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Abstract

In this paper we present a deep learning
pipeline for automatically dating ancient Greek
papyrus fragments based solely on fragment
images. The overall pipeline consists of sev-
eral stages, including handwritten text recog-
nition (HTR) to detect and classify characters,
filtering and grouping of detected characters,
24 character-level date prediction models, and
a fragment-level date prediction model that
utilizes the per-character predictions. A new
dataset (containing approximately 7,000 frag-
ment images and 778,000 character images)
was created by scraping papyrus databases, ex-
tracting fragment images with known dates,
and running them through our HTR models
to obtain labeled character images. Transfer
learning was then used to fine-tune separate
ResNets to predict dates for individual charac-
ters which are then used, in aggregate, to train
the fragment-level date prediction model. Ex-
periments show that even though the average ac-
curacies of character-level dating models is low,
between 35%-45%, the fragment-level model
can achieve up to 79% accuracy in predicting
a broad, two-century date range for fragments
with many characters. We then discuss the limi-
tations of this approach and outline future work
to improve temporal resolution and further test-
ing on additional papyri. This image-based
deep learning approach has great potential to
assist scholars in the palaeographical analysis
and dating of ancient Greek manuscripts.

1 Introduction

With the meteoric rise in deep learning tech-
nologies, many fields are rapidly adopting
these tools and incorporating them into their
workflow. Palaeography, the study of the hand-
writing in ancient and medieval manuscripts,
is one such discipline that has benefited
from these methods. Projects such as READ
(https://eadh.org/projects/read) and DigiPal
(https://eadh.org/projects/digipal), for example,

have focused on applying these methods to issues
of writer identification, layout analysis, and
frameworks for digital palaeographical content,
especially via handwritten text recognition (HTR).
One important project of note is Ithaca (Assael
et al., 2022) which, among other uses, can attribute
a date range to an inscription. Our approach differs
in that while Ithaca takes digital transcriptions as
input, our pipeline relies solely on images. In this
paper, we present our latest contribution to this
research effort, consisting of a dataset and deep
learning pipeline for dating ancient Greek papyrus
fragments. This pipeline takes as input an image
of an ancient Greek papyrus fragment and outputs
a predicted date range. We describe the training
methodologies used to create the various models
constituting the pipeline as well as a number of
performance metrics.

1.1 Palaeography and the Dating of Greek
Papyri

The method for dating Greek papyri begins with
manuscripts that can be accurately dated. This
mostly pertains to documentary texts (letters, pe-
titions, taxes, leases, etc.) that preserve their date
of composition. Documentary papyri lacking a
date can, of course, still be dated accurately, if
they mention historical events or figures that gen-
erally locate them within a given century. Palaeo-
graphic analysis of these papyri, i.e. the study of
the handwriting and the features of the characters
preserved, is important for those papyri that are
not dated, especially the immense number of liter-
ary and sub-literary papyri that never contain the
date of their production. Those papyri must be
assigned a date based on a meticulous compari-
son between the Greek characters they preserve
and those in reliably dated papyrus manuscripts.
Palaeographical handbooks containing human ob-
servations, discernible patterns, and even conjec-
tured styles have thus been published and they con-
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stitute the sources by which papyrologists assign
dates to papyri (Roberts, 1955; Turner, 1987; Cav-
allo and Maehler, 2008).

In respect to the actual number of papyri pre-
served, however, these handbooks only contain a
small number of manuscripts for comparison. It is
not uncommon that an assigned date is later reeval-
uated and changed as more papyri are viewed and
compared. The ability of deep learning methods
to assist papyrologists in dating papyri by analyz-
ing thousands of manuscript images holds great
potential. To do so, this requires not only train-
ing models for the task at hand, but also creating
a palaeography dataset to facilitate accurate dat-
ing. Previous work on the Ancient Lives Project
provides a foundation for reaching these goals.

1.2 Ancient Lives & AL-ALL

Between 2011 and 2018, the Ancient Lives Project,
a Zooniverse.org collaboration, enlisted the aid
of citizen scientists in annotating the images
of thousands of highly degraded, ancient Greek
manuscripts (Williams et al., 2014). The project
resulted in millions of annotations which were key
to the creation of the first large-scale machine learn-
ing dataset for digital papyrology, AL-ALL (Swin-
dall et al., 2021). This dataset consists of over
400,000 images of handwritten Greek characters
on papyrus and has been successfully used to cre-
ate various deep learning models. This dataset also
includes images from fragments that are currently
under papyrological study and have not been pub-
lished. For a releasable dataset, a smaller, updated
version of the published material, AL-PUBv2,
has been made available at https://www.kaggle.
com/datasets/miswindall/al-pub-v2.

1.3 HTR Models

The development of our dataset and pipeline for
palaeographical dating rests on our two core HTR
models, each of which perform a key HTR task:
character detection and character classification.

1.3.1 Character Detection with YOLO
The character detection model is essentially an ob-
ject detection model trained to locate Greek char-
acters in images of papyri. Similar existing work
refers to this process as ’character spotting’ (Majid
and Smith, 2022; Mondal et al., 2022). To train
this model, YOLOv5s (Ultralytics, 2023) was fine-
tuned using 212 images of papyrus fragments from
the Oxyhrynchus papyri (Bowman et al., 2007)

Figure 1: Example of character detection and classifi-
cation using the HTR models. The YOLO model pro-
duces bounding boxes for each detected character. The
bounded region is then cropped, resized, and given to
the ResNet for classification.

containing 4097 character locations annotated dur-
ing the Ancient Lives Project. YOLO is typically
trained for multiple classes, but this model was
fine-tuned to search for a single class: Greek char-
acters. The model achieved precision and recall of
0.88 and 0.84, respectively, on the validation data,
as well as validation box loss below 0.04. Further
metrics are detailed in Figure 2.

Figure 2: Training and validation metrics for the YOLO-
based character detection model show that this model
performs well on the task of locating Greek characters
in images of damaged papryi.

1.3.2 Character Classification with ResNet
Our character classification model is a ResNet
trained on the recently updated AL-ALLv2 dataset.
The latest version of the dataset consists of 419,445
character images of all 24 characters in the ancient
Greek alphabet, including the Lunate Sigma (C, ς)
which typically replaces the more familiar Sigma
(Σ, σ) in ancient papyri. This model achieved a
training accuracy of 96.69% and a validation accu-
racy of 94.11%. Previous versions of this model
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4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE Total
Fragments 299 729 3418 2002 570 7018

Table 1: The number of fragments from each century in the palaeography dataset.

4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE Total
α 6736 7582 36233 16548 4036 71135
β 302 219 1270 955 254 3000
γ 2914 2216 7765 3910 716 17521
ϵ 6508 5977 14132 7025 1795 35437
δ 903 1261 6679 2221 343 11407
ζ 354 288 2431 1158 284 4515
η 1741 3766 12873 7769 2105 28254
θ 299 729 3418 2002 570 7018
ι 4825 6951 24308 11785 4482 52351
κ 2886 2747 7343 5024 1828 19828
λ 971 2099 9766 3394 998 17228
µ 1362 2826 17883 7520 2573 32164
ν 4851 12339 28077 11578 3500 60345
ξ 62 93 653 410 106 1324
o 7011 13017 53709 24570 10146 108453
π 2293 3010 14785 7122 2043 29253
ρ 3389 4039 16570 9895 3414 37307
σ 4856 7732 28246 11490 4397 56721
τ 11823 14300 44502 23982 4910 99517
υ 2224 4727 12985 7165 1698 28799
ϕ 505 530 2652 1536 568 5791
χ 997 1944 6151 3557 1239 13888
ψ 135 108 499 265 53 1060
ω 1046 3176 20221 8912 2932 36287
Total 68993 101676 373151 179793 54990 778603

Table 2: The number of characters from each century in the palaeography dataset.

were released as a supplement to (Swindall et al.,
2022), including models trained on a synthetically
augmented version of AL-ALL in an effort to re-
duce sampling bias.

2 A Dataset for Palaeographical Dating

The development of the palaeographical dating
pipeline necessitated the construction of a dataset
containing images of papyrus fragments, their con-
stituent characters, and their dates of composition.
Three large papyrus databases were scraped for
their fragment images and metadata (including
dates of composition). The databases chosen were
the Berlin Papyrus Database, Papiri della Società
Italiana (PSI), and the Duke Papyrus Archive. For
the first iteration of this dataset, we focused only
on documentary papyri that preserve an exact date
or are reliably dated within a range of a century
or two. Since the format of the dates varied, the
dates were processed and converted to a common
format containing only the century or range of two
centuries of composition. To reduce the difficulty
of the dating task, we decreased the temporal res-
olution of the date classes from the one-century
level to the two-century level: 4th-3rd BCE, 2nd-
1st BCE, 1st-2nd CE, 3rd-4th CE, and 5th-6th CE
(future work will consist of increasing the tempo-
ral resolution). The fragment images were then
passed through our HTR models, thus obtaining
cropped and classified images of each fragment’s
constituent characters. These character images are

assigned the same date classes as the fragment on
which they were written.

The character and fragment counts for each time-
period in the dataset are detailed in Tables 1 and
2. As can be seen, we have examples of all 24
Greek characters from the 4th BCE to the 6th CE.
There is also significant imbalance in both the char-
acters and the dates. Concerning the characters,
there are only 1,060 psis (Ψ, ψ) but 108,453 omi-
crons (O, o). Fortunately, transfer learning permits
one to use a smaller dataset while still getting use-
ful results since the majority of the layers have
already been trained. Concerning the dates, 1st-
2nd CE contains the largest number of characters
and fragments (373,151 and 3,418, respectively)
while 4th-3rd BCE contains the least (68,993 and
299, respectively).

It should be noted that this dataset is actually
a subset of all that was scraped from the papyrus
archives and run through the HTR pipeline. Many
of the characters in the full dataset are of poor qual-
ity and were filtered out to create the final dataset.
Filtering was done based on two factors: 1) image
saturation entropy and 2) ResNet prediction en-
tropy. The first is done in order to eliminate YOLO
false positives which often consist of images with
few ink pixels. Consequently, false positives of this
type tend to have a low entropy in the distribution
of their pixel saturation and can be reliably (though,
not completely) eliminated by applying a simple
threshold. The second filter removes images which
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Figure 3: The palaeography pipeline performs HTR on the fragment image, obtaining images of individual characters.
Poor character images (YOLO false positives, uncertain classifications, etc.) are filtered out. Remaining characters
are grouped according to their character and sent to individual ResNet character dating models. These predicted
character dates are then used as input to a final Gaussian Process fragment dating model.

were unreliably classified by the ResNet. Again,
these can be fairly reliably eliminated by applying
a threshold to the entropy of the ResNet’s predicted
class probabilities.

3 A Pipeline for Palaeographical Dating

Given the goal of producing a deep learning
pipeline which can take an image of an ancient
Greek papyrus fragment as input and output a
predicted date of composition, the primary task
is to determine the proper architecture for such
a pipeline. Figure 3 depicts the chosen architec-
ture, which consists of five core stages: HTR, fil-
tering/grouping of characters, character dating, fea-
ture engineering, and fragment dating.

3.1 HTR, filtering, and grouping

The first step of the dating pipeline takes the input
image and passes it through the HTR models, thus
obtaining cropped and classified images of the frag-
ment’s constituent characters. The filtering steps
described above are then applied to these charac-
ter images to remove any unreliable samples. The
characters are then grouped based on their charac-
ter class (alpha, beta, etc.) before being sent to the
next step of the pipeline.

3.2 Character dating models

Next, each group of characters is sent to another
round of ResNet models which predict individual
characters’ date of composition. These models
were developed via performing transfer learning
on the ResNet discussed earlier. Naturally, the
last two dense layers were retrained and the output

layer was altered to have five output neurons (one
per date class) instead of 24 (one per character).

While the transfer learning aspect was trivial,
the data wrangling required to properly train these
models was more complicated. Splitting the dataset
into training and validation sets was done at the
fragment level so that no fragment had constituent
characters present in both sets of each individual
ResNet model. As discussed above, there is a sig-
nificant class imbalance with respect to the time
periods (with 1st - 2nd CE having the overwhelm-
ing majority of samples). Thus, a great deal of
balancing was performed. This was done by sam-
pling the less frequent classes with replacement
such that all classes had the same number of sam-
ples as the most frequent class. This was done
separately for the training and validation sets. Ad-
ditionally, data augmentation was performed using
Keras’s ImageDataGenerator so that there would
not be identical copies of the images. The ranges
for zoom, width shift, and height shift were all set
to 0.1. No rotation was applied since the slant of
characters is useful for determining their date of
composition. This augmentation helps to increase
the variability for less frequently occurring cen-
turies which have many duplicated images due to
sampling with replacement.

A custom loss function inspired by the
Kolmogorov-Smirnov test was utilized since it is
better suited for the ordinal nature of date labels
than categorical cross entropy. Equation 1 illus-
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4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE
α 0 1 10 4 0
β 0 3 2 0 1

Table 3: An example of (one-hot encoded) raw features created from the output of the character dating models.

trates this loss function.

loss =
N−5∑

i=0

(tci − pci )
2 (1)

Here, N = 5 is the number of classes and tci , p
c
i

are the true and predicted cumulative class prob-
abilities, respectively. By comparing the cumula-
tive probabilities, we can essentially form a metric
which allows the ResNet’s optimizer to take advan-
tage of the fact that (given a true date of 5th-6th
CE) a predicted date of 4th-3rd BCE is worse than
1st-2nd CE.

3.3 Feature engineering and fragment dating
model

Once each character has received a predicted date,
we then utilize these outputs to predict the date of
the fragment as a whole. This is done via a sim-
ple dense neural network which outputs identical
date classes as the ResNet in the previous step of
the pipeline. Although the ordinal loss function de-
scribed above worked well for the character models,
it did not work well for the fragment model. Thus,
categorical cross entropy was used.

For the fragment dating model’s input, some
clever feature engineering was done on the char-
acter dating model predictions. In what follows,
all indices are assumed to start at zero. Let Ck ∈
{0, 1, 2, · · · , 23} (where k ranges over all the char-
acters in a particular fragment) be the predicted
character class. Also, let, pkj (where j = 0, · · · , 4
ranges over the number of date classes) be the pre-
dicted probability that character k belongs in date
class j. Now, we construct the raw features X ′:

X ′
ij =

∑

k∋(Ck=i)

pkj (2)

This sum adds the total probability for all α’s, β’s,
etc. into separate columns. Table 3 shows a sim-
plified example where, for the sake of simplicity,
it is assumed that all of the probabilities are effec-
tively one-hot encoded. These raw features are then
processed with two more steps, obtaining the final

features X:

Xij =
1 +X ′

ij

5 +
∑

j X
′
ij

(3)

First, Laplace’s rule of succession is applied,
adding a 1 to all entries of X ′ (we will explain
the reason for this step below). Next, we nor-
malize all of the rows (date-wise) by dividing
by their sum. The normalization step ensures
that all of the different fragments’ feature values
will be within the same range of values (between
0 and 1). The rule of succession is applied to
preserve a kind of confidence that would other-
wise be lost in the normalization step. Consider
two fragments whose α rows are [0,0,1,0,0] and
[0,0,5,0,0], respectively. Without application of
the rule of succession, both columns would be
normalized to [0,0,1,0,0]. Yet this is misleading
since the second fragment has more α’s predicted
to be from 1st-2nd CE. We should want this in-
creased confidence to be reflected in the features.
Thus, by applying the rule of succession, we obtain
[1,1,2,1,1] and [1,1,6,1,1] for the pre-normalization
step and [0.166,0.166,0.333,0.166,0.166] and
[0.1,0.1,0.6,0.1,0.1] for post-normalization. No-
tice how 0.6 is larger than 0.333, thus preserving
the confidence due to having a larger number of
characters.

Finally, as with the character-level data, there
is also significant class imbalance at the fragment-
level, though less severe. To combat this, we manu-
ally balance the training set of the fragment model
by sampling with replacement.

4 Model Evaluation

In this section, we will discuss the performance
of the models which comprise the palaeographical
dating pipeline.

4.1 Character dating performance
Figure 4 shows the loss curves for each of the char-
acter dating models. Each model was trained for
200 epochs with a batch size of 256. A Keras call-
back was written which would store the model with
the lowest validation loss in case of overfitting. The
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Figure 4: Loss curves for the character dating models. The vertical green line shows the epoch of lowest validation
loss.

vertical green lines in the plots show when these
best models were found. A range of behaviors can
be seen across each of the model histories. Perhaps
the most obvious is the range of optimal losses
achieved. Note the difference in the values for
omega and omicron. Also, some models converge
in a fairly low number of epochs (such as alpha
and omicron) while others have yet to converge
after 200 epochs (beta and xi). This is likely due
to the vast difference in sample size between the
different characters. Characters with more samples
are effectively trained more than those with fewer
samples.

Figure 5 contains plots of the confusion matrices
for each character dating model. To construct these
statistics, we used Keras’s ImageDataGenerator to
create 1,000 augmented images per character/date
combination and compare the character models’
predictions on these images to the true date label
(which is equivalent to that of the fragment from
which the augmented character image was taken).
The rows of the confusion matrices were then nor-
malized for simplicity. All 24 models achieve over-
all accuracies between 35%-45%. These values
are quite low, but we will see a significant increase
once we see the fragment model’s results.

There are several points to note about these con-
fusion matrices. First, we can see that 3rd-4th CE
is consistently the least accurately predicted date
class across all characters. Second, the lower trian-

gular portions of the matrices have a consistently
higher value than the upper triangular portions.
This is likely due to the fact that older handstyles
can persist into the future but newer handstyles
cannot retroject into the past. As such, we see a
diffusion of the class probability as we move from
earlier to later date classes (reading from top to
bottom), causing confidence to decrease. Thirdly,
we see a consistent trend in the final column which
suggests that predictions of 5th-6th CE tend to have
many false positives. This is likely due to the pres-
ence of a great variety of handstyles in this period,
with papyri exhibiting character shapes present in
older manuscripts.

4.2 Fragment dating performance

For our fragment dating model, we manually bal-
anced the training set and performed 5-fold cross
validation (five was chosen in order to keep the
validation set from being too small). We present
here the results obtained from a model trained on
one of the folds. The accuracy of the fragment
dating model depends heavily on the number of
characters present in the fragment. As such, Figure
7 shows a boxplot of model accuracy (across the
five folds). Note that the validation fragments have
been grouped based on quartiles of the number of
extant characters (which passed through the filter
step). Additionally, we show in Figure 6 a set of
confusion matrices for each of these groups.
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Figure 5: Confusion matrices for the character dating models.
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Figure 6: Confusion matrices for the fragment dating model. Each matrix contains only fragments within the
specified range of number of characters.

Figure 7: A box plot of the fragment dating model’s
accuracy of the five folds grouped based on quartiles of
the number of characters in the fragments.

For the group of fragments with 1-11 charac-
ters, the average accuracy across the folds was 26%
(only 6% above random chance). The confusion
matrix corresponding to this group varied signifi-
cantly across the folds, showing that dating frag-
ments with a small number of characters is highly
unreliable (as it is for humans). However, mov-
ing from left to right (increasing the number of
characters in the fragment), we see increasing accu-
racy and a progressively more pronounced diagonal
trend. A maximum accuracy of 79% (averaged over
the folds) was achieved for fragments with between
132-7,255 characters. Thus, we can see the effect
of something like the law of large numbers present
in the fragment model. Although the character dat-
ing models are not very accurate, they are accurate
enough that the most frequently predicted class will
be correct (i.e., the probability of a correct predic-
tion is significantly above chance). Therefore, the
more characters contained within a fragment, the
greater the probability of a correct date prediction.

5 Conclusions

While this research is still in its early stages, our
results suggest that deep learning can perform the
task of palaeographically dating ancient Greek pa-
pyri based solely on image input. This initial
dataset and pipeline thus has the potential to fur-
ther enhance the field of digital palaeography. Fu-
ture work will pertain to increasing that tempo-
ral resolution and to leveraging the large number
of individual characters in the dataset for analyz-
ing handwriting features across time. Addition-
ally, we plan to investigate the use of similar tech-
niques for the location attribution of Greek papyri.
More importantly, as noted above, this pipeline
focuses on documentary papyri. Although these
kinds of manuscripts constitute the ground truth
for assigning dates to other papyri, literary and
sub-literary papyri, which never preserve their date
of production, have unique features of their own.
How these models perform on and/or adapt to these
manuscripts will also be a critical next step.

References
Y. Assael, B. Shillingford, M. Bordbar, N. de Fre-

itas, T. Sommerschield, J. Pavlopoulos, M. Chatzi-
panagiotou, I. Androutsopoulos, and J. Prag. 2022.
Restoring and attributing ancient texts using deep
neural networks. Nature, 603(7900):280–283 – 283.

Alan K. Bowman, R.A. Coles, N. Gonis, Dirk Obbink,
and P. J. Parsons. 2007. Oxyrhynchus: a city and its
texts. Graeco-Roman Memoirs, v. 93. London: Pub-
lished for the Arts and Humanities Research Council
by the Egypt Exploration Society.

Guglielmo Cavallo and Herwig Maehler. 2008. Hel-
lenistic Bookhands. Walter De Gruyter.

Nishatul Majid and Elisa H. Barney Smith. 2022. Char-
acter spotting and autonomous tagging: offline hand-
writing recognition for bangla, korean and other al-
phabetic scripts. International Journal on Document
Analysis and Recognition, 25(4):245 – 263.

184



R. Mondal, R. Sarkar, S. Malakar, and E.H. Bar-
ney Smith. 2022. Handwritten english word recogni-
tion using a deep learning based object detection
architecture. Multimedia Tools and Applications,
81(1):975–1000 – 1000.

Colin H. (Colin Henderson) Roberts. 1955. Greek liter-
ary hands, 350 B.C.-A.D. 400. Oxford palaeographi-
cal handbooks. At the Clarendon Press.

Matthew I. Swindall, Gregory Croisdale, Chase C.
Hunter, Ben Keener, Alex C. Williams, James H.
Brusuelas, Nita Krevans, Melissa Sellew, Lucy Fort-
son, and John F. Wallin. 2021. Exploring learning
approaches for ancient greek character recognition
with citizen science data. In 2021 17th International
Conference on eScience (eScience), pages 128–137.
IEEE.

Matthew I. Swindall, Timothy Player, Ben Keener,
Alex C. Williams, James H. Brusuelas, Federica Nico-
lardi, Marzia D’Angelo, Claudio Vergara, Michael
McOsker, and John F. Wallin. 2022. Dataset aug-
mentation in papyrology with generative models: A
study of synthetic ancient greek character images. In
The 31st International Joint Conference on Artificial
Intelligence. IJCAI-ECAI.

E. G. Turner. 1987. Greek manuscripts of the ancient
world, second edition, revised and enlarged by p. j.
parsons. bics supplement 46, london. The Classical
Review.

Ultralytics. 2023. Comprehensive guide to ultra-
lytics yolov5. https://docs.ultralytics.com/
yolov5/. February 14, 2023.

Alex C. Williams, John F. Wallin, Haoyu Yu, Marco
Perale, Hyrum D. Carroll, Anne-Francoise Lamblin,
Lucy Fortson, Dirk Obbink, Chris J. Lintott, and
James H. Brusuelas. 2014. A computational pipeline
for crowdsourced transcriptions of ancient greek pa-
pyrus fragments. In 2014 IEEE International Confer-
ence on Big Data (Big Data), pages 100–105. IEEE.

185

https://cir.nii.ac.jp/crid/1130000793967591424
https://cir.nii.ac.jp/crid/1130000793967591424
https://docs.ultralytics.com/yolov5/
https://docs.ultralytics.com/yolov5/

