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Abstract
Artificial intelligence (AI)-aided disease prediction has gained extensive research interest due to its capability in
supporting clinical decision-making. Existing works mainly formulate disease prediction as a multi-label classification
problem and use historical Electronic Medical Records (EMR) to train supervised models. However, in real-world
clinics, such purely data-driven approaches pose two main challenges: 1) long tail problem: there are excessive
EMRs for common diseases and insufficient EMRs for rare diseases, thus training over an imbalanced data set could
result in a biased model that ignores rare diseases in diagnosis; 2) easily misdiagnosed diseases: some diseases
can be easily distinguished while others sharing analogous conditions are much more difficult. General classification
models without emphasizing easily misdiagnosed diseases may generate incorrect predictions. To tackle these
two problems, we propose a Medical Knowledge-Enhanced Contrastive Learning (MKeCL) approach to disease
diagnosis in this paper. MKeCL incorporates medical knowledge graphs and medical licensing exams in modeling in
order to compensate for the insufficient information on rare diseases; To handle hard-to-diagnose diseases, MKeCL
introduces a contrastive learning strategy to separate diseases that are easily misdiagnosed. Moreover, we establish
a new benchmark, named Jarvis-D, which contains clinical EMRs collected from various hospitals. Experiments on
real clinical EMRs show that the proposed MKeCL outperforms existing disease prediction approaches, especially in
the setting of few-shot and zero-shot scenarios.
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1. Introduction

In recent years, we have witnessed a rapid devel-
opment of artificial intelligence technologies (es-
pecially deep neural networks) in disease diagno-
sis and clinical decision support systems (Berner,
2007). Given the medical notes of a patient (e.g.,
Electronic Medical Record (EMR)), automatic dis-
ease prediction aims to predict the most possible
diseases which can help doctors to make correct
clinical decisions. In-time and accurate disease
prediction can also assist in early intervention,
leading to optimized disease management and
efficient allocation of healthcare resources. Pre-
viously rule-based and statistic knowledge-based
approaches were widely adopted in disease classi-
fication (Shortliffe, 2012; Kohn et al., 2014); how-
ever, they suffer from inflexibility and heavy labor
costs. Recent advances in deep learning have
gained great success in clinical disease modeling
(Lipton et al., 2015; Rasmy et al., 2021).

One of the biggest challenges in applying deep
learning to disease prediction based on EMR is
to learn feature patterns from a limited number of
annotated samples. Deep learning approaches re-
quire a large quantity of annotated medical records,
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Figure 1: Distribution of 12,776 electronic med-
ical records collected from five hospitals. Only
half of the diseases have more than 40 associated
records and less than 10% of diseases have more
than 100 records.

which are often impossible to acquire in real world
due to privacy concerns. Moreover, the accessi-
ble samples can be highly imbalanced due to the
heterogeneity of clinical presentations. Therefore,
directly using historical EMR for training has two
major drawbacks: 1) imbalanced dataset: in real-
world clinics, common diseases have a rich col-
lection of clinical cases while rare diseases often
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Figure 2: Examples of multiple–choice questions in
Medical Licensing Exam. Each question contains
only one correct answer and the rest are distrac-
tors.

have a small number of medical records or even no
records at all (Yoo et al., 2021). As shown in Fig-
ure 1, medical records of the top five diseases, in-
cluding Pneumonia, account for more than 20% of
cases, while the bottom five diseases such as Der-
matomyositis are less than 1%. Training on such an
imbalanced data set will result in a biased model
that may ignore rare diseases during prediction
(Chen et al., 2022b). This is unacceptable given
that clinical practice requires high accuracy and
misdiagnosis can lead to severe consequences; 2)
diseases with analogous symptoms can be eas-
ily misdiagnosed: according to International Clas-
sification of Diseases (ICD10),1 there are more
than 68,000 diseases in total. For some diseases,
like Psoriasis and Pneumonia, it is quite easy to
separate them. While for others like Myocarditis
and Myocardial Infarction, are both cardiovascular
diseases and share very similar symptoms such
as chest pain and abnormal heart rhythms. As
a result, they can easily be misdiagnosed and
improper treatments can lead to serious conse-
quences; therefore, it is crucial for AI models to be
able to distinguish between diseases with analo-
gous conditions and provide doctors with valuable
insights.

To handle the above two problems, we propose a
Medical Knowledge-Enhanced Contrastive Learn-
ing(MKeCL) approach to disease diagnosis. For
the imbalanced dataset problem, MKeCL intro-
duces prior medical knowledge in the form of the
knowledge graph. Such a knowledge graph can
compensate for the lack of information on rare
diseases in EMRs; As to the hard-to-diagnose
diseases, we find that the diagnosis questions
in the Medical Licensing Examination can help.
As shown in Figure 2, there are many disease
diagnosis-related multiple-choice questions in the
examination. Given the symptoms, the question

1https://icd.who.int/browse10/2019/en

asks to choose the most proper disease from all
five options. Usually, the distracting options are
quite similar to the correct answer and are often
misdiagnosed in clinics. Therefore, we can mine
the differences between diseases with analogous
symptoms from these multiple-choice questions in
examinations.

To incorporate medical knowledge graphs and
exam questions in modeling, we propose a medical
knowledge-enhanced contrastive learning frame-
work. In particular, upon the backbone classifica-
tion neural network, we introduce two objectives
for further optimization: 1) the separation between
correct and incorrect knowledge graph triples; and
2) the separation between correct answers and
distracting options. In this manner, data scarcity
can be alleviated and the difference between simi-
lar diseases can be emphasized. In summary, we
make the following contributions in this paper:

• We identify and target two challenges in dis-
ease diagnosis: data scarcity for rare diseases
and commonly misdiagnosed diseases.

• We introduce two auxiliary data sources: 1)
medical knowledge graph to compensate for
the lack of information on rare diseases and
2) medical exam questions to distinguish be-
tween diseases with analogous symptoms.
We also introduce a contrastive learning strat-
egy to incorporate these two data sources in
modeling without altering the network struc-
ture.

• We introduce a novel disease diagnosis bench-
mark, called JARVIS-D2, from large-scale real-
world clinical EMRs with labeled diagnosis re-
sults by professional clinicians.

• Extensive experiments are conducted on a
real-world EMR dataset and experimental re-
sults demonstrate the superior performance
of our proposed model, even compared with
ChatGPT.

2. Related Work

Disease Diagnosis. Traditional machine-
learning models were first used in single-label
disease classification in the late 1990s. Prince
(1996) employed the Bayes network to identify
Alzheimer’s and dementia. Recently, deep neural
networks gradually became the dominating
method in disease diagnosis. Green et al. (2006)
studied both neural network and logistic regression
in the prediction of acute coronary syndrome and

2For the sake of privacy, we are only permitted by
hospitals to release Jarvis-D after manual desensitiza-
tion.
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achieved promising results. To further improve
diagnostic accuracy, more features were taken into
consideration, e.g., Atkov et al. (2012) investigated
to add genetic factors to detect coronary disease.
However, the above approaches only focused on
one or a few specific diseases. More recently,
large language models have shown the potential
of improving disease diagnosis’s accuracy by pre-
training on large electronic medical records (EMR)
(Liu et al., 2021; Li et al., 2020; Rasmy et al., 2021).
Modeled as a multi-label classification problem
and taking the historical EMR as input, Li et al.
(2020) proposed to use the Transformer-based
model to predict a patient’s possible diseases
in the future, which encoded the 10th revision
of the ICD-10. Rasmy et al. (2021) introduced
Med-BERT, which adapted the BERT framework
to the structured electronic health record (EHR).
It fed BERT with three types of data involving
diagnosis codes, the order of codes within each
visit, and the position and name of each visit. The
studies by Wang et al. (2023) and Chen et al.
(2022a) explored how a diagnosis is formulated
by leveraging all symptoms, utilizing sequence
generation methodologies. The limitation of the
above methods is they neglect the real-world
data imbalance and sparsity problem in disease
prediction. Only a few works in recent years
have started to address this problem: Yang et al.
(2022b) introduced a prototypical networks-based
few-shot learning approach for dermatological
disease diagnosis; Yang et al. (2022b) attempted
to inject synonyms of medical terms in ICD-10
coding to relieve the data insufficiency for rare
diseases.

Contrastive Learning. Contrastive learning
aims to distinguish pairs of similar data points and
has shown excellent performance on supervised
contrastive Natural Language Processing (NLP)
pretraining (Rethmeier and Augenstein, 2023). Su-
pervised contrastive pretraining methods utilize
human-annotated corpora such as parallel sen-
tences, textual labels, or text summarizations to
define text data augmentations for contrastive train-
ing, while self-supervised contrastive methods aim
to scale pretraining by contrasting automatically
expanded input texts or output pseudo-labels. Re-
cently, Gao et al. (2021) proposed SimCSE, which
applied two dropout masks to an input sentence to
create two slightly different sentence embeddings
that were used as a pair of positive (matching)
sentence embeddings for self-supervised pretrain-
ing; Xu et al. (2022) introduced LaPraDoR, a pre-
trained dual-tower dense retriever that iteratively
trained the query and document encoders with a
cache mechanism, and it further integrated lexicon-
enhanced dense retrieval to enhance dense re-

trieval with lexical matching; Ma et al. (2022) pre-
sented a novel contrastive span prediction task to
pretrain the encoder alone, but still retain the bottle-
neck ability of autoencoder; Muennighoff (2022) ap-
plied in-batch negatives to train a Transformer de-
coder for generating sentence embeddings. After
being pretrained using contrastive learning, models
are believed to be efficient for downstream tasks
or zero-shot transfer, e.g., medical image analy-
sis (Zhang et al., 2022a), clinical events forecast-
ing (Zhang et al., 2022b), and disease prediction
(Chen et al., 2022c; Wu et al., 2022).

3. Methodology

In this section, we present the proposed Med-
ical Knowledge-Enhanced contrastive learning
(MKeCL) model. Firstly, we introduce two types
of external knowledge and simple prompts to con-
vert them to question-answer pairs; Secondly, we
describe the detailed process of how MKeCL uses
Contrastive Learning for disease diagnosis.

3.1. Incorporating Medical Knowledge

One of the key characteristics that distinguishes
our method from other systems (Yang et al., 2022b)
is that we integrate external knowledge from mul-
tiple sources in modeling. Here we collect struc-
tured data from Knowledge Graph (KG) and text
data from the Medical Licensing Exam.

• Medical Knowledge Graph: to compensate for
the insufficient training data for rare diseases,
we introduce the pre-built knowledge graph to
enrich the connections between rare diseases
and common diseases, between rare diseases
and symptoms, etc.

• Medical Licensing Exam: to distinguish easily
misdiagnosed diseases, we introduce multi-
choice questions in the Medical Licensing
Exam. As shown in Figure 2, for each ques-
tion, there is one correct answer and multi-
ple disturbing options. Since these disturbing
options are carefully designed by medical ex-
perts, they are easily mistaken for the correct
answer. We can improve the model by sepa-
rating correct answers from these distractors.

To accommodate medical knowledge graphs and
medical licensing exam data in modeling, we con-
vert them into question-answer pairs and use them
for pre-training via contrastive learning. In the med-
ical knowledge graph, every triple consists of two
entities and a relationship in the form of (entitya,
relation, entityb). We transform these triples into
question-answer pairs by using a simple prompt to
combine entitya and relation into a question. For in-
stance, we convert (Heart Failure, Symptom, Chest
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Figure 3: The workflow of Medical Knowledge-Enhanced Contrastive Representation Learning (MKeCL).
Data collected from the Medical Licensing Exam and knowledge graph during pretraining are converted
into question-answer pairs for contrastive learning. – between embeddings represents positive instances,
- - means in-batch negatives and - - denote hard negatives. The Transformer encoder is used to generate
embeddings for each question-answer pair. During the prediction stage, embeddings of all disease
candidates are compared with that of EMR, and the one with the smallest cosine distance is the predicted
disease.

Pain) into “What is the common symptom of Heart
Failure?” - “Chest Pain”; As to the Medical Licens-
ing Exam, we convert the pair (question, option)
as a QA pair. For the correct answer, we create
a positive instance, while for each distractor, we
generate a negative instance.

3.2. Contrastive Learning for Diagnosis

Contrastive learning aims to learn effective repre-
sentations by pulling semantically close sentences
together and pushing unrelated sentences apart
(Hadsell et al.). It has been proven effective in lan-
guage model training and benefits various down-
stream NLP tasks. In this paper, we propose a
training framework that applies contrastive learn-
ing to both pretraining and finetuning. As shown
in Figure 3, the proposed framework consists of
three major steps:

• Pretraining: we convert data collected from
the knowledge graph and Medical Licensing
Exam into question and answer pairs. Both
questions and answers are sent to the same
Transformer-based encoder. Then contrastive
learning is conducted over the representation
of questions and answers to optimize the pa-
rameters of the encoder. In this step, we try
to overcome the challenges posed by insuffi-
cient training data for rare diseases and easily
misdiagnosed diseases.

• Fine-tuning: we use the data of the down-
streaming task: diagnosis prediction to fine-
tune the parameters of the encoder. The in-
put data is also in the format of question-and-
answer pairs. We convert each EMR into a
question by adding a simple prompt and re-
gard the doctor’s diagnosis as the answer;

• Disease Diagnosis: this step is the inference
step that predicts the diagnosis given the input
EMR.

3.2.1. Positive and Negative Instances

In this subsection, we compose the positive and
negative cases for contrastive learning. We use
(xi, x

+
i ) to denote a positive pair of instances,

where xi and x+
i are semantically related. Sim-

ilarly, we use (xi,x−
i ) to denote a negative pair of

instance, where xi and x−
i have unrelated or even

contradictory meanings. These pairs are used to
train our encoder to better capture their underly-
ing semantic meaning; therefore, it is critical to
construct insightful positive (xi, x

+
i ) and negative

(xi, x
−
i ) pairs. Common approaches in NLP in-

clude data augmentation techniques such as syn-
onym replacement, random word insertion, and
back translation (Su et al., 2021; Meng et al., 2021).
However, given that medical terms are generally
specific and precise, traditional data augmentation
techniques may introduce extra noise when deal-
ing with medical text. Therefore, we propose to
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generate positive and negative pairs as the follow-
ing:

• Positive Pairs: Following the ideas in (Hender-
son et al., 2017; Gillick et al., 2019; Karpukhin
et al., 2020), we construct positive pairs from
the Medical Licensing Exam and knowledge
graph. As mentioned in Section 3.1, we extract
question and answer pairs from the Medical
Licensing Exam and knowledge graph. We
refer the representation of the question and
answer (acquired from the encoder) as pairs
of positive cases.

• Negative Pairs: we introduce two types of neg-
ative pairs: 1) In batch negatives: the ques-
tions with unpaired answers in the same train-
ing batch (Chen et al., 2020); 2) hard nega-
tives: adding hard negatives has been proved
to be effective in contrastive learning (Gao
et al., 2021). As shown in Figure 2, since each
multiple-choice question has several mislead-
ing options that are very similar to the correct
answer, we include all incorrect options as
hard negatives into our training dataset.

3.2.2. Encoding Electronic Medical Records

After pretraining MKeCL on external knowledge,
we use it to generate embeddings for electronic
medical records. Each EMR is a short paragraph
with descriptions of the symptoms experienced
by the patient and lab results if available. Firstly,
we extend EMR with a prompt and convert it into
a sequence of tokens and pass them through a
Transformer encoder to produce a sequence of hid-
den vectors b ∈ RNt×Hd , where Nt is the length
of tokens in the question and Hd is the dimension
of the hidden states. A mean pooling layer further
converts token embeddings into a final representa-
tion h ∈ RHd . A similar process is used to generate
embeddings for the disease associated with the
EMR.

3.2.3. Optimization and Inference

We follow the works in (Chen et al., 2020; Gao
et al., 2021) and take a cross-entropy training ob-
jective ℓi with mini-batch of size N :

ℓi = −log
esim(hi,h+

i )

esim(hi,h+
i ) +

∑N
j=1,j ̸=i ce

sim(hi,h−
j )

, (1)

where hi,h+
i ,h

−
i denote the representations of

(xi, x
+
i , x

−
i ), respectively. We use cosine similarity

hT
i hj

||hi||·||hj || as the similarity function sim(hi,hj).
During the disease prediction stage, we use

MKeCL to encode EMR and each disease can-
didate respectively. Following the input data format

Figure 4: Distribution of different types of medical
knowledge used in pretraining MKeCL.

used during the training stage of MKeCL, all EMRs
are appended with a prompt question asking for the
predicted disease. Each disease candidate’s repre-
sentation hdi is compared with the “EMR+prompt”
representation hEMR, and the one that has the
largest cosine similarity (1 − hT

EMRhdi

||hEMR||·||hdi
|| ) is se-

lected as the most possible disease.

4. Experiments

4.1. Datasets

External Source of Knowledge. We utilized
2,585 disease-related triples from a pre-built medi-
cal knowledge graph, which was extracted from
professional medical textbooks by medical ex-
perts3. Therefore, the quality of these triples is
assured. We also collected 41,626 multiple-choice
questions from previous Medical Licensing Exams.
As shown in Figure 4, our data mainly covers six
types of medical knowledge, in which treatment
and lab tests are the most prevalent. We apply
simple prompts to convert the data into question-
answer pairs and use them to pretrain MKeCL.

Electronic Medical Records. After the pretrain-
ing stage, our model is further finetuned on a total
of 12,776 electronic medical records that cover 193
diseases. These medical records were obtained
from five hospitals with signed approval from pa-
tients. Due to the anonymity requirement, we did
not disclose the names of these five hospitals in
this submission. Each EMR contains basic infor-
mation about a patient such as sex and age, and
also the patient’s chief complaint and lab test re-
sults. An example is given in Figure 3. Training
and testing datasets are randomly divided. In order
to evaluate MKeCL’s performance on few-shot and
zero-shot settings, 0%, 1%, 3%, 5%, and 10% of
training data are sampled respectively.

4.2. Baselines

We compared MKeCL with BERT (Devlin et al.,
2018), which is a Transformer-based model and

3https://jarvislab.tencent.com/kg-intro.html
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Model 0% 1% 3% 5% 10% 100%
Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma

ALBERT (Lan et al., 2019) - - 30.9 31.8 36.1 43.2 48.3 44.7 61.6 57.6 87.7 85.9
BERT (Devlin et al., 2018) - - 42.6 44.1 43.8 50.7 55.4 52.1 68.6 63.2 90.3 89.6
MedBERT (Ting et al., 2020) - - 42.2 43.5 44.2 50.9 54.9 52.4 67.0 61.9 90.2 89.1
GP (Yang et al., 2022a) - - 43.5 52.8 49.2 59.0 48.7 55.8 54.8 58.5 82.7 85.6
KEPT (Yang et al., 2022b) - - 47.4 45.1 51.9 54.6 60.2 53.8 68.7 63.2 89.8 87.9
ChatGPT 40.9 41.2 41.1 40.5 43.0 44.6 45.2 43.5 45.3 44.8 - -
GPT-4 41.7 34.4 40.6 32.4 44.1 36.2 46.3 37.7 46.2 37.3 - -

MKeCLmlm pretrain - - 50.6 43.56 51.2 49.4 58.1 50.2 68.4 60.5 89.7 86.0
MKeCLw/o pretrain - - 45.2 39.9 49.2 49.2 55.2 45.3 66.5 59.1 88.3 84.1
MKeCLw/o exam 23.7 16.6 48.3 44.3 52.4 51.6 56.8 47.1 67.2 59.2 88.9 85.5
MKeCLw/o kg 49.5 46.1 59.3 54.4 60.4 58.3 65.4 57.5 71.5 64.0 90.2 87.8
MKeCL 50.5 46.1 60.7 55.7 63.7 60.5 68.1 61.6 73.0 67.0 90.5 87.4

Table 1: The micro F1 (Mi) and macro F1 (Ma) on EMR dataset. We sample 0%, 1%, 3%, 5%, and
10% of the dataset to train models respectively and evaluate their performance at zero-shot and few-shot
settings. For ChatGPT and GPT-4, we adopt in-context learning to simulate the few-shot setting. This
involves demonstrating 1, 2, 3, and 5 examples in the prompt to mimic the few-shot setup.

is further finetuned on disease classification tasks
using EMR data; ALBERT (Lan et al., 2019), which
is a Transformer architecture based on BERT but
with fewer parameters; MedBERT (Rasmy et al.,
2021), which takes BERT as the backbone and
is finetuned with mask language modeling on an
EMR dataset of 28,490,650 patients; GP (Yang
et al., 2022a), which is a generative model pre-
trained with auto-regression and predicts the text
description of each ICD code; KEPT (Yang et al.,
2022b), which pretrains Longformer using domain-
specific knowledge such as disease synonyms;
and ChatGPT4 as well as GPT-4,5, which are two
best sibling models to InstructGPT (Ouyang et al.,
2022) trained to follow the instruction in a prompt
and provide a detailed response.

To further examine the performance of pretrain-
ing MKeCL using external knowledge, we also
finetune MKeCL on EMR directly. Then to ex-
amine the genuine advantages of MKeCL, we
compare with its variants as outlined below: 1)
MKeCLmlm pretrain, a variant of MKeCL that un-
dergoes pre-training using the masked language
modeling task (MLM) instead of contrastive learn-
ing; 2) MKeCLw/o pretrain, a variant of MKeCL that
does not involve pretraining; 3) MKeCLw/o exam,
a variant of MKeCL that does not utilize medical
exam knowledge; 4) MKeCLw/o kg, a variant of
MKeCL that does not incorporate data from knowl-
edge graph.

4.3. Implementation Details

MKeCL and its variants take BERTBase as the back-
bone. All models are trained with a maximum se-
quence length of 256, a learning rate of 1× 10−4

with 100 warm-up steps and a maximum of 100

4https://openai.com/blog/chatgpt
5https://openai.com/gpt-4

epochs in both pretraining and finetuning stages.
Since we take in-batch negatives during the train-
ing of MKeCL, the performance is believed to be
sensitive to the training batch size (Henderson
et al., 2017). We experiment with different batch
sizes and choose the optimal batch size of 16 to
train all versions of MKeCL.

4.4. Metrics

The F1 score, a measure of a classification model’s
performance, is the harmonic mean of precision
and recall. We use Macro F1, which is the arith-
metic mean of per-class F1 scores, and Micro F1,
which also takes into account the support for each
class as the first two metrics to evaluate the dis-
ease diagnosis results.

Contrastive learning-based methods predict the
disease by differentiating the distance between the
representations of EMR and disease. We also use
alignment and uniformity (Wang and Isola, 2020)
to assess the robustness of the produced repre-
sentations. Alignment calculates the expected dis-
tance between the embeddings of positive pairs:

ℓalign
∆
= E

(x,x+)∼ppos

||f(x)− f(x+)||2. (2)

On the other hand, uniformity measures how far
the negative instances are scattered over the hy-
persphere:

ℓuniform
∆
= log E

(x,y)
i.i.d∼ pdata

e−2||f(x)−f(y)||2 , (3)

where pdata denotes the data distribution. For both
ℓalign and ℓuniform, lower numbers are better.

4.5. Main Results

As illustrated in Table 1, MKeCL significantly out-
performs all baseline models. When trained with
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(a) ALBERT (b) BERT (c) MedBERT (d) KEPT (e) MKeCL

Figure 5: Visualization of medical record representations generated by ALBERT, BERT, MedBERT, KEPT,
and MKeCL using t-SNE. Models are trained on 1% of the training dataset and medical records from 10
diseases are sampled randomly for visualization.

Figure 6: ℓalign-ℓuniform plot of all baseline models
and all variants of MKeCL.

just 1% of the dataset, MKeCL achieves a micro
F1 score of 60.7% (an improvement of 13.3%) and
a macro F1 score of 55.7% (an improvement of
2.9%). These figures in parentheses represent the
improvements over the best-performing baseline
models, KEPT and GP. MKeCL also surpasses
classification models (BERT, ALBERT, MedBERT,
and KEPT) and generative models (GP, ChatGPT
and GPT-4) in terms of both micro and macro F1
scores across all datasets. This underscores the
value of using contrastive learning to generate su-
perior representations of EMR and diseases. De-
spite MedBERT being pretrained on approximately
28,490,650 health records (around 7000 times the
data used to pretrain MKeCL), it scores about 20%
lower on F1 scores in few-shot settings. This high-
lights the effectiveness of integrating external med-
ical knowledge from multiple sources in MKeCL.
To compare MKeCL’s performance with ChatGPT
and GPT-4, we simulated 1%, 3%, 5%, and 10%
few-shot settings by providing ChatGPT and GPT-
4 with 1, 2, 3, and 5 examples per EMR in the
prompt, respectively. Due to ChatGPT’s input to-
ken limitation, we couldn’t test its full-shot capability.
MKeCL outperforms both ChatGPT and GPT-4 in
all settings, demonstrating its effectiveness. Inter-
estingly, ChatGPT exhibits better performance in

distinguishing dissimilar diseases, as indicated by
its higher Macro F1 scores compared to GPT-4.

Visualization of Disease Representations. To
examine the quality of representations generated
by MKeCL, we randomly sampled EMRs from 10
diseases and visualized their embeddings gener-
ated by BERT, ALBERT, MedBERT, KEPT, and
MKeCL using t-SNE respectively. As shown in
Figure 5, when trained using 1% data, MKeCL is
able to produce embedding clusters that are inter-
nally tighter and well-separated from each other
compared to other baseline models. We also calcu-
lated ℓalign and ℓuniform following Equation 2 and
3 and plot the result in Figure 6. MKeCL has the
lowest loss for both alignment and uniformity and
by comparing MKeCL and its variants, we can con-
clude that pretraining with both knowledge graph
and medical exam questions leads to better repre-
sentations.

Comparison of Easily Misdiagnosed Diseases.
We also evaluate MKeCL’s ability to distinguish
diseases with analogous conditions. We use a
heatmap to visualize each model’s performance
in identifying the correct disease based on EMR
from a set of disease candidates with analogous
symptoms. Myocarditis, Heart Failure, and Myocar-
dial Infarction are cardiovascular diseases and they
all present with similar symptoms such as chest
pain, shortness of breath, fatigue, and palpitations.
However, they have different causes and require
different treatments, and therefore misdiagnosis
would lead to serious health complications. One
key difference between Heart Failure, Myocardial
Infarction, and Myocarditis is their symptom du-
ration. Heart failure typically involves long-term
conditions that persist over months, whereas my-
ocardial infarction presents with more severe and
persistent symptoms over a shorter period of time.
As shown in Figure 7, MKeCL performs the best
in distinguishing between these three diseases,
while other baseline models are only able to clas-
sify one or two diseases correctly. Examples of
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(a) ALBERT (b) BERT (c) MedBERT (d) GP

(e) KEPT (f) ChatGPT (g) GPT-4 (h) MKeCL

Figure 7: Confusion matrix on easily misdiagnosed diseases. We use a heatmap to visualize each
model’s accuracy in classifying between Myocarditis (MCD), Heart Failure (HF), and Myocardial Infarction
(MI). The x-axis represents the correct disease and the y-axis represents the predicted disease.

EMR GT BERT ALBERT MedBERT GP KEPT ChatGPT GPT-4 MKeCL

Case 1 HF HF HF MCD MCD HF HF HF HF

Case 2 MCD HF MCD MCD HF MI MI MI MCD

Table 2: Disease prediction results of different algorithms on two real cases. MCD, HF, and MI are
Myocarditis, Heart Failure, and Myocardial Infarction, respectively, while GT is the ground truth. The
detailed EMR content for Case 1 is: “Male, elderly, with a 3-year history of exertional angina. Over
the past 2 weeks, the frequency of angina episodes has increased, and blood pressure has risen to
166/94 mmHg. The patient also experiences paroxysmal nocturnal dyspnea and is currently unable
to lie flat.” Besides, the EMR for Case 2 states: “Female, middle-aged, with persistent chest pain for 6
hours. Physical examination: BP 110/70 mmHg. No crackles or wheezes were detected in both lungs.
Heart rate is 125 beats/minute with a regular rhythm. No murmurs are heard in any cardiac valve areas.
The electrocardiogram reveals partial ST-T elevation. Laboratory tests indicate elevated blood troponin
levels.”.

each model’s classification results are shown in
Table 2. The first patient has had exertional angina
for over three years, indicating a high possibility of
heart failure, while the second patient experienced
six hours of persistent chest pain, indicating a high
possibility of myocardial infarction.

4.6. Ablation Studies

To investigate the contribution of each module in
MKeCL, we compare it with its variants. Firstly,
as shown in Table 1, information from medical li-
cense exam or medical knowledge graph is ben-
eficial because dropping one of them (“MKeCL
w/o exam” or “MKeCL w/o kg”) degrades the per-
formance of MKeCL. Using the contrastive pre-
training procedure is advantageous because us-
ing a masked language modeling task (“MKeCL
mlm pretrain”) or erasing the contrastive pretrain-

ing (“MKeCL w/o pretrain”) for MKeCL impairs its
performance. Masked language modeling is also
effective, indicated by the superior performance of
(“MKeCL mlm pretrain”) compared to without using
pretraining task (“MKeCL w/o pretrain”). Further-
more, as illustrated in Figure 6, contrastive pretrain-
ing is crucial for enhancing uniformity. Removing it
or substituting it with a masked language modeling
task diminishes the uniformity of MKeCL. Simulta-
neously, the knowledge graph leads to improved
alignment outcomes, and the medical license exam
knowledge contributes positively to both uniformity
and alignment.

5. Conclusions

Rare diseases impact over 300 million people glob-
ally, yet each has limited clinical records, and
similar symptoms can lead to misdiagnosis. We
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propose the Medical Knowledge-enhanced Con-
trastive Learning framework (MKeCL) to address
these issues. MKeCL integrates knowledge from
a medical graph to supplement rare disease data
and uses medical exam questions to differentiate
similar diseases. A contrastive learning framework
combines these data sources. Our experiments
confirm MKeCL’s effectiveness in diagnosing dis-
eases in few-shot and zero-shot settings, poten-
tially reducing diagnostic delays for rare disease
patients.

Future research should focus on improving
MKeCL’s interpretability, crucial for clinician adop-
tion, and examining its scalability to larger, more
diverse datasets. As dataset complexity in-
creases, so may computational and corpus require-
ments, potentially limiting MKeCL’s applicability in
resource-constrained settings.

Ethics Statement

In this work, we underscore the substantial risks
that may arise from the improper application of
the proposed models within the medical domain.
The primary objective of our research is to explore
more efficient and effective approaches to disease
diagnosis. However, it is crucial to note that the
proposed models are not yet ready for deployment
in real-world medical settings. The potential for
these models to mislead users about the under-
lying reasons for their predictions is a significant
concern. Misinterpretations could lead to incorrect
decisions, with potentially serious implications for
patient care and outcomes. Moreover, the ethical
considerations of our work extend beyond the accu-
racy and reliability of the models. The privacy and
security of sensitive medical data are of paramount
importance. During the process of data collec-
tion and utilization, we have implemented stringent
measures to ensure the protection of this sensitive
information. Our method adheres to all relevant
national and international data protection regula-
tions, demonstrating our commitment to ethical
data practices. In addition to regulatory compli-
ance, we have employed robust data anonymiza-
tion and encryption techniques to safeguard patient
confidentiality. These techniques ensure that in-
dividual patient identities cannot be linked to the
data used in our models, thereby minimizing the
risk of privacy breaches. We recognize that the
trust of patients and healthcare providers in our
work hinges on our ability to protect this sensitive
information effectively. In conclusion, while our
work holds promise for improving disease diagno-
sis, it is essential to approach its application with
caution. We must continue to prioritize the ethical
considerations of accuracy, transparency, data pri-
vacy, and security as we further develop and refine

these models.
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