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Abstract

Media bias detection poses a complex, multifaceted problem traditionally tackled using single-task models and small
in-domain datasets, consequently lacking generalizability. To address this, we introduce MAGPIE, a large-scale
multi-task pre-training approach explicitly tailored for media bias detection. To enable large-scale pre-training,
we construct Large Bias Mixture (LBM), a compilation of 59 bias-related tasks. MAGPIE outperforms previous
approaches in media bias detection on the Bias Annotation By Experts (BABE) dataset, with a relative improvement of
3.3% F1-score. Furthermore, using a RoBERTa encoder, we show that MAGPIE needs only 15% of fine-tuning steps
compared to single-task approaches. We provide insight into task learning interference and show that sentiment
analysis and emotion detection help learning of all other tasks, and scaling the number of tasks leads to the best
results. MAGPIE confirms that MTL is a promising approach for addressing media bias detection, enhancing the
accuracy and efficiency of existing models. Furthermore, LBM is the first available resource collection focused on
media bias MTL.
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1. Introduction

Media bias is a skewed portrayal of information
favoring certain group interests (Recasens et al.,
2013), which manifests in multiple facets, including
political, gender, racial, and linguistic biases. Such
subtypes of bias, which can intersect and coexist in
complex combinations, make the classification of
media bias a challenging task (Raza et al., 2022).
Existing research on media bias detection primar-
ily involves training classifiers on small in-domain
datasets (Krieger et al., 2022), which exhibit limited
generalizability across diverse domains (Wessel
et al., 2023).

This paper builds upon the work of Wessel et al.
(2023), emphasizing that the multifaceted nature of
media bias detection requires a shift from isolated
approaches to multi-task methodologies, consider-
ing a broad spectrum of bias types and datasets.
The recent advancements in Multi-Task Learning
(MTL) (Aribandi et al., 2021a; Chen et al., 2021;
Kirstein et al., 2022) open up promising opportu-
nities to overcome these challenges by enabling
knowledge transfer across domains and tasks. De-
spite the potential, a comprehensive MTL approach
for media bias detection is yet to be realized. The
only other media bias MTL method (Spinde et al.,
2022) underperforms due to its narrow task focus
and does not surpass baseline outcomes.

In this study, we make five main contributions:

Figure 1: MAGPIE has a pre-trained representa-
tion of multiple biases (persuasive, subjective, etc.).
This enables it to outperform models based on
single-task learning (STL) paradigms.

1. We present MAGPIE - the first large-scale
multi-task pre-training approach for media
bias detection. By pre-training on diverse
bias types such as persuasive and subjective,
a classifier based on MAGPIE correctly
classifies sentences that state-of-the-art
single-task models misidentify (we show an
example in Figure 1).



2. We introduce LBM (Large Bias Mixture), a pre-
training composition of 59 bias-related tasks
encompassing wide range of biases such as
linguistic bias, gender bias and group bias.

3. We provide an analysis of a task selection and
demonstrate the effectiveness of scaling the
number of tasks.

4. We demonstrate that MAGPIE outperforms the
previous state-of-the-art model by 3.3% on
the Media Bias Annotation by Experts (BABE)
dataset (Spinde et al., 2021c) and achieves
competetive results on the Media Bias Identifi-
cation Benchmark (MBIB) collection (Wessel
et al., 2023).

5. We make all resources, including datasets,
training framework, documentation, and mod-
els, publicly available on GitHub:

github.com/magpie-multi-task

These contributions highlight the potential of MTL
in improving media bias detection. Our findings
show, e.g., that tasks like sentiment and emotion-
ality enhance overall learning, all tasks boost fake
news detection, and scaling tasks leads to optimal
results. Another key insight of our research is the
value of MTL in contexts where the primary dataset
is small1. By learning generalized bias knowledge
from a range of tasks, we can improve the accuracy
and efficiency of existing models, even in the face
of limited data. Overall, our research offers a multi-
task learning approach to media bias detection with
first large-scale resources in the domain.

2. Related Work

2.1. Media Bias
Media bias is a complex issue (Lee et al., 2021a;
Recasens et al., 2013; Raza et al., 2022) composed
of varying definitions of bias subtypes such as lin-
guistic bias, context bias, or group bias (Wessel
et al., 2023). In their literature review, Spinde et al.
(2023) provide an extensive overview of research
on media bias and related subtypes of bias.

Media bias detection approaches have evolved
from hand-crafted features (Recasens et al., 2013;
Hube and Fetahu, 2018; Spinde et al., 2021d) to
neural models (Spinde et al., 2022; Chen et al.,
2021; Spinde et al., 2021c; Huguet Cabot et al.,
2021; Sinha and Dasgupta, 2021; Raza et al.,
2022). However, existing models, so far, focus only
on single tasks and saturate quickly on smaller
datasets (Wessel et al., 2023). As most neural

1For example, the Media Bias Annotation by Experts
(BABE) dataset (Spinde et al., 2021c).

approaches require large quantities of data, those
relying on single and small datasets cannot provide
a realistic scenario for their solutions (e.g., Fan
et al. (2019)). We will first provide an overview of
existing datasets and then show how to exploit their
diversity within the media bias domain.

Media bias tasks and datasets mainly cover in-
dividual, self-contained tasks such as binary clas-
sifications (Recasens et al., 2013; Spinde et al.,
2021b), which, so far, are not explored in relation
to each other (Spinde et al., 2023). Wessel et al.
(2023) systematically form the media bias detection
benchmark MBIB by reviewing over 100 media bias
datasets and consolidating 22 of them into eight
distinct tasks like linguistic, racial, and political bias.
Their study highlights that methods only focused
on one of these tasks exhibit limitations in their de-
tection capabilities. MAGPIE encompasses all the
tasks identified in the MBIB but also significantly
expands its scope by incorporating an additional
51 media bias-related tasks to mitigate a variety of
limitations in MBIB (see Section 3.1).

2.2. Multi-Task Learning
MTL shows significant improvements in various
NLP tasks, including sentiment analysis (He et al.,
2019), text summarization (Kirstein et al., 2022),
and natural language understanding (Raffel et al.,
2020). In MTL, a model leverages knowledge
gained from one task to improve the performance
of others. Aribandi et al. (2021b) demonstrate that
increasing the number of tasks generally leads to
improved performance for downstream NLP appli-
cations. Aghajanyan et al. (2021) show that pre-
finetuning, a large-scale multi-task learning phase,
consistently improves the performance and effi-
ciency of pre-trained models across diverse tasks,
with results improving linearly with the number of
tasks beyond a certain threshold.

As described above, media bias can be seen
as a composite problem composed of various in-
terrelated bias types (Wessel et al., 2023). In the
realm of Natural Language Understanding (NLU),
MTL has proven to be highly effective when incor-
porating related tasks Aribandi et al. (2021b). For
instance, benchmarks such as GLUE and Super-
GLUE successfully decompose the NLU problem
into a suite of proxy tasks, including paraphrase
detection (Wahle et al., 2023, 2022), and semantic
evaluation (Ruas et al., 2019, 2020), thereby sub-
stantially improving performance across a range
of NLU tasks (Wang et al., 2018, 2019). Motivated
by this success in NLU, we propose to jointly learn
from different bias types within the media bias do-
main. With this approach, we aim to treat media
bias not as a singular entity but as many intercon-
nected issues.

The selection of tasks is pivotal to the efficacy

https://github.com/Media-Bias-Group/magpie-multi-task


Figure 2: The process of training and evaluating
MAGPIE. The purple steps describe the construc-
tion and usage of LBM, the yellow the model train-
ing, and the green the model evaluation.

of MTL. There have been several attempts to au-
tomate task selection, including learning the data
selection with Bayesian optimization (Bingel and
Søgaard, 2017) or estimating task relations (Ruder
and Plank, 2017). The most model-agnostic ap-
proach is GradTS (Ma et al., 2021), which is highly
scalable due to low resource requirements, and is
therefore implemented within MAGPIE. GradTS ac-
cumulates gradients of attention heads and selects
tasks based on their correlation with the primary
task’s attention. The selected tasks are trained
jointly and share representations across tasks.

3. Methodolodgy

We implement MAGPIE using pre-finetuning as in-
troduced in (Aghajanyan et al., 2021) (See also
Section 2). As such, MAGPIE is an encoder-only
MTL transformer model pre-finetuned on 59 me-
dia bias-related auxiliary tasks provided by Large
Bias Mixture (LBM), a large-scale task collection
of bias-related datasets. We incorporate a novel
approach of a Head-Specific Early Stopping and
Resurrection to effectively handle tasks of varying
sizes (Section 3.3.1).

As outlined in Figure 2, our first step involves
constructing the LBM. Following this, we define the
model and multi-task learning (MTL) framework em-
ployed to train MAGPIE, which includes optimiza-
tion strategies, task sampling, and auxiliary task
selection. Lastly, we evaluate MAGPIE on two pri-
mary resources: the Media Bias Annotation by Ex-
perts (BABE) dataset2 (Spinde et al., 2021c), and

2BABE provides high-quality labels that capture a
broad range of linguistic biases, thus allowing us to eval-
uate our model’s generalizability within a single dataset

the Media Bias Identification Benchmark (MBIB)
collection.

3.1. The LBM (Large Bias Mixture) task
collection

Currently, MBIB is the only collection of media bias
tasks. However, it does not include tasks that con-
stitute a form of media bias more indirectly, such as
sentiment analysis or emotion classification. MAG-
PIE aims to integrate tasks both directly linked to
media bias and those peripherally related, such as
sentiment analysis, to provide broader coverage of
linguistic features in the media bias context. There-
fore, we introduce Large Bias Mixture (LBM), a
more general collection of relevant media bias and
media bias-related tasks, more suitable for our MTL
approach. We show our task selection process in
Figure 3.

First, we manually assess a list of 115 media
bias-related datasets in English language, catego-
rized into task families by Wessel et al. (2023). A
task family is a conceptual grouping of tasks that
share similar objectives, such as those related to
gender bias, encompassing pronoun coreference
resolution, gender classification, and sexism detec-
tion.

We use this notion of task families to analyze
general knowledge transfer between media bias
tasks in Section 4.3, such as Aribandi et al. (2021b)
proposed for general NLP tasks.

We filter the collection of the 115 datasets based
on the following criteria3:

• Accessibility: Datasets have to be publicly ac-
cessible.

• Text granularity: We only use datasets la-
beled on a sentence level or its fragments (to-
kens)(not on, for instance, article level)

• Quality of annotations: We exclude datasets
with no documentation, low annotation agree-
ment or employment of machine annotation.

• Duplicates: We filter out datasets that contain
full or partial duplicates of each other

Of the 115 datasets collected, we discard 11
datasets that are not publicly available. We discard
52 with article-level annotations and 5 with anno-
tations on other levels4. We remove 5 datasets
due to or unreliable source of annotations and dis-
card 4 duplicates. Applying these criteria leaves

context.
3We acknowledge that determining the dataset quality

remains a manual and subjective choice.
4One discarded dataset provides only a list of biased

words, other two annotations on users, and three on
outlets.



38 datasets. Including 8 handpicked datasets not
originally listed gives us 46 datasets. These are
categorized into task families ensuring no overlap
and more than two datasets per family. Finally, ten
datasets with multi-level annotations, e.g., token
and sentence level, are split into tasks, yielding
final number of 59 tasks.

Figure 3: The workflow of collecting datasets from
the initial list to the final LBM collection.

In order to standardize examples from various
domains, we apply a unified text-cleaning proce-
dure to each dataset. The process involves: (1)
discarding sentences with fewer than 20 charac-
ters, (2) removing URL links, special characters,
and whitespace, and (3) eliminating duplicates po-
tentially created with steps (1) and (2).

The final Large Bias Mixture (LBM) includes
59 tasks, categorized into 9 distinct task fami-
lies, encompassing 1,210,084 labeled sentences.
We make the LBM publicly accessible, to facili-
tate research in media bias detection and other
computational-social-science tasks. References
and short descriptions of all datasets and corre-
sponding tasks and task families can be found in
Table 4.

3.2. The Base Model
In terms of the base language model for our proce-
dure, we adopt a pre-trained RoBERTa (Liu et al.,
2019) encoder due to its proven state-of-the-art per-
formances across various media bias applications
(Spinde et al., 2021c; Krieger et al., 2022).

3.3. The MTL framework
Pre-finetuning. To effectively harness the gen-

eralization abilities of MTL for media bias detec-

tion, we adopt a pre-finetuning procedure (Agha-
janyan et al., 2021). Pre-finetuning is a comple-
mentary approach to pre-training, where a model,
already pre-trained on a typically unsupervised
task, is subjected to another intermediate step of
pre-training. While incorporating MTL directly into
the pre-training stage has demonstrated perfor-
mance gains (Aribandi et al., 2021b), we opt for
pre-finetuning as it offers significantly reduced com-
putational demands while still capitalizing on the
benefits of MTL (Aghajanyan et al., 2021).

Sharing representations. We use hard pa-
rameter sharing to share the underlying encoder
among all tasks while using separate task-specific
heads. For each task, we attach dense layers, or
"heads", to the shared encoder. These heads are
optimized individually per task while the shared
encoder learns general bias representations.

However, multi-task optimization presents chal-
lenges due to differing gradient directions and mag-
nitudes (Yu et al., 2020). For instance, two tasks, A
and B, may have opposing gradients with the same
magnitude, nullifying their sum. On the other hand,
if Task A’s gradient greatly surpasses that of Task
B, gradient A becomes dominant. We counter the
gradient misalignment by using a variation of the
PCGrad de-confliction algorithm and loss scaling
(Yu et al., 2020).

Conflicting gradients and loss scaling. In
multi-task training involving n tasks, encoder pa-
rameters receive n potentially conflicting gradients.
Efficient handling of this conflict, such as PCGrad
(Yu et al., 2020), requires storing a set of gradi-
ents for each task involved in the update, leading
to infeasible memory requirements among our 59
LBM tasks. Therefore, we propose a variation of
PCGrad we call PCGrad-online which preserves
the fundamental idea of the original algorithm but
is more memory efficient, requiring only one set of
gradients instead of n sets per update. Adopting
Muppet’s method, we solve the issue of varying task
gradient magnitudes by re-scaling the task loss with
the inverse log size of its output space, ensuring
balanced gradients and preventing task dominance
in training steps (Aghajanyan et al., 2021).

3.3.1. Data sampling and early stopping

To prevent large tasks from dominating the optimiza-
tion, we ensure uniform data distribution by sam-
pling one fixed-size sub-batch from each task per
training step, a regular approach in MTL (Aribandi
et al., 2021b; Spinde et al., 2022). We also em-
ploy early stopping as a regularization for each
task individually to prevent over-fitting of tasks that
converge faster. However, these methods often fall
short when confronted with tasks of varied complex-
ity and differing convergence speeds, which both is
the case for tasks in LBM. When task A stops early



while task B takes longer to converge, the latent
representation of the shared encoder shifts toward
task B.

We aim to mitigate this issue by employing a train-
ing strategy that tackles the latent representation
shift using two complementary approaches:

1. Head-Specific-Early-Stopping (HSES)

2. Resurrection

HSES. When the task stops, we stop updating
its specific head parameters while still backpropa-
gating its language model gradients. This method
stems from the observation that not all tasks benefit
from the shared layers’ continuous learning, espe-
cially after they have reached an optimal state.

Resurrection. When the task stops, we allow it
to resume the training after its validation loss starts
to increase again. This enables the task to adapt its
head parameters to the latest latent representation.

HSES maintains quality of faster-converging
tasks, while Resurrection allows further adapta-
tion when needed. Their combination aims for bal-
anced, adaptive learning for tasks with varied com-
plexities and convergence speeds. We perform a
preliminary evaluation of the effectiveness of this
method in the in Section 4.4. However, we stress
the need for further extensive analysis in Section 5.

3.3.2. Auxiliary task selection

Multi-Task Learning often involves selecting well-
used datasets, leading to potential selection biases.
Furthermore, manually handpicking datasets be-
comes challenging due to varying and potentially
ambiguous bias annotation schemes.

To automate the process of task selection, we
utilize the GradTS algorithm (Ma et al., 2021).
We choose GradTS due to its demonstrated ef-
ficiency and its simplicity of implementation, which
enhances its usability.

Gradient-based Task selection. In line with
GradTS, we construct auxiliary tasks as follows.
We individually train all tasks, accumulate absolute
gradients, then extract and layer-wise normalize
these in the attention heads, forming a 12x12 im-
portance matrix5 for each task. Tasks are sorted by
correlation between each task’s matrix and BABE
task’s matrix.

We pre-finetune m−1 models on the first k tasks
from the sorted list, where k varies from 1 to m− 1
and m is the size of LBM. The BABE task is then
evaluated on these pre-finetuned models, with the
optimal k determined by evaluation loss. For further
details on the GradTS algorithm, please see Ma
et al. (2021).

5RoBERTa has 12 attention heads on each of the 12
layers.

3.3.3. Experimental setup

We split the BABE dataset into train, dev and test
split with 70%,15%,15% portions respectively. For
both hyperparameter tuning and auxiliary task se-
lection, we evaluate on dev split and only use test
split for the final evaluation (Section 4.2).

As fine-tuning transformers on small datasets
often leads to inconsistent results, such as high
performance variance (Dodge et al., 2020), we use
a fixed random seed 321 for all runs in auxilliary
task selection.

For the final evaluation on the test set (Table 2)
we evaluate the models using 30 random seeds
and report the average performance, to minimize
the influence of random weight initializations. We
use values 0..29.

For optimizing the models, we use a per-task
batch size of 32, an AdamW optimizer, and a poly-
nomial learning scheduler. We run all experiments
on 1 NVIDIA TESLA A100 GPU with 40 GB of
memory.

4. Empirical Results

In this section, we present the results of our MTL
approach. First, we report the set of auxiliary tasks
selected by GradTS for pre-finetuning. Next, we as-
sess how the model pre-finetuned on the GradTS
set performs during subsequent finetuning on the
BABE task, compared to a random choice of tasks
and a full set of LBM tasks. We also compare
the MTL approach to a single-task baseline and
multiple MTL baselines and evaluate the perfor-
mance of our best model, MAGPIE, on the MBIB
benchmark. Then, we analyze the LBM taxonomy
through a study on knowledge transfer between
families. Lastly, we evaluate the effects of the pro-
posed methods, HSES and Resurrection, through
a preliminary study.

4.1. Auxiliary tasks selection
We select suitable auxiliary tasks by calculating
the correlation between attention-head importance
matrices. We use Kendall’s correlation coefficient,
as suggested by Puth et al. (2015). We find a lo-
cal minimum for the BABE evaluation loss when
pre-finetuning on the first k = 10 most correlated
tasks. The final set of the ten most correlated tasks
referred to as gradts set, is displayed in Table 1.
The tasks in the gradts set demonstrate a strong
semantic connection to media bias, encompassing
areas such as lexical bias, rumor detection, and
fake news detection.



Task Type τ (correlation)
Persuasive techniques 0.73

Lexical/Informational bias 0.72
Rumour detection 0.69
Sentiment analysis 0.68

Global warming stance detection 0.68
Subjective bias 0.67

Veracity classification 0.64
Gender bias 0.64

Fake news detection 0.63

Table 1: Attention importance correlation w.r.t. the
media bias task.

4.2. Evaluation
First, we finetune a model pre-finetuned on three
different multi-task sets on the BABE task and com-
pare it against the single-task RoBERTa baseline.
The multi-task sets are the following:

• MTL:Random - Random Subset of 10 tasks

• MTL:GradTS - Subset of 10 tasks selected by
GradTS algorithm

• MTL:All - Set of all tasks

We also evaluate the model pre-finetuned on the
set of all tasks on MBIB. We follow the guidelines
set by Wessel et al. (2023) for the evaluation. Given
that MAGPIE’s pre-training data includes portions
of the MBIB data, we ensure that the test set for
each task in MBIB is not exposed to the model
during its training or validation phases.

Figure 4: Final F1 score on a BABE test set av-
eraged over 30 random seeds. All three MTL ap-
proaches outperform baseline STL finetuning. Pre-
finetuning on all LBM tasks results in significantly
improved performance.

Multi-Task Learning Performance. Table 2
summarizes our performance results on the BABE

dataset. We observe that all of our MTL pre-
finetuning schemas lead to performance improve-
ments. In particular, pre-finetuning on all tasks
from LBM yields a SOTA performance on the BABE
dataset, achieving an 84.1% F1 score and a rela-
tive improvement of 3.3% compared to the previous
baseline by Spinde et al. (2021c). While both MTL
baselines - Muppet (Aghajanyan et al., 2021) and
UnifiedM2 (Lee et al., 2021b) outperform single-
task baseline, they underperform all of our MTL
models.

On MBIB benchmark, MAGPIE ranks first on
5 out of 8 tasks. However, the improvements
are only marginal. The results can be found in
Appendix in Table 5.

Task scaling. GradTS task selection outper-
forms random tasks on average performance, yet
our experiment suggests task number scaling is
more crucial. This is consistent with Muppet and
ExT5 results (Aghajanyan et al., 2021; Aribandi
et al., 2021b), indicating MTL can compensate for
scarce high-quality media bias datasets through
general bias representation from other tasks. It
also supports Kirstein et al. (2022)’s finding that
sufficient related tasks can substitute the original
task.

Figure 5: Evaluation F1 score during the final fine-
tuning where MTL: All shows superior performance
in training-step efficiency. The values are averaged
over 30 random seeds. The bands mark the lowest
and highest values.

Step efficiency. In addition to the performance
improvements achieved, we also assess our model
training efficiency. In Figure 5, we show the F1
score on the development set for the BABE task,
averaged over all 30 runs. Our findings show that
Multi-Task Learning only requires 1̃5% of the train-
ing steps used in single-task finetuning on BABE.



Model F1 Acc loss
Baseline (RoBERTa base) 80.83 (±0.69) 81.19 (±0.69) 43.6 (±3.54)
DA-RoBERTa 77.83 (±1.4) 78.56 (±1.3) 47.84 (±2.97)
MUPPET 80.56 (±1.3) 81.18 (±1.16) 44.19 (±4.65)
UnifiedM2 81.91 (±0.91) 82.41 (±0.88) 44.86 (±3.99)
MTL:Random 81.88 (±1.02) 82.28 (±0.97) 40.35 (±1.73)
MTL:GradTS 82.32 (±0.79) 82.64 (±0.8) 40.96 (±2.36)
MTL:All 84.1 (±1.33) 84.44 (±1.25) 39.46 (±2.41)

Table 2: Performance of two MTL baseline models (Muppet, UnifiedM2) two single-task baslines (RoBERTa
and DA-RoBERTa) and our three MTL models, on fine-tuning on BABE dataset and evaluating on the
held-out test set. The results are averaged over 30 random seeds.

This result demonstrates the high training-step ef-
ficiency of MAGPIE in media bias classification,
making MTL implementations in the media bias
domain more viable in the future.

4.3. LBM taxonomy analysis

In Section 3.1, following Aribandi et al. (2021b),
we introduce data task families. Aribandi et al.
(2021b) uses task families for selection and knowl-
edge transfer. To assess task families’ significance
in LBM taxonomy, we train each pair of families
together, investigating knowledge transfer.

To account for potential negative transfer within
families, we first calculate the average transfer
within each family and use it as a baseline for mea-
suring transfer between families. We train tasks
from the same family together and report the av-
erage change in task performance, as depicted in
Figure 6. Negative knowledge transfer is prevalent
across most of our task families. However, we ob-
serve two exceptions: the hate-speech and stance
detection families, where multi-task training leads
to an average improvement in performance.

Next, we measure knowledge transfer between
families by training each pair together. We report
the average impact of each family on others and the
average benefit each family gets through training
with others, summarized in Section 4.3.

Our results show that, on average, the Emotional-
ity and Sentiment analysis families provide positive
transfer learning to other families. Conversely, we
observe that the Fake News family benefits from
knowledge transfer from every other family, with an
average improvement of 1.7%. On the other hand,
the Emotionality family is significantly impaired by
negative transfer from other task families.

The full table of transfers can be found in Fig-
ure 7. Considering that only two families show
positive transfer learning, with marginal effects of
0.11% and 0.34%, we conclude that the task fami-
lies used in the construction of LBM are generally
unsuitable for effectively utilizing knowledge trans-
fer. We discuss this again in Section 5.

Figure 6: Average performance change per task
family. Stance detection and hate speech are the
only families, on average, benefitting from Multi-
Task Learning.

Task Family Transfer from Transfer to
media bias -2.07% -0.94%

subjective bias -1.26% 0.89%
hate speech -0.87% 0.17%
gender bias -1.01% -1.07%

sentiment analysis 0.11% 0.72%
fake news -0.13% 1.79%
group bias -1.04% 0.09%

emotionality 0.34% -6.56%
stance detection -0.79% -1.83%

Table 3: Evaluation of averaged transfer between
task families.

4.4. Resurrection and HSES evaluation
To evaluate the Resurrection and HSES methods
in combination with other training strategies, we
run a grid search on the following training strate-
gies: HSES, Resurrection, Loss Scaling and Gradi-
ent Aggregation. We calculate the average evalua-



Figure 7: Average performance change when training tasks together. The change is measured with
respect to transfer within each respective family (see results in section Figure 6.). The values in the
horizontal axis represent the received transfer by the family on the y-axis. E.g., when training Emotionality
and Subjective bias together, Emotionality gets worse by 11% whereas Subjectivity improves by 1.5%.

tion loss for both Resurrection and HSES methods
across 20 tasks randomly selected from the LBM
collection. The boxplot in Figure 8 shows that both
methods reduce the loss by 5% and decrease the
variance across different training setups by 85%.
However, we hypothesize that a random constella-
tion of tasks6 can have a non-trivial effect on the
evaluation of our technique; thus, we opt for robust
examination of the methods in future work.

5. Conclusion

This paper contributes to media bias detection by
the development of MAGPIE, our large-scale multi-
task learning (MTL) approach that enhances tradi-
tional models with a multi-task structure.

Additionally, we present Large Bias Mixture
(LBM), a compilation of 59 bias-related tasks. This
broad collection serves as a resource for the pre-
training of MAGPIE. To the best of our knowledge,
it is the first available MTL resource tailored specif-
ically towards media bias.

Our study investigates the dynamics of transfer
learning across tasks and task families within me-
dia bias. Despite the occurrence of negative trans-

6Particularly variance in task sizes and quality.

(a) Resurrection (b) HSES

Figure 8: An averaged evaluation loss of 20 tasks
when trained with different training strategies. Both
Resurrection and HSES approaches, compared to
the vanilla setting, lead to significantly lower vari-
ance and overall lower loss.

fer among several tasks, scaling the pre-training
setup to all collected tasks in Multi-Task Learning
results in a 3.3% improvement over the previous
state-of-the-art, making it the biggest advancement
in neural media bias classification so far. Further-
more, we report that finetuning MAGPIE on the
BABE dataset only requires 15% of steps compared
to RoBERTa single-task approaches. These find-
ings underscore the effectiveness and potency of



Multi-Task Learning in highly specific classification
domains such as media bias.

While results suggest benefits in scaling tasks,
we see more promise in novel tasks rooted in me-
dia bias, suggesting deeper exploration over simply
expanding the task spectrum. Understanding fami-
lies and tasks in datasets necessitates systematic
analysis of label definitions, rater agreement, and
inter-relatedness of dataset creation strategies. As
media bias is emerging globally, incorporating mul-
tilingual models is a natural extension.

Limitations

We acknowledge the necessity for a more compre-
hensive analysis of the performance of the HSES
and Resurrection methods to ensure robust evalu-
ation.

Given the significant computational resources re-
quired for a single multi-task training of all tasks, we
allocated these resources towards robustly evaluat-
ing the model performance rather than conducting
an in-depth analysis of the optimization techniques.
Consequently, the presented methods may be less
reliable and have limited applicability.

While there are various models available, pre-
vious research suggests that RoBERTa exhibits
strong performance on media bias tasks (Wessel
et al., 2023; Spinde et al., 2021c). However, due
to resource constraints, we were unable to explore
models with different architectures and further re-
fine our selection.

As the landscape of publicly available high-
quality datasets for media bias is not as extensive
as desired, we acknowledge our inability to capture
all manifestations of media bias comprehensively.
As mentioned in Section 5, a systematic and com-
prehensive analysis of the dataset landscape will
be part of our future work.

Furthermore, although analyzing media bias on
a sentence level enables a detailed examination
of occurring biases, certain forms of bias, such
as bias resulting from the omission of information,
extend beyond the linguistic aspects of individual
statements. Detecting such biases may require
considering an external context.

We leave it to future work to investigate other
levels of granularity, such as paragraph or article
levels. In addition to these technical limitations, con-
ducting a detailed analysis of agreement and label
distribution in all utilized datasets will be neces-
sary to make stronger claims about which datasets
provide more reliable coverage of the overall con-
cept of media bias. This is particularly important
since media bias is a complex phenomenon that is
not always easily identified during the annotation-
gathering process.

Ethics Statement

Detecting (and as a result also highlighting) me-
dia bias instances can mitigate the negative ef-
fects of media bias, e.g., on collective decision-
making (Baumer et al., 2015). However, media
bias strongly depends on the context and individ-
uals involved, making it a sensitive issue. Some
bias forms depend on factors other than the content,
e.g., a different text perception due to a reader’s
background. Therefore, a public classification of
possible polarization and one-sidedness in the
news must be performed transparently and reli-
ably. The datasets used for training the classifier
must be transparent and, ideally, constantly moni-
tored by independent experts. To address possible
implications of MAGPIE or related media bias appli-
cations cautiously, it is crucial to constantly control
the classifications and datasets with recent findings
on the perception of media bias, which is a main
part of our ongoing and future work. To do so, we
use resources such as, e.g., standardized ques-
tionnaires on media bias perception (Spinde et al.,
2021a).

When bias detection is balanced and transparent,
it can positively affect collective opinion formation
and decision-making. We see no immediate neg-
ative ethical or societal impacts of our work. How-
ever, in addition to system transparency, we want to
highlight that we believe it to be required for future
datasets to report in greater detail about a manipu-
lation protection strategy when developing, training,
and presenting any media bias classifier. To ensure
the validity of media bias detection systems, it is es-
sential to prevent participants, especially in public
studies, from manipulating algorithms by, for exam-
ple, flagging neutral content as biased. Therefore,
annotations should be compared among multiple
users to ensure a higher level of trustworthiness.
Most of the datasets available report only limitedly
about such strategies. In open or crowdsourcing
scenarios, it is important to collect user charac-
teristics and deliberately include specific content
that aims to provide obvious answers but may be
answered differently when users follow certain pat-
terns. This approach helps in detecting and miti-
gating potential biases introduced by participants,
thereby maintaining the integrity and reliability of
the media bias detection process. To ensure and
propose stronger standards in the future, we aim
to analyze all LBM datasets with regard to potential
inherent bias in future work.
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Task Family Dataset # sentences Task

Subjective bias

SUBJ (Pang and Lee, 2004) 10.000 Binary Classification
Wiki Neutrality Corpus (Pryzant et al., 2020) 52.036 Token-level Classification
NewsWCL50 (Hamborg et al., 2019) 731 Regression
CW_HARD (Hube and Fetahu, 2019) 6.843 Binary Classification

News bias

MultiDimNews (Färber et al., 2020) 2.015 Multi-Label Classification

BASIL (Fan et al., 2019) 7.987 Multi-Class Classification
Token-Level Classification

Starbucks (Lim et al., 2020) 866 Regression
SemEval2023Task3 (Piskorski et al., 2023) 5.219 Binary Classification

BABE (Spinde et al., 2021c) 3.672 Binary Classification
Token-Level Classification

Hate speech

OffensiveLanguage (Davidson et al., 2017) 23.198 Multi-Class Classification
OnlineHarassmentDataset (Golbeck et al., 2017) 19.613 Binary Classification
WikiDetoxToxicity (Wulczyn et al., 2017a) 138.827 Regression

WikiDetoxAggression (Wulczyn et al., 2017a) 101.159 Binary Classification
Regression

Jigsaw (AI, 2019) 101.060 Binary Classification
MeTooMA (Gautam et al., 2020) 7.388 Multi-Label Classification
WikiMadlibs (Dixon et al., 2018) 74.972 Binary Classification

HateXplain (Mathew et al., 2021) 18.962
Multi-Class Classification
Multi-Label Classification
Token-Level Classification

HateSpeechTwitter (Founta et al., 2018) 48.572 Multi-Class Classification

Gender bias

GAP (Webster et al., 2018) 4.373 Multi-Class Classification
RtGender (Voigt et al., 2018a) 21.690 Binary Classification
MDGender (Dinan et al., 2020) 2.332 Multi-Class Classification
TRAC2 (Safi Samghabadi et al., 2020) 3.983 Binary Classification
Funpedia (Miller et al., 2017) 11.256 Multi-Class Classification
WizardsOfWikipedia (Dinan et al., 2019) 29.777 Multi-Class Classification

Sentiment analysis

SST2 (Socher et al., 2013a) 9.436 Binary Classification
IMDB (Maas et al., 2011a) 13.139 Binary Classification
MPQA (Wilson, 2008) 3.508 Binary Classification
SemEval2014 (Pontiki et al., 2014) 5.794 Token-Level Classification
AmazonReviews (Zhang et al., 2015b) 167.396 Binary Classification

Fake news

LIAR (Wang, 2017a) 12.742 Regression
FakeNewsNet (Shu et al., 2020a) 21.299 Binary Classification

PHEME (Kochkina et al., 2018) 5.022 Binary Classification
Multi-Class Classification

Emotionality

GoodNewsEveryone (Bostan et al., 2020) 4.428 Token-Level Classification
Token-Level Classification

BU-NEMO (Reardon et al., 2022) 12.576 Multi-Class Classification
EmotionTweets (Krommyda et al., 2021b) 195.744 Multi-Class Classification
DebateEffects (Sridhar and Getoor, 2019) 6.941 Regression

Group bias

CrowSPairs (Nangia et al., 2020) 3.009
Binary Classification
Multi-Class Classification
Token-Level Classification

StereoSet (Nadeem et al., 2021b) 4.170 Binary Classification
Multi-Class Classification

StereotypeDataset (Pujari et al., 2022) 2.208 Binary Classification
Multi-Label Classification

RedditBias (Barikeri et al., 2021b) 10.395
Binary Classification
Multi-Class Classification
Token-Level Classification

Stance detection

SemEval2023Task4 (Mirzakhmedova et al., 2023) 5.219 Binary Classification
VaccineLies (Weinzierl and Harabagiu, 2022) 4.497 Multi-Class Classification
SemEval2016Task6 (Mohammad et al., 2016) 4.849 Multi-Class Classification
WTWT (Conforti et al., 2020) 24.681 Multi-Class Classification
MultiTargetStance (Sobhani et al., 2017) 4.430 Multi-Class Classification
GWSD (Luo et al., 2020) 2.010 Multi-Class Classification∑

1.210.084

Table 4: References and description to all 59 Tasks (46 datasets) in LBM collection.



MBIB Task MAGPIE RoBERTa ConvBERT
Linguistic Bias 0.7139 0.7076 0.7126
Cognitive Bias 0.7086 0.7037 0.7044

Text-Level Context Bias 0.7638 0.7646 0.7697
Hatespeech 0.8747 0.8759 0.8805
Gender Bias 0.8344 0.8322 0.8257
Racial Bias 0.8809 0.8761 0.8772
Fake News 0.6709 0.6711 0.6787

Political Bias 0.7059 0.7029 0.7041

Table 5: Performance of MAGPIE and two baselines RoBERTa, and ConvBERT (state-of-the-art model in
Wessel et al. (2023)) on the Media Bias Identification Benchmark (MBIB) tasks.


	Introduction
	Related Work
	Media Bias
	Multi-Task Learning

	Methodolodgy
	The LBM (Large Bias Mixture) task collection
	The Base Model
	The MTL framework
	Data sampling and early stopping
	Auxiliary task selection
	Experimental setup


	Empirical Results
	Auxiliary tasks selection
	Evaluation
	LBM taxonomy analysis
	Resurrection and HSES evaluation

	Conclusion
	Bibliographical References
	Appendix

