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Abstract
Artificial intelligence (AI) encompasses knowledge acquisition and real-world grounding across various modalities.
As a multidisciplinary research field, multimodal large language models (MLLMs) have recently garnered growing
interest in both academia and industry, showing an unprecedented trend to achieve human-level AI via MLLMs.
These large models offer an effective vehicle for understanding, reasoning, and planning by integrating and modeling
diverse information modalities, including language, visual, auditory, and sensory data. This tutorial aims to deliver a
comprehensive review of cutting-edge research in MLLMs, focusing on four key areas: MLLM architecture design,
instructional learning, multimodal reasoning, and the efficiency of MLLMs. We will explore technical advancements,
synthesize key challenges, and discuss potential avenues for future research. All the resources and materials are
available at https://mllm2024.github.io/COLING2024
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1. Introduction

This year, the whole world has witnessed astonish-
ing advancements in artificial intelligence (AI) to
date due to the emergence of large language mod-
els (LLMs), such as OpenAI’s ChatGPT (OpenAI,
2022b) and GPT-4 (OpenAI, 2022a). LLMs have
showcased remarkable capabilities in understand-
ing language, hinting at the not-so-distant arrival
of true AGI. Following ChatGPT, a series of open-
source LLMs have been published, e.g., Flan-T5
(Chung et al., 2022), Vicuna (Chiang et al., 2023),
LLaMA (Touvron et al., 2023a) and Alpaca (Taori
et al., 2023), sparking a surge in research revolving
around LLMs. The advent of LLMs has also pro-
foundly changed the way tasks are modeled within
the NLP community. Human interactions with NLP
models have shifted from traditional methods like
classification and sequence labeling to a unified
‘query-answer’ paradigm between user and agent
with natural prompt texts (Lester et al., 2021). LLMs
have demonstrated promising results in both zero-
shot and few-shot settings across various NLP and
CV tasks, even with some existing benchmarks
being well solved.

However, in reality, we humans inhabit a world
where various modalities of information coexist, in-
cluding visual, auditory, sensory and more, beyond
pure language. This realization underscores the
necessity of endowing LLMs with multimodal per-
ception and comprehension capabilities to achieve
human-level AI, i.e., AGI. This endeavor has given

rise to an emerging topic of Multimodal LLMs
(MLLMs). MLLMs offer a compelling argument
for enhancing the robustness of LLMs by enabling
multisensory learning, with each sensory modality
complementing the others. Researchers devise
additional encoders in front of textual LLMs for re-
ceiving inputs in other modalities, leading to the
development of MLLMs, such as BLIP-2 (Li et al.,
2023), Flamingo (Alayrac et al., 2022a), MiniGPT-
4 (Zhu et al., 2023), Video-LLaMA (Zhang et al.,
2023c), LLaVA (Liu et al., 2023e), PandaGPT (Su
et al., 2023), SpeechGPT (Zhang et al., 2023b) and
NExT-GPT (Wu et al., 2023b).

As the manner of interactions with LLMs has
been shifted into a more human-centric ‘query-
answer’ style, the learning of LLMs has also been
changed. Different from the typical training of deep
models, e.g., masked language modeling (Devlin
et al., 2019), instruction tuning has been introduced
as a major approach for LLMs/MLLMs’ tuning (Yin
et al., 2023; Su et al., 2023). With sufficient in-
struction tuning, LLMs/MLLMs are taught to faith-
fully follow human instructions. Also, it is critical
to fully exploit the potential of LLMs/MLLMs for
achieving human-level reasoning. Correspondingly,
researchers have designed the Chain-of-Thought
(CoT) concept (Wei et al., 2022b), which offers
a solution enabling LLMs with complex problem-
solving abilities on language (Wang et al., 2023;
Fei et al., 2023a) or multimodal data (Zhang et al.,
2023d; Zhang and Zhang, 2023). Simultaneously,
it has been demonstrated that the larger the model
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sizes and parameters, the more evident the emer-
gence of capabilities in LLMs/MLLMs (Wei et al.,
2022a). However, constructing and training ex-
tremely large-scale LLMs come at a significant cost,
which poses a great challenge for widespread re-
search in this field. Consequently, the efficient de-
velopment of models becomes a crucial aspect of
MLLM’s progress.

In this cutting-edge tutorial, we aim to offer a
comprehensive introduction to techniques for build-
ing MLLMs that contribute to achieving stronger,
more efficient and more human-level AI. We will
delve into recent progress in the realm of MLLMs
under four parts, which also are the key compo-
nents of the topic of MLLMs. First, multi-modality
architecture design, we elaborate on the cutting-
edge approaches to designing architectures that
seamlessly integrate multiple modalities, enabling
MLLMs to process a variety of sensory inputs ef-
fectively. Second, instruction learning, we delve
into the intricacies of instruction learning, where we
discuss the methods and strategies used to train
models to follow human instructions under multi-
modalities accurately. Third, multimodal reason-
ing, we will present the techniques and method-
ologies behind multimodal reasoning, which em-
powers MLLMs to perform intricate reasoning tasks
across different modalities with their cognitive capa-
bilities. Finally, efficiency of MLLMs, we will give
a brief overview of efficient model development, ex-
ploring strategies to construct MLLMs that balance
performance with computational resources, mak-
ing them accessible for a wider range of research
applications. For each part of the components, we
survey the progress and elaborate all the existing
techniques on the track, and finally shed light on
the future possible directions.

2. Tutorial Outline

This half-day (3.5 hours) tutorial presents a sys-
tematic overview of recent advancements, trends,
resources and also emerging challenges that cover
the following topics.

Part 1: Introduction and Overview (10 mins)
We begin motivating the topic of MLLMs with the
current progress in both academia and industry for
achieving the goal of human-level AI. And then we
place the emphasis on the key aspects of building
successful MLLMs, which bring out the following
tutorial content.
Part 2: MLLM Architecture Design (80 mins)
We start with the introduction of pre-training lan-
guage models (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020), and then transit to the
LLMs of pure languages (OpenAI, 2022a; Touvron
et al., 2023b), e.g., ChatGPT. Key techniques of

LLMs will be highlighted. Then, we delve into the
development of MLLMs based on the success of
textual LLMs. We will review the architecture design
and training techniques of existing popular MLLMs
from two main aspects. (1) First, we will summa-
rize vanilla MLLM architectures that integrate LLMs
with different modality information (Alayrac et al.,
2022b; Li et al., 2023; Liu et al., 2023e), including
multimodal encoding, fusion and generation. (2)
Second, we will review the pretraining techniques
to learn foundational MLLM capabilities from large-
scale multimodal data (Alayrac et al., 2022b; Hu
et al., 2023; Radford et al., 2021).

We humans consistently keep engaging in the
process of receiving and producing multimodal con-
tent every minute and hour, e.g., language, visual,
sound, touch and smell. Thus, building MLLMs
that only can understand multimodal information
is never enough to achieve the goal of human-
level AI. In this sub-topic, we further introduce the
current progress in developing unified multimodal
agents that are able to perceive inputs and generate
outputs in arbitrary combinations of text, images,
videos, audio, and beyond (Wu et al., 2023a; Shen
et al., 2023; Tang et al., 2023; Wu et al., 2023b).
We present the existing popular modeling archi-
tectures of the any-to-any MLLMs, as well as the
discussion in terms of their pros and cons. And fi-
nally we shed light on the key points in realizing the
more human-like MLLMs, such as the concept of
world knowledge modeling, and end-to-end unified
agents.
Part 3: Multimodal Instruction Tuning (40
mins) Multimodal instruction tuning typically refers
to the process of optimizing instructions or guidance
for a system or model that can understand and pro-
cess multiple types of inputs, such as text, images,
audio, etc. Recent open-source instruction-tuned
MLLMs including Alayrac et al. (2022a); Zhu et al.
(2023); Zhang et al. (2023c); Liu et al. (2023e); Su
et al. (2023); Liu et al. (2023b); Zhang et al. (2023b);
Wu et al. (2023b); Liu et al. (2023b,d) have shown
remarkable performance. In this part, we will delve
into how to build instruction-tuned MLLMs step by
step. This session is structured as follows. (1) First,
we will introduce the construction of visual instruc-
tion data and how to improve data quantity and
quality. (2) Second, We will engage in the intricate
details of the architecture and training strategies of
current MLLMs, like MiniGPT4 (Zhu et al., 2023),
LLaVA (Liu et al., 2023e) and etc. (3) Third, we
will discuss the challenges in this domain, including
parameter-efficient training and relieving hallucina-
tion issues (Liu et al., 2023c,a).
Part 4: Multimodal Reasoning (40 mins) Imag-
ine trying to study a textbook without any figures,
diagrams, or tables. Multimodal reasoning is a
rapidly evolving research field that aims to enhance
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deep learning models by enabling them to learn
from information gathered from various sources
and engage in complex reasoning (Hu et al., 2017;
Alayrac et al., 2022b; Lu et al., 2022; Yang et al.,
2023; Driess et al., 2023). In this section, we
will delve into the techniques and methodologies
that form the foundation of multimodal reasoning.
These techniques empower MLLMs to perform
intricate reasoning tasks across different modal-
ities, drawing upon their cognitive abilities. This
session is structured as follows. (1) First, we will
introduce benchmark datasets and assess the
performance of MLLMs on these benchmarks. (2)
Second, we will engage in a detailed discussion
exploring key research topics, including multimodal
chain-of-thought reasoning (Zhang et al., 2023d),
multimodal in-context learning (Zhao et al., 2023b),
and compositional reasoning (Lu et al., 2023). (3)
Third, we will address the challenges faced in
this area and discuss future research directions,
including multimodal tool learning and multimodal
autonomous agents.

Part 5: Efficient MLLM Development (40 mins)
MLLM construction (Alayrac et al., 2022b; OpenAI,
2022a) is typically costful, which usually takes thou-
sands of GPU hours and causes severe carbon
emissions. In this condition, efficient MLLM de-
velopment aims at training MLLMs with reduced
training cost, while still ensuring excellent multi-
modal understanding ability. In this section, we
will make a systematical review of the techniques
that contribute to training efficiency from 3 as-
pects: (1) First of all, to reduce the training cost,
parameter-efficient tuning like LoRA (Hu et al.,
2021) is usually employed. We will introduce sev-
eral parameter-efficient tuning methods (Hu et al.,
2021; Dettmers et al., 2023) and corresponding ex-
amples. (2) Secondly, using the high-quality train-
ing data (Liu et al., 2023e; Li et al., 2023) is es-
sential to boost the training efficiency. We list the
widely used databases and make a discussion on
their effects. (3) Thirdly, we will introduce how to
organize the above mentioned techniques by using
different training paradigms. For example, VPG-
Trans (Zhang et al., 2023a) propose a two-stage
transfer learning framework to realize MLLM con-
struction with around 10% cost. After reviewing
existing techniques, we will discuss the challenges
and future directions, including how to decide the
optimal corpus composition and search for the most
efficient training paradigm.

3. Reading List
LLMs and MLLMs. GPT-3 (Brown et al., 2020);
GPT-4 (OpenAI, 2022a); Flamingo (Alayrac et al.,
2022b); BLIP-2 (Li et al., 2023); LLaVA (Liu et al.,
2023e); Visual ChatGPT (Wu et al., 2023a); Hug-
gingGPT (Shen et al., 2023); CoDi (Tang et al.,

2023); ImageBind (Girdhar et al., 2023); NExT-GPT
(Wu et al., 2023b); AnyMAL (Moon et al., 2023);
VisCPM (Hu et al., 2023); Muffin (Yu et al., 2023);
Qwen-VL (Bai et al., 2023); KOSMOS-2 (Peng et al.,
2023).
Instruction Tuning. MiniGPT4 (Zhu et al., 2023);
LLaVA (Liu et al., 2023e); LRV-Instruction (Liu et al.,
2023b); Llama-adapter v2: (Gao et al., 2023); SVIT
(Zhao et al., 2023a); mplug-owl (Ye et al., 2023).
Reasoning with LLM. Multimodal-CoT (Zhang
et al., 2023d); MMICL (Zhao et al., 2023b);
Chameleon (Lu et al., 2023); Auto-UI (Zhang and
Zhang, 2023).
Efficient Learning. LoRA (Hu et al., 2021),
QLoRA (Dettmers et al., 2023), LLaVA (Liu et al.,
2023e), LaVIN (Luo et al., 2023), VPGTrans (Zhang
et al., 2023a).

4. Presenters
Hao Fei (https://haofei.vip). He is cur-
rently a research fellow in the School of Computing,
National University of Singapore; and also an as-
sociate researcher at Sea AI Lab, Singapore. His
research interests cover NLP and multimodal learn-
ing, with specific interests in structural learning and
LLMs. Over 40 of his research papers have been
published at top-tier venues, e.g., ICML, NeurIPS,
ACL, ACM MM, AAAI, SIGIR, ĲCAI, WWW, EMNLP,
TOIS, TNNLS. He won the Paper Award Nomina-
tion at ACL 2023. He co-organized the Workshop
on Deep Multimodal Learning for Information Re-
trieval at ACM MM 2023. He has been the co-
organizer of top-tier conferences, such as Work-
shop Chair and Volunteer Chair in EMNLP, WSDM
and ACL. He served as Area Chair and Senior Pro-
gram Committee in relevant multiple conferences,
such as EMNLP, WSDM, AAAI, IJCAI and ACL.
Yuan Yao (https://yaoyuanthu.github.
io/). He is currently a research fellow in the
School of Computing, National University of
Singapore. His research interests include MLLMs
and information extraction. He has published over
20 papers in top-tier conferences and journals,
including ACL, EMNLP, NAACL, COLING, ICCV,
ECCV, NeurIPS, AAAI, and Nature Communica-
tions. He has served as a PC member for ARR,
ACL, EMNLP, NeurIPS, AAAI, WWW, etc.
Zhuosheng Zhang (https://bcmi.sjtu.
edu.cn/~zhangzs/). He is currently an Assis-
tant Professor at Shanghai Jiao Tong University,
China. His research interests include NLP, LLMs,
and multimodal autonomous agents. He has
published over 50 papers in top-tier conferences
and journals, including TPAMI, ICLR, ACL, AAAI,
EMNLP, TNNLS, TASLP, and COLING. He has
won 1st place in various language understanding
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and reasoning leaderboards, such as HellaSwag,
SQuAD2.0, MuTual, RACE, ShARC, and CMRC.
He has several tutorials at conferences, including
IJCAI 2021 and IJCNLP-AACL 2023.

Fuxiao Liu (https://fuxiaoliu.github.
io). He is currently a PhD student in the school
of Computer Science, University of Maryland,
College Park. His research interests cover multiple
vision and language tasks, including image/video
captioning, multimodal semantic alignment, fact-
checking, document understanding. His recent
focus is on building customizable large models
that follow humans’ intent. His research has been
published at top-tier venues, e.g., EMNLP, ICLR,
EACL, COLING. He has ever interned multiple
companies, including Nvidia, Adobe, Microsoft and
Tencent.

Ao Zhang (https://waxnkw.github.io).
He is currently a PhD student in the School of
Computing, National University of Singapore. His
research interests mainly lies on multimodal large
language model, multimodal prompt learning and
structured scene understanding. He has published
several papers on top-tier conferences including
ICCV, ECCV, ACL, EMNLP, AAAI, and NeurIPS.

Tat-seng Chua (https://chuatatseng.
com). He is the KITHCT Chair Professor with
the School of Computing, National University of
Singapore, where he was the Acting and Founding
Dean of the School from 1998 to 2000. His main
research interests include multimedia learning and
social media analytics. He is the Co-Director of
NExT++, a joint center between NUS and Tsinghua
University, to develop technologies for live social
media search. He is the 2015 winner of the
prestigious ACM SIGMM Technical Achievement
Award and has received the best papers (or
candidates) over 10 times in top conferences
(SIGIR, WWW, MM, etc). He serves as the
General Chair of top conferences multiple times
(MM 2005, SIGIR 2008, WSDM 2023, etc), and
the chief editors of multiple journals (TOIS, TMM,
etc). He has given invited keynote talks at multiple
top conferences, including the recent one on the
topic of large language models.

5. Other Information
Type of Tutorial: Cutting-edge.
Past Tutorials: To our knowledge, there is no prior
tutorial for delivering comprehensive instruction on
the topic of multimodal LLMs.
Target Audience: Our tutorial is targeted at mem-
bers of a broad range of relevant communities, e.g.,
NLP, CV and broad AI, who have interests in build-
ing LLMs and applying LLMs to achieve stronger

task performances. This includes researchers, stu-
dents of both academia and industry, as well as
practitioners wishing to make use of LLMs in their
learning pipelines. We expect that participants are
comfortable with the basic foundations of both NLP
and multimodal learning tasks, as well as the ba-
sic knowledge of standard generative models e.g.,
transformers. While we do not require any read-
ings, we recommend reviewing the works cited in
this proposal, especially the reading list.
Prerequisites: Following knowledge is assumed:

• Machine Learning: basic probability theory,
supervised learning, transformer models

• NLP: Familiarity with LLMs; prompt tuning tech-
nique, generative NLP, etc.

• Multimodal Learning: Familiarity with multi-
modal modeling, e.g., visual, video, audio; dif-
fusion models, etc.

Estimated Participant Number: 200.
Breadth: We estimate that approximately 30% of
the tutorial will center around work done by the
presenters. This tutorial categorizes the goal of de-
veloping successful MLLMs into several sub-topics,
and each of the sub-topics includes a significant
amount of other researchers’ works.
Open Access: We make all teaching material avail-
able online, and we agree to allow the publication of
slides and video recordings in the LREC-COLING
2024.
Diversity Considerations: The content and meth-
ods in this tutorial broadly cover the key common
knowledge from NLP, CV and machine learning
fields. Thus, this tutorial will facilitate a wide range
of communities in diverse topics and domains. The
speakers are from diversified academic institutions
with different backgrounds and regions, e.g., in-
cluding both professors, research fellows and Ph.D.
students, and from Sinagpore, China and USA. We
will reach out to academic communities to encour-
age them to attend our tutorial for the participation
of diverse audiences.

6. Ethics Statement

Our tutorial is committed to promoting the research
and responsible AI development. All the materials
cited, occurred and presented in this tutorial strictly
follow the corresponding regulations and licenses.
We emphasize the importance of respecting user
privacy, ensuring fairness in LLM systems, and ad-
vocating addressing potential biases across modal-
ities. We encourage participants to consider the
societal impact of their work and prioritize trans-
parency, accountability, and inclusivity in their re-
search. Together, we aim to advance multimodal
AI technologies while upholding the highest ethical
standards.
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