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Abstract
This paper presents the TartuNLP team submission to EvaLatin 2024 shared task of the emotion polarity detection for
historical Latin texts. Our system relies on two distinct approaches to annotating training data for supervised learning:
1) creating heuristics-based labels by adopting the polarity lexicon provided by the organizers and 2) generating
labels with GPT4. We employed parameter efficient fine-tuning using the adapters framework and experimented with
both monolingual and cross-lingual knowledge transfer for training language and task adapters. Our submission with
the LLM-generated labels achieved the overall first place in the emotion polarity detection task. Our results show that
LLM-based annotations show promising results on texts in Latin.
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1. Introduction

This short report describes the system developed
the TartuNLP team for the Emotion Polarity De-
tection task of the EvaLatin 2024 Evaluation Cam-
paign (Sprugnoli et al., 2024). The goal of the task
was to label Latin texts from three historical authors
with four emotion polarity labels as positive, neg-
ative, neutral or mixed. For this task, no training
data was provided, but only a polarity lexicon and a
small evaluation set with 44 annotated sentences.

Our approach entails two steps. First, we an-
notated data for supervised model training a) via
heuristic rules using the provided polarity lexicon
and b) using GPT-4 (see Section 2). Secondly,
we adopted knowledge transfer with parameter-
efficient training via adapters (Houlsby et al., 2019)
followed by task-specific fine-tuning on the data an-
notated in the first step (see Section 3). The knowl-
edge transfer was applied both cross-lingually via
pretraining on an English sentiment analysis task,
and monolingually by training on an unannotated
Latin text corpus.

We made two submissions to the shared task:
one with heuristically annotated training data and
another with the GPT-4 annotated labels. Both
submissions obtained competitive results, with the
submission with GPT-4 labels obtaining the first
place overall. The code for the system is available
on GitHub.1

2. Data Annotation

For the Emotion Polarity Detection task, no training
data was provided. However, the organizers pro-
vided two useful resources: a polarity lexicon and

1https://github.com/slowwavesleep/
ancient-lang-adapters/tree/lt4hala

Label Heuristics LLM-based
positive 6535 1334
negative 2243 1028
mixed 5884 221
neutral 735 4698
Total 15396 7281

Table 1: Statistics of the annotated training data.

a small gold annotated sample. We employed two
distinct approaches to annotate the training data
based on these resources: a heuristics-based and
an LLM-based. The annotated data from both ap-
proaches is available on HuggingFace Hub.2 The
label distribution for the annotated data is presented
in Table 1.

2.1. Heuristics-based annotation
In this approach, we employed the provided polarity
lexicon similarly to the lexicon-based classifier by
Sprugnoli et al. (2023). First, data from all avail-
able Universal Dependencies (Zeman et al., 2023)
sources (Version 2.13, the most recent one at the
time of writing) in Latin was collected :

1) Index Thomisticus Treebank (ITTB);
2) Late Latin Charter Treebank (LLCT);
3) UDante;
4) Perseus;
5) PROIEL treebank.
Then, the sentences containing no nouns or ad-

jectives in the lexicon were removed. The filtered
sentences were assigned labels based on the fol-
lowing rules:

2https://huggingface.co/datasets/
adorkin/evalatin2024

https://github.com/slowwavesleep/ancient-lang-adapters/tree/lt4hala
https://github.com/slowwavesleep/ancient-lang-adapters/tree/lt4hala
https://huggingface.co/datasets/adorkin/evalatin2024
https://huggingface.co/datasets/adorkin/evalatin2024
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1) If all words in the sentence are neutral accord-
ing to the polarity lexicon, the sentence was
labeled as neutral;

2) If the mean polarity of the words in the sen-
tence is in the range from -0.1 to 0.1, then the
sentence was labeled as mixed;

3) If the mean polarity is larger than 0.1, then the
sentence was labeled as positive;

4) If the mean polarity is less than 0.1, then the
sentence was labeled as negative.

Our expectation from this approach was that train-
ing a model on lexicon-annotated data would result
in a model with better generalization capabilities
than simply applying the lexicon classifier. The to-
tal amount of sentences annotated this way was
15396.

2.2. LLM-based annotation
In this approach, we made use of the Ope-
nAI’s GPT-4 model via the API (gpt-4-turbo-
preview3). The sentences were again sampled
from the Universal Dependencies sources. The
model was given the description of the problem
and one example per label from the gold annota-
tions file. The model was tasked with assigning the
given sentence a label and providing an explana-
tion as to why it assigned that particular label.

With this approach, we expected that GPT-4
could simulate the annotation process done by an
expert in Latin. According to the first author’s some-
what limited understanding of Latin and based on
a small sample of annotations and explanations
done by the model, the output seems reasonable.
We set out to spend about 15 euros per data anno-
tation, which after removing sentences with invalid
labels resulted in 7281 annotated sentences.

3. Description of the system

The system in our submission is based on the
BERT architecture (Devlin et al., 2019). More
specifically, we employed the multilingual ver-
sion of RoBERTa (Zhuang et al., 2021)—XLM-
RoBERTa (Conneau et al., 2020), which was
trained on the data that included Latin.

We treated Emotion Polarity Detection as a multi-
class classification problem and fine-tuned the
model accordingly. However, instead of full fine-
tuning, we trained a stack of adapters: a language
adapter and a task adapter. Training adapters in-
volves adding a small number of trainable parame-
ters to the model while freezing the rest of the pa-
rameters (Houlsby et al., 2019). In addition to mak-
ing the training considerably faster, adapters miti-
gate overfitting and catastrophic forgetting, which

3https://platform.openai.com/docs/
models/gpt-4-and-gpt-4-turbo

are common problems when dealing with small
amounts of training data. We implemented our sys-
tem by using the transformers4 and the adapters5

libraries.
We expected the model to benefit from both

mono-lingual and cross-lingual knowledge trans-
fer; therefore, the training process comprised sev-
eral stages. First, we fine-tuned a Latin language
adapter on a publicly available Latin Corpus6 col-
lected from the Latin Library7. In the next phase
of training, we trained a task-specific classifica-
tion adapter on the English IMDB movie reviews
dataset8. The dataset contains only two labels:
positive and negative. We created an adapter with
a classification head with four classes, two of which
remained unused during this stage. Finally, we
stacked the task adapter previously trained on En-
glish on top of the language adapter, and continued
training the task adapter on the annotated data in
Latin.

The language adapter was trained for ten epochs
with a learning rate 1e-4. For further usage, we took
the last checkpoint. The task adapter was trained
on data in English for five epochs with a learning
rate of 5e-4, and we also took the last checkpoint.
Finally, for the submissions, we trained a model
on both sets of annotated data for 50 epochs with
a 5e-4 learning rate. We used the provided gold
annotation example as the validation set for training
and measured the F-score on it after each epoch.
For submission, we selected the best checkpoint
based on the validation F-score.

4. Results

We made two submissions to the Emotion Po-
larity Detection task; the first one (TartuNLP_1)
fine-tuned on the dataset with the heuristic labels,
and the second one (TartuNLP_2) fine-tuned on
the dataset with the LLM-generated labels. Both
submissions obtained competitive results, with the
model trained on the LLM-annotated labels (Tar-
tuNLP_2) taking the overall first place and the
model trained on the heuristics-annotated data (Tar-
tuNLP_1) taking the second place on micro average
F1-score and the third place on the macro average
F1-score (see Table 2).

While the scores obtained by the two models are
quite close, there is frequent disagreement in their
predictions: out of 294 test examples, the models

4https://github.com/huggingface/
transformers

5https://github.com/adapter-hub/
adapters

6https://github.com/mathisve/
LatinTextDataset

7https://www.thelatinlibrary.com/
8https://huggingface.co/datasets/imdb

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/adapter-hub/adapters
https://github.com/adapter-hub/adapters
https://github.com/mathisve/LatinTextDataset
https://github.com/mathisve/LatinTextDataset
https://www.thelatinlibrary.com/
https://huggingface.co/datasets/imdb
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Model Micro Average F1 Macro Average F1
TartuNLP_2 0.34 0.29
TartuNLP_1 0.32 0.27
NostraDomina_1 0.22 0.28
NostraDomina_2 0.22 0.22

Table 2: The overall results of all teams.
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(a) TartuNLP_1 with lexicon-based heuristic labels.
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(b) TartuNLP_2 with GPT4-generated labels.

Figure 1: Confusion matrices for both submissions.

disagreed in 140 examples. In case of disagree-
ment, the heuristics- and LLM-based models made
correct predictions in 40 and 57 examples respec-
tively. Meanwhile, in case of agreement, the mod-
els correctly predicted the labels of 72 examples
out of 154.

The confusion matrices for both models (see Fig-
ure 1) are similar. The models had the most trouble
with the mixed class, while the negative class was
the easiest to predict; this is in line with findings
by Sprugnoli et al. (2023), who reported the low-
est inter-annotator agreement for the mixed class,
while the negative class had the highest agreement,
assuming that the test data of the shared task was
annotated in a similar manner.

We performed a small ablation study on the la-
beled test data released by the organizers after
evaluating the shared task results to measure the
effect of the knowledge transfer methods used:

1) Monolingual knowledge transfer from the wider
Latin corpus in training the language adapter;

2) Cross-lingual knowledge transfer from the En-
glish IMDB sentiment dataset in training the
task adapter.

The results of the study, shown in Table 3, were
somewhat unexpected. First of all, we observe
that the base model with no knowledge transfer
is already as good or better than the submitted
models adopting both types of knowledge transfer.

Secondly, the monolingual knowledge transfer by
training the language adapter improves the micro-
averaged F1-score with both types of labels. Finally,
the model with the LLM-generated labels benefits
more from the monolingual language adapter train-
ing resulting in a model that noticeably outperforms
our initial submission.

5. Discussion

The model with LLM-generated labels obtained
better results than the model with lexicon-based
heuristic labels, although the final results of both
submitted systems are relatively close. However,
the ablation study testing the effectiveness of both
monolingual and cross-lingual knowledge transfer
demonstrated that the model trained on the LLM-
annotated data can show even better results when
omitting the cross-lingual transfer from English.
This is despite the fact that the number of LLM-
annotated examples was nearly twice as small,
suggesting that the LLM annotations are of higher
quality than the labels based on lexicon-informed
heuristics.

Despite our model trained on the LLM-annotated
data taking the overall first place, the absolute val-
ues are somewhat low and sometimes below the
baseline. There might be several reasons related
to the choice of the data source and the annotation
scheme and procedures. First, many of the exam-
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Ablation Micro Avg F1 Macro Avg F1 Val F1
Heuristic labels without knowledge transfer 0.33 0.26 0.48
Heuristic labels + Monolingual language transfer 0.34 0.25 0.48
Heuristic labels + Cross-lingual task transfer 0.30 0.23 0.55
Heuristic labels + Both (TartuNLP_1) 0.32 0.27 0.47
LLM labels without knowledge transfer 0.37 0.30 0.55
LLM labels + Monolingual language transfer 0.38 0.30 0.61
LLM labels + Cross-lingual task transfer 0.37 0.29 0.53
LLM labels + Both (TartuNLP_2) 0.34 0.29 0.48

Table 3: The results of the ablation study.

ples appear to be expository or narrative in nature.
It is difficult to assign a particular emotive polarity to
the texts of that kind. Furthermore, Sprugnoli et al.
(2023) mention that the annotators were instructed
to assign labels on the sentence level. However,
they were also presented with the wider context of
the sentence. This leads us to believe that some
labels are actually contextual, especially when the
annotated sentence contains only a single word
(for example, the sentence "Mentior?" is labeled as
mixed). Secondly, the manual analysis of the ex-
amples shows that it is quite difficult to distinguish
between mixed and neutral texts. This appears to
be true for the trained models, as well.

One possibility of improvement is to reframe the
task as a multi-label classification problem instead.
The model would be expected to predict the proba-
bilities for the negative and positive labels indepen-
dently. If the probability of both labels is low, the
assigned label can be "neutral"; if both probabilities
are high, the label can be "mixed"; otherwise, the
label corresponding to the highest probability would
be assigned.

6. Conclusion

This paper described our solution to the Emotion
Polarity Detection task of the EvalLatin Evaluation
Campaign. Our submission obtained with a model
trained on a dataset with LLM-generated labels
achieved the overall first place, showing that LLM-
based annotations can be useful for processing
texts in Latin.

7. Bibliographical References

Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation learn-
ing at scale. In Proceedings of the 58th Annual

Meeting of the Association for Computational Lin-
guistics, pages 8440–8451, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799. PMLR.

Rachele Sprugnoli, Federica Iurescia, and Marco
Passarotti. 2024. Overview of the EvaLatin 2024
evaluation campaign. In Proceedings of the Third
Workshop on Language Technologies for Histor-
ical and Ancient Languages â€“ LT4HALA 2024,
Torino, Italy. European Language Resources As-
sociation.

Rachele Sprugnoli, Francesco Mambrini, Marco
Passarotti, and Giovanni Moretti. 2023. The sen-
timent of latin poetry. annotation and automatic
analysis of the odes of horace. IJCoL. Italian
Journal of Computational Linguistics, 9(9-1).

Daniel Zeman, Joakim Nivre, Mitchell Abrams,
Elia Ackermann, Noëmi Aepli, Hamid Aghaei,
Željko Agić, Amir Ahmadi, Lars Ahrenberg,
Chika Kennedy Ajede, Salih Furkan Akkurt,
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Han, Muhammad Yudistira Hanifmuti, Takahiro
Harada, Sam Hardwick, Kim Harris, Dag Haug,
Johannes Heinecke, Oliver Hellwig, Felix Hennig,
Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Marivel Huerta Mendez,
Jena Hwang, Takumi Ikeda, Anton Karl Inga-
son, Radu Ion, Elena Irimia, O. lájídé Ishola, Ar-
tan Islamaj, Kaoru Ito, Siratun Jannat, Tomáš
Jelínek, Apoorva Jha, Katharine Jiang, Anders
Johannsen, Hildur Jónsdóttir, Fredrik Jørgensen,
Markus Juutinen, Hüner Kaşıkara, Nadezhda
Kabaeva, Sylvain Kahane, Hiroshi Kanayama,
Jenna Kanerva, Neslihan Kara, Ritván Karahóǧa,
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