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Abstract

Cuneiform documents, the earliest known

form of writing, are prolific textual sources

of the ancient past. Experts publish edi-

tions of these texts in transliteration using

specialized typesetting, but most remain in-

accessible for computational analysis in tradi-

tional printed books or legacy materials. Off-

the-shelf OCR systems are insufficient for

digitization without adaptation. We present

CuReD (Cuneiform Recognition-Documents),

a deep learning-based human-in-the-loop OCR

pipeline for digitizing scanned transliterations

of cuneiform texts. CuReD has a character error

rate of 9% on clean data and 11% on represen-

tative scans. We digitized a challenging sample

of transliterated cuneiform documents, as well

as lexical index cards from the University of

Pennsylvania Museum, demonstrating the fea-

sibility of our platform for enabling computa-

tional analysis and bolstering machine-readable

cuneiform text datasets. Our result provide the

first human-in-the-loop pipeline and interface

for digitizing transliterated cuneiform sources

and legacy materials, enabling the enrichment

of digital sources of these low-resource lan-

guages.

1 Introduction

The cuneiform writing system was used to write

around a dozen different ancient languages over a

period of more than three millennia. Many of these

complex writing systems were logo-syllabic and of

different language families, from the agglutinative

Sumerian in southern Mesopotamia, to the family

of Hurrian and Urartian in northern Mesopotamia

and Armenia, to Indo-European Hittite and Luwian

in Anatolia. While the records of many of these

languages are in the hundreds or thousands, it is

Semitic Akkadian with its main Babylonian and

Assyrian dialects that is attested on hundreds of

thousands of ancient texts (Vita, 2021). What all

of them share is a similar critical apparatus: a stan-

dard Latin transcription and notation system, de-

veloped by experts in scholarly publications, from

the mid-19th century to the early 20th century (see

Appendix A), and is still used to this day. Legacy

materials such as personal notebooks of curators or

researchers, or card catalogues in universities and

museums use this notation system extensively (Fig.

1).

Many publications and legacy materials have

been scanned or photographed, but are largely un-

available as machine-readable text. The ability to

automatically digitize them using optical charac-

ter recognition (OCR) would make their contents

readily available to experts and the general pub-

lic. They can be further used in computational

research into the languages, cultures, and history

of these societies, as well as a wider use of natu-

ral language processing (NLP) techniques, such as

part-of-speech tagging, named entity recognition,

sentiment analysis, machine translation, and more.

This in turn can further enhance cross-lingual re-

search and the creation of linked open data entities

as well as knowledge graphs (Gutherz et al., 2023;

Homburg et al., 2023; Sahala and Lindén, 2023;

Ong and Gordin, 2024; Smidt et al., 2024).

Existing OCR models trained on texts in other

languages such as English are not suitable for this

task. They do not recognize the diacritics, typo-

graphical oddities like mixed upper- and lower-case

or sub- and super-script, as well as special symbols

required for digitizing cuneiform transliterations.

Furthermore, many off-the-shelf models are biased

by their prior training on character sequences in the
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Figure 1: On the left examples of scanned lexical cards

from the University of Pennsylvania Sumerian lexicog-

raphy collection digitized by Anna Glenn for the Univer-

sity of Munich (Sjöberg, 2023). On the right an example

of cuneiform transliteration from the Neo-Babylonian

text corpus published in the dissertation of R. B. Dillard

(Dillard, 1975).

source language. They are also typically trained

on large datasets of scans with manually-labelled

text, which is not available for more niche use cases

such as those of cuneiform scholars.

In order to overcome these challenges, we trained

a custom deep-learning based OCR model on

transliterations of Akkadian, bootstrapping with

artificially-generated data, and then fine-tuned with

a small set of manually-labelled examples. The

data for training and testing the model were taken

from Open Richly Annotated Cuneiform Corpus

(ORACC) and their equivalent print publications

in PDF format.

However, those texts were from one period (Neo-

Assyrian) and followed the same editorial conven-

tions. To estimate the real-world usability of the

model, we performed two additional digitization

experiments on transliterated text produced with a

typewriter during the 1970s and 80s: (1) 81 previ-

ously undigitized Neo-Babylonian administrative

and archival daily documents published in the 1975

dissertation of Raymond B. Dillard (Dillard, 1975);

(2) 30 index cards produced by Å.W. Sjöberg in the

late 1970s and early 1980s as part of the Sumerian

Lexicography collection housed in the Babylonian

Section of the University of Pennsylvania Museum,

now scanned in their entirety by Anna Glenn for

LMU Munich, and published on the LMU library

online catalogue (Sjöberg, 2023).

Bothwere particularly difficult to OCR, andwere

not a part of the model’s training. In the case of the

Dillard texts, we show that with fine-tuning on only

10 texts, the models’ results rose from 53% to 85%

accuracy. Similarly, in the case of the Sumerian

lexical cards, after only 60 text lines, the model

improved from 87% to 94% accuracy.

Thus, the model requires a minimal number of

examples in order to be a significant assistant in

the digitization process of ancient documents. The

model is published on the Digital Pasts Lab GitHub

repository and is freely available as an online tool

in the Babylonian Engine website, which is under-

going a transformation into a standalone browser-

based application. The tool andmodel will facilitate

the digitization of hundreds of thousands of pub-

lished cuneiform text lines in transliteration, which

were previously unavailable for further computa-

tional or quantitative study.

2 Methods

2.1 Data preparation for training the OCR

model

We used texts from the State Archives of Assyria

(SAA), which are available in both print and dig-

ital forms. The transliterated Akkadian texts are

hosted on the Open Richly Annotated Cuneiform

Corpus (ORACC) as the State Archives of Assyria

online (SAAo), which are part of the Munich Open-

access Cuneiform Corpus Initiative (MOCCI) (Rad-

ner et al., 2015). Also available are scans of the

books containing the texts in print; however, these

cannot directly be used to train an OCR model be-

cause there is no alignment between the digitized

Akkadian text and the location of its print equiva-

lent on the scanned pages.

In order to collect usable pairs of images and cor-

responding digital Akkadian transliterations, we ran

a heuristic algorithm which segmented and local-

ized the transliterations within these scans, as well

as extracting the digitizedAkkadian transcribed text

hosted on the Open Richly Annotated Cuneiform

Corpus (ORACC) and aligning them. The algo-

rithm uses computer vision (CV) methods such as

thresholding and dilation to determine where there

are paragraphs, and then runs a regular OCR on

each paragraph to check whether this is an English
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Figure 2: Segmentation Example from the State

Archives of Assyria volume 1 (Parpola, 2015). Akka-

dian paragraph marked in blue, title marked in green.

paragraph or an Akkadian one. It also tries to locate

titles (Fig. 2).

This method generated pairs of images and Akka-

dian text. The results were highly approximate and

not clean enough to be used directly for training an

OCR system, but allowed us to find examples for

use in fine-tuning and evaluating our final model.

In total, we manually labelled 30 of these images.

Because of this scarcity of labelled data, in order

to train our OCR model from scratch we decided to

bootstrap it with artificially-generated image data.

We took all the digital text editions of the SAAo

and generated images by rendering each line of

text in the dataset as an image file. Our core OCR

model was based on the open-source Kraken OCR

framework developed by Benjamin Kiessling as

described in Romanov et al. (2017).

Figure 3: Artificial data example generated from the

SAAo corpus.

In order to increase the robustness of themodel to

noise and typeface variation, we added noise to the

images by using Kraken’s data augmentation API,

with parameters alpha=0.3 (mean of folded normal
distribution of foreground pixel flip probabilities)

and distortion=3 (mean of folded normal distribu-
tion from which distortion values are sampled). We

found that results were significantly improved by

using multiple fonts to render the images. In order

to match the typefaces most commonly found in

the source materials, we rendered the texts in three

fonts: (1) DejaVu Serif, (2) Garamond, (3) IM Fell

Double Pica.

We also found that it was important to consider

italic text since in Akkadian transliterations lower-

case letters are normally printed in italics. There-

fore, for each font we rendered all lines of the

dataset in both normal and italic letters. Although

this did not exactlymatch the scanned texts in which

normal-styled uppercase letters and italic-styled

lowercase letters were mixed, we found that it gave

acceptable results upon bootstrapping our model.

After generating all lines of the SAAo textual

dataset in all three fonts and in both normal and

italic styles (416,000 images in total), we took a

random subset of 194,000 of these images to use as

our artificially-generated bootstrapping dataset.

In summary the data that we collected and used

in our final model consisted of:

1. 30 manually-labelled pairs of scanned Akka-

dian transliterations and their corresponding

digital texts.

2. 194,000 automatically generated images of

lines of Akkadian transliterations, using vari-

ous fonts and both normal and italic font styles

Since the SAAo data was used for training, we

used scanned data from The Royal Inscriptions of

the Neo-Assyrian Period (RINAP) as test data. We

manually labeled 10 pages of these books, which

gave us about 350 lines of test data.

2.2 OCR workflow and architecture

The typical OCR workflow consists of steps similar

to the following:

• Preprocess images (deskewing, image bina-

rization)

• Segmentation (localizing text on page, line

segmentation)

• Core OCR (converting line to text)

• Post-processing (language model-based cor-

rection)

We found that Kraken’s default preprocessing

and segmentation methods were sufficient for our

purposes, and focused on adapting the core OCR

model to Akkadian transliterations. We assume

input of the form similar to the data we collected,

with paragraphs already localized.
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After binarization and line segmentation, each

line of input was first dewarped and resized to be of

appropriate dimensions for the OCR model. After

dewarping, the height of each line was resized to be

48 units, with the width scaled by the same factor

and with 16 units of (white) padding added to the

left and right sides of the line. Therefore, each sam-

ple input into the OCR model is a tensor of shape

(48, ?, 1), with ? representing the variable width of
a single line of input and 1 the single (grayscale)
channel of input.

The core OCR model that we trained was a hy-

brid CNN-RNN neural network (CRNN) selected

from Kraken with the following sequential archi-

tecture:

• 2D convolutional layer (32 filters, kernel size

4× 2, 4× 2 stride, 1× 0 padding)

• 2D convolutional layer (64 filters, kernel size

4× 2, 1× 1 stride, 1× 0 padding)

• Max-pooling (kernel size 4× 2, stride 4× 2,
no padding, dilation 1)

• 2D convolutional layer (128 filters, kernel size

3× 3, 1× 1 stride, 1× 1 padding)

• Max-pooling (kernel size 1× 2, stride 1× 2,
no padding, dilation 1)

• Reshape (converting input of shape (2, ?, 128)

to output of shape (?, 256))

• BiLSTM (hidden size 256)

• BiLSTM (hidden size 512)

• BiLSTM (hidden size 256)

• Fully-connected (output size 103, linear acti-

vation)

The output of the final layer was chosen to match

the size of the character-level vocabulary: 102 char-

acters found in the training set data, plus the 0 index

to indicate the “blank symbol” meaning no charac-

ter.

Additionally, each convolutional and recurrent

layer was followed by a regularization layer, and

the BiLSTM layers by dropout layers:

• Each convolutional layer was followed by a

group normalization layer with group size 32.

Group normalization is a variant of batch nor-

malization adapted to computer vision tasks

where small batch sizes are required due to

memory constraints. Instead of normalizing

across multiple samples in a batch, group nor-

malization normalizes across channels within

a single sample. In our case, this grouped

channels into groups of 32 and normalized ac-

tivations within each group. For more details,

see Wu and He (2018)

• Each BiLSTM layer was followed by a

dropout layer with dropout probability 0.5.

The outputs of the model for each step are in-

terpreted as logits corresponding to the probability

that each character in the vocabulary is present at

that horizontal location in the line of text. We then

used greedy decoding to identify the most likely

character at each step.

Interpreting the output of such a model requires

an additional merger step. For example, consider

the following output of a similar OCR system (Fig.

4):

Figure 4: Old German OCR, reproduced from Fig. 10

in Martínek et al. (2020).

Since the model’s output represents small dis-

placements in the horizontal direction, the same

character will be identified multiple times in a row.

Therefore we merge the same label when it appears

multiple times in a row, without another label or the

blank symbol appearing in between. This is the con-

nectionist temporal classification (CTC) alignment

introduced by Graves et al. (2006).

2.3 Training

The model was trained in two stages: First, it was

trained from scratch on the 194,000 artificially gen-

erated textual images from SAAo. Then, it was

fine-tuned on the 30 manually labelled paragraph

images from SAA books (about 900 lines of text).

Although our manually labelled dataset was quite

small, we found that the fine-tuning stage was criti-

cal for achieving acceptable results.

The objective used was the so-called connection-

ist temporal classification (CTC) loss. Similar to

the CTC alignment described above, CTC loss is
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used to compare the output of a continuous recog-

nition system like OCR or speech recognition to a

desired string of tokens. The motivation for CTC

loss is twofold:

• The training data available to us is pairs of

images and desired text, without spatial align-

ments.

• The network’s outputs are character scores for

each horizontal position, so the same token

may be identified in multiple adjacent posi-

tions.

As first described in Graves et al. (2006), the

CTC loss function solves these issues as follows.

First, it takes as input the ground truth text and

the network’s outputs (probabilities per character

for each horizontal position). It then calculates the

likelihood of the ground truth text for each possible

path (possible alignment) and sums them together

over all possible paths. This is the objective func-

tion we used to train the network.

For both stages of training, we used the rec-

ommended settings from Kraken: batch size 1,

Adam optimizer (learning rate 1e− 3 and momen-
tum 0.9). In both stages, minimum validation loss

was achieved after a single epoch of training, after

which the model began to overfit, so we used the

results of training on a single epoch.

3 OCR Results on Training and Testing

Data

Results in Table 1 were calculated as follows: The

accuracy we present was measured by computing

the edit distance between the output of the OCR

and the ground truth text in the test data images, di-

vided by text length (averaged between the ground

truth and OCR output texts). Before calculating

edit distance, we normalized newlines and whites-

pace and combined together period (.) and dash (-)

characters, since these can always be distinguished

in context.

The new CuReD model has a character error rate

(CER) of 9% on clean data and 11% on representa-

tive scans. We observe that manually fine-tuning

the model with real dataset images greatly improves

our accuracy, even though the fine-tuning dataset

was extremely small. The baseline model, only

trained on artificial data, overfit to this type of data

and did not generalize well to real scans. Visually

observing the baseline model output showed that

it regularly had trouble distinguishing certain char-

acters (e.g. “a” vs. “u”), and we hypothesize that

this is because of the different appearance of these

characters in the artificial training data fonts and the

fonts used in the test data. Fine-tuning likely helps

the model to quickly adapt to these differences.

Model
Validation

Accuracy

Test

Accuracy

Baseline 99.8% 77%

Fine-tuned 10 Images 91% 89%

Fine-tuned 30 Images 91% 89%

Table 1: OCR performance when training on artificially

generated SAAo data, and finetuned on manually la-

belled SAA scanned transliterations. Accuracy tested

on manually labelled transliterations from RINAP.

The columns “Validation Accuracy” is the accu-

racy of OCR prediction on a validation set selected

from the training data. For the baseline model this

is calculated on artificially generated SAAo translit-

eration images, while for fine-tuning it is calculated

on a validation set of manually-labelled scanned

images of SAA books from the fine-tuning set. The

column “Test Accuracy” is the final accuracy of

OCR predictions on the test dataset of real scanned

transliterations from RINAP books (Fig. 5).

We also observe that even after fine-tuning on 10

images, we already reach a plateau in performance,

and adding another 20 manually-labelled images to

the fine-tuning does not noticeably improve perfor-

mance. Thus, minimal data is needed to fine-tune

the model on previously unseen published translit-

erations.

4 Real-world Experiments with the

CuReD Tool

4.1 A human-in-the-loop pipeline

The OCRmodel released with this paper on GitHub

can continuously improve on new datasets through

fine-tuning. Yet, there remains a gap between

cuneiform specialists and their ability to fine-tune

and improve machine learning (ML) models. A set

of Cuneiform Recognition tools, abbreviated CuRe,

was therefore created. These tools are currently an

online interactive platform for cuneiform experts

as part of the Babylonian Engine project, but are in

the process of becoming a standalone browser ap-

plication for the sake of long-term upkeep; such as

server maintenance costs. The Cuneiform Recogni-

tion Documents or CuReD tool provides a platform
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(a) Sample scan from RINAP test data

(b) Final (fine-tuned) CuReD model output

Figure 5: Comparison of source image with CuReD

OCR output.

Figure 6: The CuReD tool interface.

for correcting the initial results of the OCR model

presented above, and fine-tuning the model on new,

unfamiliar types of transliterations.

There, users can upload currently one-by-one

a PDF or image, place a bounding box around a

text. Then lines of transliteration are automatically

identified, and a corresponding line by line digital

text is generated that can be manually edited for

corrections (Fig. 6). Corrected text is saved for fine-

tuning the model at a later stage, and the machine-

readable output can be downloaded immediately

as plain text. All OCR’ed transliterations are also

searchable in the Babylonian Engine gallery.

The ML models are envisioned as “co-workers”

which provide likely suggestions to the user, aiding

the process of cuneiform scholarly edition publica-

tion, and improving as the user corrects them. This

way, it is not only the ML models that benefit from

the corrections and labeled data created by experts,

but also the experts can enjoy a designated work en-

vironment for cuneiform studies, and download the

results of their work–already advancing cuneiform

scholarship.

In what follows we present two real-world sce-

narios of cuneiform scholarship: text editions pub-

lished in book form, and legacy materials in the

form of lexical cards. Both were created with type-

writer in the late 1970’s and early 80’s of the 20th

century.

4.2 Experiment 1: Text editions

We chose to digitize the texts edited in the disser-

tation of Raymond B. Dillard (1975). Namely, 81

Neo-Babylonian archival and administrative docu-

ments from the Free Library of Philadelphia (FLP),

purchased on the antiquities market in the early 20th

century by John Frederik Lewis.

Why Dillard? First, these texts are not digitized

on any of the large online databases, such as CDLI,

Achemenet, ORACC, or eBL. Second, it is a diverse

corpus chronologically, geographically, and stems

from a variety of archives (see metadata file on

GitHub).

We initially had quite poor results of 53% accu-

racy, but after correcting only 10 texts, the OCR

model reached 85% accuracy. Additional training

on 47 texts increased the model’s performance only

incrementally to 89%. Thus, similarly to our initial

fine-tune phase, the model requires a minimal num-

ber of ca. 10 documents in order to be a significant

assistant in the digitization process of ancient texts

(Fig. 7).

4.3 Experiment 2: Legacy collections

The Sumerian Lexicography collection is housed in

the Babylonian Section of the University of Penn-

sylvania Museum of Archaeology and Anthropol-

ogy. This collection consists of approximately

200,000 index cards (see Fig. 1) compiled by Å. W.

Sjöberg in the late 1970’s and early 1980’s. These

cards serve as the foundation for the intended Penn-

sylvania Sumerian Dictionary (PSD). No other col-

lection of lexicographic cards in the field of Sume-

rian Lexicography matches its scale.

The PSD was never completed. From 1984 to

1992, only the letters A-B were published. In May

2004, the project transitioned to a digital format,

evolving into the electronic Pennsylvania Sumerian
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Figure 7: (a) Neo-Babylonian cuneiform tablet from the Free Library of Philadelphia collection; (b) Its transliteration

in Dillard (1975); (c) Its plain text output from CuReD.

Dictionary (ePSD). It has undergone significant

changes in editorial principles, replacing the man-

ually compiled catalog with a much larger digital

corpus.

The index card collection was digitized in May

2023 by Dr. Anna Glenn on behalf of the Insti-

tute for Assyriology und Hittitology of the LMU

Munich. Hosted by the university library, this digi-

tized collection forms the dataset for the study case

presented here (Sjöberg, 2023).

The project plans to convert these scans into

machine-readable text, and to link the results with

other lexical collections, as part of the eBL plat-

form. For test purposes, we uploaded to CuReD in

the first step 30 cards, a little bit more than 60 lines,

and corrected the results for fine-tuning. Prior to

the training, the accuracy level stood at 87%. Note

that the model at this time was already fine-tuned

on the texts published by Dillard (see above). Fol-

lowing the first training session on this corpus, the

accuracy improved to 94%.

Although the results improved significantly, a

new issue emerged: the OCR fails to recognize a

line when it consists of only a single word (compare

to other lexical index cards digitized by Idziak et al.

(2021)). This is particularly critical because many

lemmas, i.e., lexemes in the Sumerian language,

are made up of a single phoneme, that is, one letter.

5 Related Literature

To the best of our knowledge, this is the first

custom-trained OCR model for transliterated

cuneiform documents, trained initially on translit-

erations. See, however, the Tesseract-based model

used for OCR’ing secondary literature in assyriol-

ogy, which includes text editions (Anderson, 2023).

Human-in-the-loop pipelines for transcribing his-

torical and epigraphical documents from other peri-

ods, however, are revolutionizing how those are be-

ing recorded and studied in the humanities and the

galleries, libraries, archives, andmuseums (GLAM)

sector. Some of the most impactful tools in this

regard are Transkribus and eScriptorium, each of

which has produced hundreds of studies based on

their OCR/HTR engine, and several more are on

the rise (Idziak et al., 2021; Nockels et al., 2022,

2024; Calvelli et al., 2023).

It is important to separate, however, the

OCR/HTR efforts from Latin transliterations and

OCR/HTR of cuneiform signs themselves on

clay tablets, stone inscriptions, etc. Identifying

cuneiform signs requires other designated models,

and the several advances in recent years are summa-

rized in Bogacz andMara (2022); see also the newly

published contribution by Yugay et al. (2024).

The high-performance of our model on mini-

mal ground-truth data was possible due to the rel-
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ative simplicity of generating representative arti-

ficial training data. Improvements in recent years

in the generation of data that is similar enough to

ground truth is proving more and more vital in aid-

ing the digitization of low-resource languages, such

as cuneiform (Rusakov et al., 2019) and Aramaic

inscriptions (Aioanei et al., 2024), to name a few.

These methods are probably to be vital in the up-

coming years to push forward the digitization of

ancient languages (Sommerschield et al., 2023).

Although our work only covers OCR digitization

of transliterations as printed in published sources,

there has also been work on automatic conversion

of such transliterations to phonological transcrip-

tions representing how texts were pronounced in

the Akkadian language. See Sahala et al. (2020) for

an example of a such deep-learning based model.

6 Conclusion

To aid the community of cuneiform experts in dig-

itizing published records of cuneiform texts, we

developed an OCR system for recognizing Akka-

dian Latin transliterations written using standard

scholarly conventions. Because of a lack of natu-

ral labelled training data, we bootstrapped an OCR

model using the Kraken open-source framework

by generating artificial training data, rendering text

from the SAA corpus using various fonts and text

styles. After fine-tuning the resulting model on a

small set of manually-labelled scans, we achieved

89% accuracy on a representative set of scans.

We integrated this model in a human-in-the-loop

tool called CuReD (Cuneiform Recognition Doc-

uments), to allow scholars and students to OCR

various scanned or photographed materials, and

help continuously improve their model. We further

showed this tool in practice, by performing two

real-world experiments OCR’ing text editions and

legacy lexical materials in machine typeface, both

of which included handwritten notation. The fine-

tuning of the two experiments was integrated into

our model, which is also on the CuReD online tool,

making it already highly effective for OCR’ing ma-

chine typed transliterations. Minimal fine-tuning

is needed to improve its results on unseen texts,

and the same should hold true for transliterations

of other languages using the cuneiform script.

We provide this model as an open-source con-

tribution to researchers of the ancient Near East

and the general public, in hopes that it will make

cuneiform inscriptions more accessible in machine-

readable form.

Limitations

Our current OCR system has been tested only on

Latin transliterations of Akkadian and Sumerian

cuneiform texts, but not on the other languages of

the ancient Near East using the cuneiform script.

While we assume this transfer learning would be

easy for the model given the similarities in the

transliteration practices (see Appendix A), that re-

mains to be seen.

Additionally, both experiments show how the

model can be effectively fine-tuned with few exam-

ples to drastically improve performance. However,

the results are never perfect. A common challenge

in both experiments is the presence of many hand-

written notes, such as accents, subscripts, diacrit-

ics, special characters, square brackets, or simply

marginalia scribbled around the text. These factors

lead to inaccuracies in the OCR results, particularly

creating errors in the line segmentation.

The CuReD model, with its human-friendly in-

terface, permits users to quickly correct the re-

maining errors. The fine-tuning process makes

the correction phase extremely efficient. It may

not completely make typing of editions a thing of

the past, but it reduces the time by at least 90%.

In addition, further manual improvements can be

considered, such as validating the OCR’ed results

against known cuneiform sign readings, or com-

bining CuReD with Handwritten Text Recognition

(HTR) (Nockels et al., 2022) to identify marginalia

etc.

Furthermore, the continual fine-tuning of the

model makes it familiar with additional typefaces

and editorial conventions. The significant uptick

in accuracies before fine-tuning between the exper-

iments (from 53% on the Dillard texts to 87% on

the PSD card catalogue) shows this quality, as both

experiments share a similar typeface. Initial results

on unseen texts will thus continue to improve as

more corpora are added for training, and fewer and

fewer examples will be required for fine-tuning.
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A Appendix: Akkadian Latin

Transliteration

We include here a short description of the main fea-

tures of the conventions used for Akkadian Latin

transliteration. This standard system was described

in Gelb (1970) and von Soden (1995), each with

some modifications. It is in large part also used for

other languages written in the cuneiform writing

system, most notably Sumerian, but also with nec-

essary modifications for Eblaite, Elamite, Hurrian,

Urartian, Hittite, Luwian and several minor Anato-

lian languages written in cuneiform (like Hattian).

Besides the usual characters of the Latin alphabet,

cuneiform transliterations can contain the follow-

ing special characters used to represent particular

sounds:

• Š š, equivalent to the English sh-sound

• � �, equivalent to the ts-sound

• � �, an emphatic t-sound (e.g. theatre)

• � �, the voiceless uvular fricative (e.g. Ger-

man acht)

• � and �, aleph (glottal stop) and ayin (pha-

ryngeal fricative), respectively

• G̃ g̃, nasal g (ng-sound)

• Ř ř, alveolar trills (see řeka)

Cuneiform symbols may be used phonetically to

represent syllables with structure V, VC, CV, or

CVC. When used in this way, the transliteration

of these signs is written in italic lowercase letters

with dashes separating syllables of the same word.

For example, the word iddin ’he gave’ may be writ-

ten phonetically as id-din, id-di-in, or using other

variants.

Uppercase, normal-style (i.e. non-italic) let-

ters are used to represent logograms; cuneiform

symbols representing words or morphemes rather

than phonetic values. Some editions represent the

logographic values in small caps instead. The

text in uppercase represents the reading of the lo-

gogram in Sumerian, from which it was borrowed,

although the Akkadian speaker would have proba-

bly read it in their native language. For example,

the transliteration DINGIR represents a cuneiform

sign that would have been read in context as Akka-

dian ilu (“god”). Logogram compounds are sepa-

rated with periods in transliterations; for example,

DUMU.MUNUS-ia “my daughter”.

The Sumerian language for which cuneiform

was originally developed had a large number of

homonymic symbols (symbols with the same pho-

netic value). In order to distinguish these in translit-

eration, scholars use accents and subscript digits.

For example, gu, gú, gù represent three different

cuneiform symbols with the same pronunciation

gu; the fourth such symbol and onwards would be

notated as gu4, the fifth as gu5, and so on. Newer
resources may only use superscript numbers instead

of accents (gu2, gu3). Many homonymic readings

are used simultaneously in cuneiform languages.

Superscript symbols are used to represent de-

terminatives, also known as classifiers, which are

cuneiform signs that do not have an independent

reading but rather clarify the meaning of follow-

ing or preceding sign(s). For example, superscript

d represents the determinative indicating a divine

name, and superscript m indicates a male name.

Since cuneiform inscriptions are often broken

or not fully legible, a number of special symbols

are used to indicate textual anomalies. The most

common of these are:

• Square brackets [ ] - used to indicate missing

signs, such as when there is a hole in the text.

May contain editorial guesses as to the missing

contents, or X to indicate a missing sign.

• Half brackets ⸢ ⸣ - indicate fragmentary but

legible signs
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• Superscript ! - indicates a scribal error

• Superscript ? - indicates an uncertain sign

• angle brackets < > - used to add signs that the

modern editor thinks the ancient scribe has

omitted.

• double angle brackets « » - indicate signs

which the modern editor thinks the ancient

scribe has erroneously added, and believes

should be ignored for phonetic and linguistic

reconstruction.

The notation system for homonymic signs and ed-

itorial marks for textual anomalies are shared across

the transliteration conventions of texts written in

the cuneiform script, as well as combinations of

lowercase, uppercase, and italics. Furthermore, the

Sumerian readings of logograms are shared across

the many languages written in the cuneiform script.

Thus, CuRed is likely to be an efficient baseline

model of transliterations from other cuneiform lan-

guages.
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