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Abstract
Within the current trend of Pretained Language Models (PLM), emerge more and more criticisms about the ethical and
ecological impact of such models. In this article, considering these critical remarks, we propose to focus on smaller
models, such as compact models like ALBERT, which are more ecologically virtuous than these PLM. However,
PLMs enable huge breakthroughs in Natural Language Processing tasks, such as Spoken and Natural Language
Understanding, classification, Question—Answering tasks. PLMs also have the advantage of being multilingual, and,
as far as we know, a multilingual version of compact ALBERT models does not exist. Considering these facts, we
propose the free release of the first version of a multilingual compact ALBERT model, pre-trained using Wikipedia
data, which complies with the ethical aspect of such a language model. We also evaluate the model against classical
multilingual PLMs in classical NLP tasks. Finally, this paper proposes a rare study on the subword tokenization

impact on language performances.
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1. Introduction

Recent advances in the field of Natural Language
Processing (NLP) are due to the development of
transfer learning and the availability of Pre-trained
Language Models (PLM) based on Transformer
architectures (Vaswani et al., 2017), such as BERT
(Devlin et al., 2019). As they provide contextualized
semantic representation, they contribute both to
advancing the state-of-the-art on several NLP tasks
and also to evolving training practices through the
use of fine-tuning.

The recent trend consists of training large PLMs
on ever larger corpora with an ever-increasing
amount of parameters, which requires consider-
able computational resources that only a few com-
panies and institutions can afford, such as GPT-
4 (OpenAl, 2023), LLaMA (Touvron et al., 2023)
or BLOOM (Scao et al., 2022). This trend raises
questions about the temporal, financial, and envi-
ronmental aspects of these models (Strubell et al.,
2019; Moosauvi et al., 2020). Therefore, one of the
favored tracks is the reduction of computational
resources involved while pre-training, fine-tuning,
and inference of these models.

As far as we know, compact models, such as
the ALBERT model(Lan et al., 2019), are a pos-
sible answer since they have been evaluated on
the comprehension tasks covered by GLUE (Wang
et al., 2018) and the question-answering task with
the SQUAD corpus (Rajpurkar et al., 2016) with
abundant data. They also have shown their effec-
tiveness on lower-scale learning problems in poorly
endowed languages but only in a monolingual con-
text (Lan et al., 2019; Cattan et al., 2021). As far as
we know, the multilingual version of such a model
does not exist.

All Pre-trained Language Model uses subword
unit tokenization in order to alleviate the open vo-
cabulary problem. We take the opportunity of a
new language model to conduct a short study of
the impact of the subword unit vocabulary. Sub-
word units come from studies conducted in machine
translation using compression methods in order to
reduce the vocabulary amount and to handle the
Out-Vocabulary-Words (Chitnis and DeNero, 2015;
Schuster and Nakajima, 2012; Wu et al., 2016; Sen-
nrich et al., 2016; Kudo and Richardson, 2018).

These subword unit approaches are linguistic-
free and are mainly models, which are estimated on
raw text. On the other side, it has been observed
that these subword models do not correspond to
linguistic units such as morphemes, affixes, etc.
(Huck et al., 2017; Machacek et al., 2018; Ataman
et al., 2017; Pinnis et al., 2017).

In order to conduct our subword comparison, we
create three versions of the same ALBERT model,
which are trained on the same data but with differ-
ent tokenization. The goal of this subword study
is to verify the impacts of subword models asso-
ciated to our ALBERT models in NLP tasks. Es-
pecially in tokens class classification tasks, such
as Named Entity Recognition or Spoken Language
Understanding tasks.

Contributions: First, this paper presents the
release of a multilingual version of ALBERT (Lan
et al., 2019): mALBERT!, trained on open-source
and ethical data; second, we propose a study of
the subword tokenization process focused on the
vocabulary size impact. We also measure the tok-
enization impact, which is correlated with the sub-
words segmentation rate of tokens.
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The paper is organized as follows: first, we
present the model architecture and the pre-training
details in Section 2; Section 3 details the experi-
ments conducted using our new models and the
tokenization study; Finally, the last section presents
the conclusion and outcomes of this paper.

2. Model Pre-training

As far as we know, there is no multilingual compact
model. We therefore propose to pre-train a new
version of ALBERT from scratch: mALBERT.

ALBERT is based on parameter shar-
ing/reduction techniques that enable us to
reduce the computational complexity and speed
up training and inference phases. Compared to
previous compact models such as DistilBERT
(Sanh et al., 2019), Q-BERT (Shen et al., 2020)
or TernaryBERT (Zhang et al., 2020), ALBERT is
to the date the smallest pre-trained models with
12 million parameters and <50 megabyte model
size. ALBERT models also show their ecological
advantages regarding bigger models (Cattan et al.,
2022).

2.1. Data

Aiming to use open-source and ethical data to
pre-train the mALBERT model, we decided to use
only Wikipedia data for each language. Figure 1
presents the language distribution of the Wikipedia
corpus collected on January 2023. The corpus is
roughly 21 billion words across 50 most common
languages on Wikipedia, plus English and Basque.

As for many other multilingual models, English
prevails the whole corpus with French, German,
and Spanish. These four languages represent
nearly 50% of the corpus.

2.2. Subword unit

The subword unit tokenization model chosen for our
multilingual ALBERT model is based on a unigram
language model approach (Kudo and Richardson,
2018). This subword unit approach was chosen
because it enables us to fix the final amount of
vocabulary.

Three subword unit models were trained on a
subpart of the corpus selected randomly, in order
to study the impact of the tokenization process on
the final ALBERT model performances. The tok-
enization models differ only with the amounts of the
final vocabulary generated: 32k, 64k, and 128k.

2.3. Training parameters

Models are trained for roughly 9000 hours on the
ANONYMIZED CALCULATOR NAME, using the

UER-py toolkit (Zhao et al., 2019) jointly with Deep-
Speed (Rasley et al., 2020), and use multiple train-
ing objectives (masked language modeling and
next sentence or sentence order prediction). We
use the same learning configuration as the original
model with a batch size of 128 and an initial learning
rate set to 3.125 x 104,

Finally, we pre-train three models based on the
same amount of corpus, with the same amount
of parameters, but they differ only by the amount
of input vocabulary. We noted our final models
as follows: mALBERT-128k, mMALBERT-64k, and
mALBERT-32k, which respectively use an amount
of 128k, 64k, and 32k tokens.

3. Experiments

Our three new models are benchmarked on two
kinds of classical NLP tasks: the slot-filling and
classification tasks. These tasks use standard fine-
tuning approaches, in which fine-tuning and eval-
uation scripts are provided by HuggingFace (Wolf
et al., 2019). For each experiment, we do not seek
to have the best score, but a point of comparison
for our models.

We compare our new multilingual ALBERT
model to the large multilingual model mBERT (De-
vlin et al., 2019) as well as on the compact multilin-
gual models with a distilled version of mBERT: distil-
mBERT (Sanh et al., 2019). Our comparison in-
cludes also some monolingual versions of ALBERT
for English (noted EnALBERT in CoNLL2003 and
MultiCoNER tasks) and French (in MEDIA), noted
FrALBERT (Cattan et al., 2021).

Finally, we do not compare our models with big-
ger LLM such as GPT-4 (OpenAl, 2023), LLaMA
(Touvron et al., 2023) or BLOOM (Scao et al., 2022),
for resources and ecological considerations.

3.1. Slot-filling benchmark

Six slot-filling tasks are used to benchmark our
new mALBERT models: two multilingual under-
standing tasks, Massively Multilingual NLU 2022
(MMNLU) (FitzGerald et al., 2022) and MultiATIS++
(Xu et al., 2020); two Named Entity Recognition
monolingual tasks: CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003) and MultiCoNER (Malmasi
et al., 2022); and two monolingual language under-
standing tasks: SNIPS (Coucke et al., 2018) and
MEDIA (Bonneau-Maynard et al., 2009).

Table 1 presents the results obtained on the slot-
filling tasks according to the F1-measure. For every
task and model, we perform 10 runs with a different
seed each time. Over all tasks, mBERT and Distil-
mBERT obtain the best results. On the one hand,
monolingual ALBERT models perform better on
CoNLL2003 and SNIPS tasks. On the other hand,
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Figure 1: Language distribution (52 languages) over the training corpus. In the legend, languages
are presented according to their representativity: from left to right and from up and down. The most
representative language is English (en) and the least one is Amharic (am)

Languages
men mfr mde
es ®Wru mit
mzh ®msv ®pt
mpl wmar wmnl
Hca vi ja
hu mhe mid
mno mfa mko
mtr mfi Hro
el hy da
eu ms s
maz ®mbn mcy
mhi ®mta mur
m th ka te
af sq Iv
eml mkn mtl
His HEsw Hjv
my mn km
am

Models < Tasks  MMNLU _ MuliATIS++ CONLL2003  MuliCoNER _ SNIPS MEDIA
mBERT 73.46° (0.11) 92.22(0.11) 95.59" (0.10) 66.36" (0.18) 96.09 (0.31) 87.90" (0.09)
Disti-mBERT  72.44* (0.08) 91.69 (0.09) 94.59% (0.13) 61.26* (0.13) 94.95(0.22) 86.83" (0.21)
EnALBERT N/A N/A 89.67* (0.34) 42.36* (0.22) 95.95 (0.13) N/A

FrALBERT N/A N/A N/A N/A N/A 81.76 (0.59)
mALBERT-128k  65.81* (0.11) 89.14 (0.15) 88.27* (0.24) 46.01* (0.18) 91.60 (0.31) 83.15* (0.38)
mALBERT-64k  65.29* (0.14) 88.88 (0.14) 86.44* (0.37) 44.70* (0.27) 90.84 (0.47) 82.30 (0.19)
mALBERT-32k ~ 64.83* (0.22) 88.60 (0.27) 84.96* (0.41) 44.13* (0.39) 89.89 (0.68) 82.04 (0.28)

Table 1: Results on several slot-filling tasks regarding the F1-measure score. The results are the mean of
10 different runs, and the standard deviation is noted between parenthesis. *: p-value < 0.05.

one can observe that mMALBERT models perform
better than FrALBERT and EnALBERT models on
MultiCoNER and MEDIA tasks, respectively. This
ensure us that mMALBERT is comparable with other
monolingual ALBERT models.

In all slot-filling tasks, the 128k version of the
MALBERT model performed better than the two
other variants. Moreover, we observe a hierarchy
in the mALBERT model versions according to their
vocabulary size: the one with the smaller vocabu-
lary is the worst and the 64k mALBERT variant is
second.

3.2. Classification benchmark

For the classification benchmark, we evaluate our
models against four tasks. First, two multilingual
tasks: Massively Multilingual NLU 2022 (MMNLU)
(FitzGerald et al., 2022) and MultiATIS++ (Xu et al.,
2020) ; second, two monolingual tasks: SNIPS
(Coucke et al., 2018) and Stanford Sentiment Tree-
bank v2 (SST2) (Socher et al., 2013).

Like in the slot-filling task, bigger models ob-
tained the best results over all tasks. Focusing on
the mALBERT models, they obtained results with a
p — value lower than 0.05 only in the MMNLU task.
On other tasks (MultiATIS++, SNIPS, and SST2),
the significativity of results between our new mod-
els are not reached. Considering MMNLU results,
this leads us to the same observation we have with
the slot-filling task: the mALBERT model perfor-
mances are ranked according to their vocabulary
size.

3.3. Tokenization Impact

The starting point of this study is to measure the im-
pact of the tokenization of subword unit models. We
compare our three tokenization models: 32k, 64k,
and 128k codes (which, in our case, corresponds
to the final amount of vocabulary). This study fo-
cuses on a Named Entity task, the CoNLL2003
task, which is a slot-filling task based on a token
classification method. This means the segmenta-
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Models \ Tasks MMNLU MultiATIS++ SNIPS SST2

mBERT 80.32* (0.09) 96.14* (0.17) 97.31(0.31) 46.49* (0.76)
Distil-mBERT 78.23* (0.08) 92.79* (0.35) 97.69 (0.25) 43.59 (0.31)
EnALBERT N/A N/A 97.60 (0.11)  43.66 (1.88)
mALBERT-128k 72.35* (0.09) 90.58 (0.98) 96.84 (0.49) 34.66 (1.46)
mALBERT-64k  71.26* (0.11) 90.97 (0.70) 96.53 (0.44) 34.64 (1.02)
mALBERT-32k  70.76* (0.11) 90.55 (0.98) 96.49 (0.45) 34.18 (1.64)

Table 2: Results on several classification tasks regarding the Accuracy score.
of 10 different runs, and the standard deviation is noted between parenthesis.

The results are the mean
*: p-value < 0.05.

Plain text acquisition of Daniels Pharmaceuticals Inc of St. Petersburg Fla.

Reference O O B-ORG I-ORG I-ORG O B-LOC I-LOC O B-LOC
Tok-32k _acquis.istion _of _Daniel.s _Pharmac.euu.ticalus _Inc _of _St.. _Petersburg _, _Fu.la..
mALBERT-32k (0] (0] B-ORG I-ORG B-ORG I-ORG [|-ORG I-ORG O B-ORG
Tok-64k _acquisition  _of _Daniel.s _Pharmac.euu.ticalus _Inc _of _St.. _Petersburg _, _Fla..
mALBERT-64k 0} 0} B-PER I-PER B-ORG (0] B-ORG I-ORG O B-PER
Tok-128k _acquisition  _of _Daniel.s _Pharmaceutical.s _Inc _of _St,. _Petersburg _, _Fla..
mALBERT-128k 0} (0] B-ORG I-ORG I-ORG O B-LOC I-LOC O B-LOC

Table 3: Example of segmentation / tokenization for each model and the label detected by the model for
the CoNLL2003 task (NER). In this table the original input text is noted Plain text, with its gold labelization
(Reference). Then each next row corresponds to a tokenization model (Tok-32k, Tok-64k, Tok-128k)
and the output of the associated model (MALBERT-32k, mALBERT-64k, mALBERT-128k). The token
segmentation in subwords is indicated with a special character as separator (.).

Subword Tok-32k  Tok-64k  Tok-128k
vocab. size

NE 12059% 85.28%  62.69 %
Not NE 57.64% 36.04% 2537 %

Table 4: Impact of the tokenization on word type
(i.e.: belong to a Named Entity or not.) in the
CoNLL2003 task. We reported the percentage of
additional segmentation observed.

tion of the token in subwords could increase the
sentence context, which may impact the final la-
belization result.

In order to measure the possible impact of the
subword tokenization, we estimate the amount of
additional segmentation according to Name Entity
(NE) labels (table 4). We can observe a signifi-
cant impact on the token segmentation associated
with NE: the 128k subword model segmentation
of tokens produces 62% more subwords, mean-
while, the 32k subword model produces 120% of
additional subwords.

We push deeper into the analysis and estimate
the Pearson correlation score between the seg-
mentation of the word in subwords and the non-
detection of the associated label of the original to-
ken. The correlation score is 0.44, which implies a
moderate correlation of the tokenization impact on
the labelization process. This means the more the
entity is segmented, the less accurate the model is
to identify the right entity.

Table 3 presents an example of the segmentation
and labelization of the sequence “acquisition of
Daniels Pharmaceuticals Inc of St. Petersburg,
Fla.”. In this example, we can observe that the most
split word is “Pharmaceuticals”. This sequence of

subwords illustrates the impact, especially on the
label of next word ‘Inc”. The impact can directly be
observed on the label of words “Pharmaceuticals”
and “Fla.”. The right labelization is obtained once
the whole segment is the less splitted in subwords.

The subword tokenization seems to interfere with
the labelization of these tokens made by the model.
Finally, these remarks on subword tokenization
seem obvious. Still, as far as we know, we have
not found any study on the impact of tokenization
on pre-trained language models. This first study
shall be pushed further to precisely measure the
impact of subword tokenization models on other
tasks and domains.

4. Conclusion

This paper presents the first multilingual ALBERT
model (MALBERT), pre-trained on Wikipedia dump
in 52 languages. The model comes with three vo-
cabulary size variants: 32k, 64k, and 128k. All
variants were pre-trained on data extracted from
91 Go of Wikipedia dumps, which represents more
than 21 billion words.

So, is a multilingual compact still worth it? Evalu-
ations in classical NLP tasks (slot-filling and classi-
fication tasks) show the multilingual version of AL-
BERT has comparable results to the monolingual
versions used in this paper. From an ecological and
resource aspect, one model pre-training on GPU
time took 9k hours, which is far from the million
hours for the BLOOM LLM.

The tokenization study, focused on vocabulary
size, gives some feedback about the importance of
the impact of subword tokenization. The moderate
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correlation observed on a classical Named Entity
task enables us to say the more you split tokens
into subwords, the less the Entity is well detected.

In the next steps, the extension of the subword
tokenization model study will investigate which kind
of segmentation could be the best for Pre-trained
Language Models on more NLP tasks.

The three versions of the model are freely avail-
able on huggingFace?
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