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Abstract

The exponential rise in social media users has
revolutionized information accessibility and ex-
change. While these platforms serve various
purposes, they also harbor negative elements,
including hate speech and offensive behavior.
Detecting hate speech in diverse languages has
garnered significant attention in Natural Lan-
guage Processing (NLP). This paper delves into
hate speech detection in Tamil, particularly
related to migration and refuge, contributing
to the Caste/migration hate speech detection
shared task. Employing a Convolutional Neu-
ral Network (CNN), our model achieved an F1
score of 0.76 in identifying hate speech and sig-
naling potential in the domain despite encoun-
tering complexities. We provide an overview
of related research, methodology, and insights
into the competition’s diverse performances,
showcasing the landscape of hate speech detec-
tion nuances in the Tamil language.

1 Introduction

The surge in Social Media platform users has led to
a significant increase in information dissemination,
granting immediate access to updated information
with just a click. These platforms are used not only
for social interaction but also for leisure and in-
formation retrieval (Sajjad et al., 2019; Ali et al.,
2022a). There has been a notable surge in interest
in social media analysis tasks within NLP (Bade,
2021), With a focus on emerging fields like identify-
ing hopeful speech, there is a growing emphasis on
advancing in this direction. (Yigezu et al., 2023a;
Shahiki-Tash et al., 2023b) language identification
(Tash et al., 2022; Balouchzahi et al., 2022a), fake
news(Fazlourrahman et al., 2022), sentiment anal-
ysis (Tash et al., 2023; Yigezu et al., 2023b), and
hate speech(Yigezu et al., 2023c) that researchers
experimented with diverse models, including deep
learning (Yigezu et al., 2022; Ahani et al., 2024),
transformers (Tonja et al., 2022), and traditional

machine learning techniques (Kanta and Sidorov,
2023).

However, along with its advantages, the
widespread adoption of Social Media (Bade and
Afaro, 2018) also brings negative aspects (Ali et al.,
2022b). Users sometimes exhibit behavior that
can be harmful, offensive, and even hateful toward
various segments of society (Shahiki-Tash et al.,
2023a).

Describing hate speech is complex, as Andrew
Sellars argues against oversimplification of its def-
inition and addressing methods (Sellars, 2016).
There’s disagreement regarding how hate speech
refers to groups, with certain definitions associat-
ing it with minority groups or specific character-
istics like race, religion, gender, or sexual orienta-
tion (Waltman and Mattheis, 2017).

This challenge has led to several shared tasks
focused on detecting hate speech. In this context,
our article centers on the analysis of Tamil user
comments about migration and refuge using qual-
itative content analysis. As part of this effort, we
participated in the Caste/migration hate speech de-
tection shared task (Rajiakodi et al., 2024), which
aims to develop models capable of identifying hate
speech related to caste or migration.

The objective of this task is to create an
automated classification system that predicts
whether text, particularly on social media, contains
caste/migration-related hate speech. We employed
a CNN model for prediction, leveraging its suc-
cessful track record in text classification within the
literature. (Balouchzahi et al., 2023b,a). our pro-
posed model obtained an F1 score of 0.76, yielding
promising performance on the task of binary hate
speech detection.

2 Related work

Motivated by the linguistic diversity across In-
dia, where languages like Tamil, Telugu, Kannada,
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Malayalam, Hindi, Punjabi, Bengali, Gujarati,
Marathi, among others, are prevalent, researchers
observed the limitations of models confined to En-
glish proficiency (Chakravarthi et al., 2020b). This
prompted the development of a system capable
of processing code-mixed languages for sentiment
analysis. A significant hurdle in this endeavor has
been the scarcity of labeled datasets. Notably, a few
manually annotated datasets for offensive language
and hate speech detection in Tamil (Chakravarthi
et al., 2020b), Malayalam (Chakravarthi et al.,
2020a), and Kannada (Hande et al., 2021) have
been released, marking crucial contributions to the
field. The study (Sdnchez-Holgado et al., 2022)
aimed to assess the relationship between online
hate speech against migrants and refugees and so-
cial acceptance in Spain. Using Intergroup Contact
and Mediated Intergroup Contact Theory, the re-
search sought to validate hate speech as an indicator
of social acceptance across Spanish provinces. An-
alyzing 97,710 tweets and secondary public data
on migration, the study found no significant cor-
relation between hate speech, foreign population
proportions, and citizen attitudes toward immi-
grants. Despite fluctuations in hate speech presence
from 2015 to 2020, no clear negative correlation
emerged between foreign population proportions
and hate speech on Twitter. Similarly, the antici-
pated negative correlation between attitudes toward
migration and hate speech on Twitter could not be
statistically confirmed.

The paper (Sanguinetti et al., 2018) outlines
the development of a novel Twitter corpus com-
prising roughly 6,000 tweets annotated for hate
speech targeting immigrants. This corpus aimed
to serve as a reference dataset for monitoring hate
speech through automated systems. The annotation
scheme was meticulously crafted to encompass var-
ious factors influencing hate speech, resulting in a
tagset beyond hate speech alone, including aggres-
siveness, offensiveness, irony, stereotype, and ex-
perimental intensity categories. While discussing
the annotated data, the study focuses on hate speech
intensity and its interrelation with stereotype, ag-
gressiveness, and offensiveness. The findings in-
dicate nuanced trends, showcasing implicit incite-
ment in most hateful tweets. Stereotype prevalence
is notably high in lower intensity degrees, indicat-
ing its role in implicit incitement.

The study (Anbukkarasi and Varadhaganapathy,
2022) achieved notable success in hate speech de-
tection within code-mixed Tamil-English tweets

using a synonym-based Bi-LSTM model. With an
F1 score of 0.8169, the Bi-LSTM model outper-
formed other models evaluated, demonstrating its
effectiveness in distinguishing hate and non-hate
texts. Specifically, in classifying hate speech, the
model attained an F1 score of 0.8110, while for
non-hate texts, it achieved an F1 score of 0.8050

This study (Basava and Karri, 2021) tackles the
pervasive issue of hate speech proliferation across
social media platforms by introducing an ensemble
system utilizing transformer models. Specifically,
it aims to identify offensive language within code-
mixed posts/comments in Dravidian Languages
(Malayalam-English and Tamil-English). Situ-
ated within the framework of the Hate Speech
and Offensive Content Identification in Dravidian-
CodeMix (HASOC) (Chakravarthi et al., 2021) ini-
tiative, this research emphasizes the rising impact
of hate speech online and the urgent need for ro-
bust detection methods. The ensemble method
showcased promising performance during devel-
opment, notably achieving scores of 0.93 for
Tamil and 0.80 for Malayalam, utilizing the model
HSU_TransEmb. However, when assessed on the
test set, the performance declined, registering 0.66
for Tamil with the MuRIL model and 0.73 for
Malayalam using HSU_TransEmb, indicating the
necessity for more comprehensive datasets to en-
hance model robustness and efficacy in tackling
hate speech in multilingual social media settings.
(Jayanthi and Gupta, 2021) applied transformer-
based models, utilizing a cased version of multi-
lingual BERT and XLM-RoBERTa. Employing
BERT at the sentence level, they transformed sub-
word-level representations into word-level repre-
sentations by averaging sub-token representations
for improved classification. This innovative fu-
sion architecture integrated a Bidirectional LSTM
model to capture diverse word patterns, enhancing
classification accuracy, and resulting in a 79.67%
accuracy in classifying Tamil tweets.

3 Methodology

Convolutional Neural Networks (CNNs) excel in
text classification tasks by utilizing convolutional
and pooling layers to extract hierarchical features
from sequential data, such as text (Balouchzahi
et al., 2022b). These networks employ convolu-
tional filters of varying sizes to detect n-gram fea-
tures within the input text, followed by pooling
layers that condense and aggregate the extracted
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features. By learning local relationships between
words and capturing essential patterns, CNNs ef-
fectively discern hate speech or offensive language
within textual data. Their ability to model intricate
relationships within text makes CNNs a potent tool
in the realm of hate speech detection.

3.1 Dataset

The dataset (Chakravarthi, 2020, 2022) is format-
ted in CSV (Comma-Separated Value), featuring
columns labeled "Text" and "Tag". The "Text" col-
umn contains the textual content, while the "Tag"
column signifies whether a comment is categorized
as caste/migration hate speech, indicated by values:
1 for caste/migration hate speech and O for non-
caste/migration hate speech (Chakravarthi et al.,
2022).

The exemplification of the dataset structure is
illustrated in Table 1.

Table 1: Tamil comments and their labels

Text Tag
Ippadiye solli tamilanai izhivu paduthu- | 0
vathey indha sangi kumbal, dhaanda,
tamilians are getting educated, they
want better life, mostly looking for de-
cent job.

Freedom app eh. Bunda Advertisement | 1
Vera ya
Like this one day all these North In-| 1
dias are going to chase every Tamilians
from Tamilian Nadu. This is very dan-
gerous. Need to probe into this and I
request that all the Tamil people not to
give these North Indians any accommo-
dation. We need to save our Rights and
control North Indians heavy migration.
These people are hooligans.

it’s nothing wrong people travel to | O
earn money but in same time native
people also need work hard for better
life...lucky Brother you know hindi to
communicate to Vadakans...Nice review

3.2 C(lassification algorithm

The classification algorithm we’ve designed encom-
passes several sequential steps, each contributing to
the overall process. Below, we’ll elaborate on these
stages to provide a comprehensive understanding
of our classification methodology.

3.3 Cleaning Data

The initial part of the code involves data cleaning
functions like "remove_emoji", "remove_url", and
"clean_text". These functions are applied to both
the training and test datasets to eliminate emojis,
URLSs, special characters, and punctuation from the
text. It ensures that the text is sanitized for further

processing and analysis.

3.4 Padding

Tokenizer and padding functions from Keras are
employed to convert text data into sequences of
integers and ensure uniform sequence length. The
"Tokenizer" converts text to numerical sequences,
and "pad_sequences" ensures uniform length for
modeling purposes, enhancing compatibility with
neural network layers.

3.5 Label Encoding

Label encoding is performed using "LabelEn-
coder" from Scikit-learn to convert categorical la-
bels into numerical format, preparing them for
model training. Additionally, one-hot encoding
("tf keras.utils.to_categorical") is applied to repre-
sent categorical labels as binary vectors.

3.6 Model Architecture

The neural network architecture comprises several
layers: an embedding layer, a 1D convolutional
layer ("Conv1D"), global max pooling, dropout,
and a dense layer. Regularization techniques like
L2 regularization are employed to prevent over-
fitting. The model summary provides a detailed
overview of the architecture, including layer types,
output shapes, and parameters.

3.7 Model Compilation and Training

The model is compiled using a categorical cross-
entropy loss function and the Nadam optimizer.
The code then trains the model using the training
dataset ("train_ds") for 50 epochs, with validation
performed on the validation dataset ("valid_ds").
Training history is recorded to monitor model per-
formance and convergence.

3.8 Model Evaluation and Prediction

After training, the model is utilized to generate
predictions on the test data ("x_test"), providing in-
sights into the model’s performance on unseen data.
Additionally, metrics like classification reports or
confusion matrices were derived to evaluate model
performance comprehensively.
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4 Results

The competition observed diverse performances in
the detection of hate speech in the Tamil language.
Prominent teams securing positions 1-3 demon-
strated commendable M_F1 scores ranging from
0.82 to 0.80, indicating the effectiveness of their
strategies. In contrast, the bottom-ranking teams
(15-16) encountered challenges, attaining lower
scores of 0.49 and 0.38, respectively. The 6th po-
sition achieved by our team, with an M_F]1 score
of 0.76, underscores the complexities involved in
addressing nuances of hate speech in Tamil. Al-
though our approach exhibited competence, the
competitive environment and intricate nature of the
task underscore the necessity for further refinement
in areas such as data handling, feature engineering,
and model fine-tuning. A detailed presentation of
the results is available in Table 2.

Table 2: Performance Rankings of Hate Speech Detec-
tion Models in Tamil Language

Team name M_F1 Rank
Transformers - Kriti Singhal 0.82 1
kubapok - Jakub Pokrywka 0.81 2
CUET_NLP_Manning 0.80 3
BITS_Graph4NLP 0.77 4
Algorithmalliance 0.76 5
lidoma - Moein Tash 0.76 6
CUET_NLP_GoodFellows 0.75 7
quartet - shaun Allan 0.73 8
KEC_AI_DSNLP_ 0.65 9
selam - Selam Abitte 0.62 10

byteSizedllm 0.61 11

SSN-nova - Ankitha Reddy 0.59 12
WordWizards_tamil 0.54 13
KEC_DL_KSK - Kalaivani K.S.  0.49 14
Habesha - mesay gemeda 0.38 15

5 limitations

1. The study encounters a limitation stemming from
the absence of hyperparameter tuning in the experi-
mental setup. Optimal hyperparameter configura-
tions are crucial in fine-tuning the performance of
machine learning models, and their absence in our
experiments could impact the overall effectiveness
of our approach.

2. Another constraint in our methodology lies in
the omission of experiments specifically designed
to address the challenge of imbalanced datasets.
Hate speech detection tasks often contend with
imbalances between the number of instances be-
longing to different classes. Strategies such as over-
sampling, undersampling, or utilizing specialized
algorithms for imbalanced datasets could be ex-

plored to enhance the model’s ability to handle
such data distribution challenges.

3. Our study is also constrained by the lack of
incorporation of any feature selection techniques.
Feature selection plays a vital role in enhanc-
ing model interpretability, reducing computational
complexity, and potentially improving predictive
performance. Future iterations of our methodol-
ogy could benefit from the integration of feature
selection methods to identify and retain the most
informative features.

4. An additional limitation is the absence of any
ensemble model in our experimental framework.
Ensemble models, which combine predictions from
multiple models, often contribute to improved gen-
eralization and robustness. Integrating ensemble
techniques, such as bagging or boosting, could of-
fer a more comprehensive and resilient hate speech
detection system. This represents an avenue for
future research to explore and enhance the overall
performance of our approach.

6 Conclusion

This research delves into the realm of hate speech
detection in Tamil, with a particular emphasis on
themes related to migration and refuge within the
framework of the Caste/migration hate speech de-
tection shared task. Leveraging a Convolutional
Neural Network (CNN), our model exhibited a
commendable F1 score of 0.76, demonstrating its
efficacy in identifying hate speech amidst inher-
ent complexities. The analysis sheds light on the
competitive landscape, uncovering diverse perfor-
mances across teams with scores ranging from 0.38
to 0.82. These variations underscore the challenges
inherent in addressing hate speech nuances in the
Tamil language. As part of our future endeavors,
we intend to enhance our approach by expanding
our dataset and incorporating transformer models,
aiming to further improve the accuracy of hate
speech detection in this linguistic context.
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