconstructions under consideration. We
explore how this additional information may con-
tribute to a scholar’s considerations during the re-
construction process.

6.1 Isaiah 37:24
The manuscript P.Duk. inv. 282 comprises four
contiguous fragments from a parchment codex and
is currently held at Duke University, pictured in
Figure 3 (Wagner, 2022). The manuscript contains
portions of Isaiah chapters 36–38 in the Sahidic
dialect. The manuscript’s date is unknown. Some
lacunae in the manuscript can be restored on the ba-
sis of the only other Sahidic manuscript containing
these chapters, Morgan Library M 568. For exam-
ple, at Isaiah 36:16 there are two small lacunae in
the Duke manuscript: a[..]nt. e[.]

p p
ncemoou. We

can restore the original reading with confidence
from the Morgan manuscript: a[uw] nt. e[t]

p p
nce

moou (“and you will drink water”).
Other lacunae in the Duke manuscript can-

not be restored entirely on the basis of the
Morgan manuscript. For example, at Isaiah
37:24 there are four lacunae: akno[.......]eic:
a[.....];e/m

p p
p.[.......]ar.ma3[.......]ra9ep

6One limitation of this is that in order for the probabilities
to be compatible, the input context for the model must be the
same. This means that all candidates being compared must be
of the same character length.

Figure 3: P.Duk. inv. 282 fr. B verso

[....]. The Morgan manuscript helps restore
the passage excluding the penultimate lacuna:
akno[qneq p;o]eic a[k;ooc] ;e/m

p p
p.[aya9

nn/]ar.ma 3[..... e/]ra9 ep[;ice] (“You
have reproached the Lord. You said, ‘with the
multitude of my chariots [...] to the height.”).
Where the Duke manuscript has 3[, the Morgan
manuscript contains the past tense conjugation base
verb: a9ale e/ra9 ep;ice (“I have gone up to
the height.”). Still, as in the Morgan manuscript,
the Duke manuscript must contain a verb in the
lacuna followed by e/rai “up”. Thus the letter
before the lacuna can only be the personal sub-
ject prefix 3 - “I”, which must be followed by a
present or future tense verb. Restricting our search
to verbs that are both contextually appropriate and
appear in high frequency in the database of the
Coptic SCRIPTORIUM project, we propose three
reconstructions. The models rank each reconstruc-
tion as a sequence of consecutive characters, in-
cluding uninterrupted context following and espe-
cially before the gap: aknoqneqp;oeicak;oo-
c;e/mpayainn/arma3[.....]e/rai. The
three reconstructions from the random-dynamic
model are as follows, in order of probability (the
log probability7 of each sequence is included in
parenthesis):

7Log probabilities are used to avoid potential numerical
underflow that can result from the multiplication of standard
probabilities when calculating the likelihood of a sequence.
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1. mooye (-11.16) → 3[mooye] e/rai
“I am walking up”

2. nabwk (-12.27) → 3[nabwk] e/rai
“I will go up”

3. naale (-12.60) → 3[naale] e/rai
“I will rise up”

The first result, which is in the durative present
tense, is less appealing than the other results when
considering the other ancient language witnesses to
this passage in Isaiah. To the best of our knowledge,
all witnesses approximate the Morgan manuscript’s
past tense, except for two witnesses that give the
future: the Syriac Peshitta (’n’ ’sq, ‘I will go up”)
and some manuscripts of Jerome’s Commentary
on Isaiah (11.7: ego ascendam, “I will go up”).
These two witnesses increase the probability of the
second and third result, both of which are in the fu-
ture tense (signaled by the auxiliary na). Although
ranked lower by the model, some scholars would
surely prefer the third result over the second, since,
as we saw above, the same verb (ale) appears
in this passage in the Morgan manuscript. On the
other hand, beyond its higher ranking, bwk appears
far more often in Old Testament books and espe-
cially in Isaiah: in the Morgan manuscript bwk is
used five times in ch. 37 alone, while ale appears
only here at the point of disagreement with the
Duke manuscript. Thus the most plausible restora-
tion of the passage: a[k;ooc] ;e/m

p p
p.[aya9

nn/]arma 3[nabwk e/]ra9 ep;ice “You have
reproached the Lord. You said, ‘with the multitude
of my chariots I will go up to the height.”

6.2 The Nag Hammadi Library – Gospel of
Philip

The Gospel of Philip (GPhilip) is the third composi-
tion included in codex II of the Nag Hammadi (NH)
library, a collection of thirteen papyrus codices
containing a diverse range of ancient Christian
texts. Unlike the example discussed in Section
6.1, there are no other surviving manuscript ver-
sions of (GPhilip). The codex sustained moderate
damage to the top and bottom margins and most of
its leaves contain peninsula-shaped lacunae8.

The restoration of Saying 55 (63.30-64.5) has
been a particular point of scholarly intrigue.
While smaller gaps in the Saying can be restored

8Archival photo of the manuscript: https:
//ccdl.claremont.edu/digital/collection/nha/
id/2962/rec/182

with some confidence, scholars have proposed
various readings for one lacuna of 5-6 letters,
which contains the object of the verb acpaze or
“kiss.” The passage, which describes Jesus kissing
Mary Magdalene, reads: nef1acpaze mmoc a-
tec...n/a/ ncop, "He used to kiss her on the
..... many times" (63.35-36).

This case presents an especially challenging re-
construction due to the size of the lacuna. As dis-
cussed above (Section 5.2), the accuracy of the
model degrades as the size of the lacuna increases.
We consider outputs from both the smart-once
model, which provides the highest accuracy rates
for longer lacunae, and the random-dynamic model,
which provides the highest accuracy rates for short
lacunae.

Since the model is trained on Sahidic texts, the
Saying needs to follow the orthographic conven-
tions of the Sahidic dialect. Thus we changed the
prenominal preposition a- ‘towards, on’ to e- (in
the Sahidic dialect a is the past tense marker),
resulting in the input text: acpaze �mmoc e-
tec[.....] �n/a/ �ncop “kissed her on her ... on
many occasions”.

The four letters before the lacuna includes an in-
direct object construction headed with preposition
a followed by a feminine possessive article tec-
“hers.” Due to this syntactic environment, recon-
structions are limited to feminine nouns, likely a
body part in this case. To fill the lacuna, we have
the models produce their predictions for either a 5
character gap or a 6 character gap:

Smart-Once:

5 spaces: /huen
6 spaces: /hueee

Random-Dynamic:

5 spaces: /ooee
6 spaces: /ooeee

Unfortunately, none of the reconstructions produce
an attested Coptic lemma.

However, the models can still be leveraged to
compare editorial suggestions and assign greater
or lesser probability of editorial reconstructions. In
this case, editors Bentley Layton and Hans-Martin
Schenke propose several options for a 5 letter femi-
nine body part: Schenke proposes “mouth” (ta-
pro). Layton offers multiple readings: “mouth”
(paiqe or tapro), “cheek” (ouoqe), “foot” (qa-
lo;), and "forehead"(te/ne) as possible candi-
dates (Schenke, 1997; Layton and Isenberg, 1989).
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The editors present these candidates in an un-
ordered manner, not singling out any one as being
particularly more likely than the others.

Table 2 compares the output of smart-once
model and the random-dynamic model, and con-
trasts the confidence of each model’s top two pre-
dictions (again, not attested Coptic lemmas) with
the list of attested feminine nouns supplied by the
editors. As the table details, the lemma (ouoqe),
“cheek” is favored by the smart-once model and
the lemma (te/ne), “forehead” is preferred by
the random-dynamic model. Both of these results
differ from Schenke’s reconstruction of tapro,
“mouth” (Schenke, 1997).

Table 2 also compares the effect of normalization
on the model reconstructions. As discussed above
in Section 3, the Coptic SCRIPTORIUM data uti-
lized to train the model includes both normalized
and original (un-normalized) data. We hypothe-
sized that the normalization of dialect differences
to conform to Sahidic orthography would greatly
impact the results. However, in the end, the normal-
ization had little impact and only slightly modified
the ranking orders and confidence as Table 2 docu-
ments. Note the slightly different ranking of paiqe
and tapro, two different words meaning "mouth,"
by the smart-once model.

These models provide quantitative data about
reconstructions and offers a relative ranking of the
alternatives proposed by text editors. In cases like
the one discussed above in GPhilip where editors
have provided multiple possible reconstructions to
fill the lacuna and comparison to other manuscripts
is not possible, this is an especially valuable tool
in assisting readers in deciding which reading best
fits within their comprehension of the passage.

7 Conclusion

In this paper, we presented a bidirectional RNN
architecture to reconstruct lacunae in Coptic
manuscripts. When training our masked language
model for character prediction, we explored dif-
ferent masking strategies for masking distribution
(random and smart) and re-masking frequency.
We evaluated our models against both artificially
masked data and scholar-reconstructed lacunae.
We found that the performance of our models de-
clined as the length of the lacunae being recon-
structed increased, peaking at above 70% for sin-
gle character reconstruction and below 40% for
lacunae of length 6+ characters. And while the

model trained with random masking performed
with higher accuracy for single character recon-
struction, the model trained with smart masking
performed with higher accuracy on the reconstruc-
tion of longer lacunae, which is more similar to
the real world use case, as it is more difficult for
scholars to qualitatively reconstruct longer lacunae.

Using the judgments from these models, we ex-
plored two use cases of lacuna reconstruction from
ancient Coptic manuscripts. We considered not
only the direct predictions from the models, but
also the likelihood ranking of reconstruction can-
didates already under consideration from the past
proposals of various scholars of Coptic. Despite
the low accuracy of the models on reconstructing
lacunae of more than a few characters, we see that
the rankings can still be leveraged to provide ad-
ditional quantitative evidence alongside traditional
qualitative methods. This initial application of neu-
ral methods to Coptic manuscript reconstruction
shows the potential for integrating the judgments of
models with the existing qualitative methods used
by scholars working on manuscript reconstruction.

Limitations

As previously discussed in Section 5, the quality
of our RNN models is relatively low, limiting the
utility of its judgments. As we primarily consider
a single model architecture in this investigation, in
future work it would be beneficial to explore archi-
tectures beyond RNNs and training tasks beyond
masked language modeling. In addition to differ-
ent architectures, we believe there is much room
for exploring different inputs for model training,
including lexicographic information (what possible
words might be, for example using a digital Coptic
dictionary such as Feder et al. 2018), or linguistic
annotations, such as morphosyntactic information
provided by Coptic treebank data and correspond-
ing parsers (Zeldes and Abrams, 2018; Zeldes and
Schroeder, 2016).

Additionally, our current model does not account
for the diacritics used in Coptic writing, and it is
trained on a sentence-wise basis without incorpo-
rating document-level information, such as the sur-
rounding sentences, or details about the page lay-
out. Future work may benefit from incorporating
diacritics and additional context into the training
paradigm for the model. Future work should also
include the ability to give a ranking of lacuna can-
didates of different lengths, which is not currently
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Smart-Once Norm Smart-Once Orig Random-Dynamic Norm Random-Dynamic Orig
/huen NA

(-6.89)
/huen NA

(-7.69)
/ooee NA

(-7.88)
/ooee NA

(-8.05)
/ooee NA

(-8.08)
/ooee NA

(-7.99)
/huen NA

(-11.51)
/huen NA

(-11.90)
ouoqe cheek

(-16.11)
ouoqe cheek

(-15.64)
te/ne forehead

(-12.95)
te/ne forehead

(-13.08)
te/ne forehead

(-16.53)
te/ne forehead

(-16.42)
ouoqe cheek

(-13.16)
ouoqe cheek

(-14.39)
qalo; foot

(-17.35)
qalo; foot

(-17.42)
tapro mouth

(-14.66)
tapro mouth

(-14.79)
paiqe mouth

(-18.74)
tapro mouth

(-18.64)
paiqe mouth

(-16.12)
paiqe mouth

(-15.36)
tapro mouth

(-19.02)
paiqe mouth

(-18.71)
qalo; foot

(-16.94)
qalo; foot

(-16.48)

Table 2: Rankings of lacuna candidates for the GPhilip use case (English translation in italics and log probabilities
in parenthesis)

possible because model inputs must be of the same
sequence length for their probabilities to be com-
parable.
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