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Abstract
Accurate utterance classification in motivational interviews is crucial to automatically understand the quality and
dynamics of client-therapist interaction, and it can serve as a key input for systems mediating such interactions.
Motivational interviews exhibit three important characteristics. First, there are two distinct roles, namely client and
therapist. Second, they are often highly emotionally charged, which can be expressed both in text and in prosody.
Finally, context is of central importance to classify any given utterance. Previous works did not adequately incorporate
all of these characteristics into utterance classification approaches for mental health dialogues. In contrast, we
present M3TCM, a Multi-modal, Multi-task Context Model for utterance classification. Our approach for the first time
employs multi-task learning to effectively model both joint and individual components of therapist and client behaviour.
Furthermore, M3TCM integrates information from the text and speech modality as well as the conversation context.
With our novel approach, we outperform the state of the art for utterance classification on the recently introduced
AnnoMI dataset with a relative improvement of 20% for the client- and by 15% for therapist utterance classification. In
extensive ablation studies, we quantify the improvement resulting from each contribution.

Keywords:utterance classification, multi-task learning, conversation context, multi-modal, motivational in-
terviewing

1. Introduction
Motivational interviewing (MI) is an important tool
in helping clients to achieve goals such as reduc-
ing alcohol consumption and smoking, managing
asthma or diabetes, or increasing physical activ-
ity. Automatic analysis of motivational interviewing
has on the one hand the potential to improve our
understanding of the effectiveness of different tech-
niques. On the other hand, it is also a basis for
building social agents that can meaningfully inter-
act with clients. To this end, automatic approaches
need to be able to precisely categorize the utter-
ances of both counselor and client.
Motivational interviews have three important char-
acteristics. First, client and therapist have distinct
roles, including different sets of ground truth ut-
terance labels (Wu et al., 2022a). Second, moti-
vational interviews are often emotionally charged.
Third, conversation context is crucial to interpret
any given utterance. Previous approaches to ut-
terance classification in motivational interviews did
not fully take advantage of all of these characteris-
tics. While approaches integrating text and audio
do exist (Aswamenakul et al., 2018; Gupta et al.,
2014; Singla et al., 2018; Tavabi et al., 2020), they
commonly do not model the conversation context.
The few approaches that do model conversation
context, are either not multi-modal (Tavabi et al.,
2020), or only considered a single utterance as
context (Gupta et al., 2014). Most importantly, all
previous approaches addressed patient and thera-

pist utterance classification in completely separate
models. The potential benefit of multi-task learning
remains unexplored.
To overcome these limitations, we present M3TCM,
amulti-modal multi-task context model for utterance
classification in motivational interviewing. M3TCM
for the first time uses multi-task learning to ef-
fectively model both joint and individual compo-
nents of the two tasks of classifying therapists’ and
clients’ utterances. Our approach furthermore ef-
fectively leverages prosodic information as well
as the conversation context. In evaluations on
the recently introduced AnnoMI dataset (Wu et al.,
2022a), M3TCM outperforms previously proposed
approaches by a significant margin (0.66 F1 vs.
0.55 F1 for client utterances, 0.83 vs. 0.72 F1 for
therapist utterances). We present extensive abla-
tion experiments, documenting the importance of
the multi-task framework and of utilizing text and
audio modalities in conjunction with conversation
context. We furthermore for the first time evaluate
different sizes of the input window, showing that
the optimal context size is significantly larger than
those used in previous work.

2. Related Work

Our work is related to utterance classification in
mental health conversations and to multi-task learn-
ing approaches applied to conversation analysis.
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2.1. Utterance Classification in Mental
Health Conversations

Ewbank et al. (2020) classified therapist utterances
obtained from transcripts of Cognitive Behaviour
Therapy (Brewin, 2006) sessions into 24 categories
to predict therapy outcome. In another study, Ew-
bank et al. (2021) employed deep learning tech-
niques to automatically classify patient talk types
within Cognitive Behaviour Therapy.
Previous approaches confirm the importance of
fusing text and audio information for utterance clas-
sification in MI (Aswamenakul et al., 2018; Tavabi
et al., 2020; Gupta et al., 2014; Singla et al., 2018).
Most approaches only address the problem of client
talk type classification, but Singla et al. (2018) pro-
posed an approach based on single utterances that
is applied to therapist and client talk type classifica-
tion, integrating text and audio information. Only a
subset of utterance classification approaches mod-
eled the conversation context in order to classify
a target utterance. Tavabi et al. (2020) took 3 pre-
vious text-utterances from both client and thera-
pist as context to classify current client utterance.
Gupta et al. (2014) investigated the effect of laugh-
ter and prosodic differences in MI interviews, using
the previous therapist’s utterance as context. In
summary, while several approaches integrated text
and audio modalities, these commonly do not ex-
plore the effect of the size of the context. The few
approaches that do model conversation context do
not provide analyses on the impact of the size of
the input window. Crucially, none of the existing
approaches leverages a multi-task learning frame-
work to simultaneously learn models for therapist
and client utterances.
Recently Wu et al. (2022a) introduced AnnoMI, an
expert-annotated dataset of motivational interviews
available on Youtube. The dataset derives its an-
notations from the Motivational Interviewing Skills
Code (MISC) (Miller and Rollnick, 2012) and has a
different set of labels for client and therapist. We
use AnnoMI because it is the biggest publicly avail-
able dataset with MI interviews, annotated by ex-
perts. Existing work on this dataset employed lan-
guage models to create separate, single-utterance
text-based classifiers for therapist and client utter-
ances (Wu et al., 2022b, 2023a). To the best of
our knowledge, we present the first multi-modal,
context-aware, multi-task approach to utterance
classification on the AnnoMI corpus.

2.2. Multi-Task Approaches
Previous work applied multi-task learning for dia-
logue analysis in several setups. Ide and Kawa-
hara (2021) proposed a multi-task learning method
for emotion-aware dialogue response generation,
emphasizing the synergy between generation and
classification tasks. They train the same model

to generate dialogue responses and at the same
time detect emotion. Liu et al. (2022) introduced
EmoDM, which at the same time learns to track
emotional states and empathetic dialogue policy
selection. Kollias (2022) presented the ABAWCom-
petition, which includes challenges like Valence-
Arousal Estimation and Expression Classification
using multi-task learning on the Aff-Wild2 database.
In a subsequent iteration, Kollias (2022) highlighted
the potential of multi-task approaches in emotion
detection and classification using both synthetic
data and multi-task learning to classify valance or
arousal and emotions. To the best of our knowl-
edge, multi-task learning was not yet applied to
model the different roles speakers have in motiva-
tional interviewing.

3. Method
Figure 1 illustrates the architecture of our model.
Text- and audio embeddings are extracted from k
consecutive utterances of therapist and client. A
shared self-attention layer is used to model conver-
sation context across utterances, and task-specific
classification networks are utilized to produce clas-
sification outputs for the therapist and client.

3.1. Input Embeddings
In the following we discuss how we obtained per-
utterance embeddings from text and audio inputs.
For text data, we used RoBERTa Large (Liu et al.,
2020). RoBERTa, short for "Robustly optimized
BERT approach," is a variant of the BERTmodel de-
signed for natural language processing. RoBERTa
improved BERT’s performance by altering the train-
ing regimen, notably removing the next-sentence
prediction objective and utilizing dynamic mask-
ing for more efficient pre-training. The model was
trained with more data and larger batch sizes,
resulting in improved accuracy and demonstrat-
ing the significance of meticulous training details.
RoBERTa achieved state-of-the-art results in var-
ious NLP benchmarks (Liu et al., 2020) includ-
ing emotion (Adoma et al., 2020) and depres-
sion (Gupta et al., 2023) recognition.
To encode prosodic information, we made use of
the Audio Spectrogram Transformer (AST) (Gong
et al., 2021), a specialized model designed to
handle audio classification tasks using the trans-
former architecture. AST directly operates on au-
dio spectrograms and achieved state-of-the-art re-
sults on recognizing human speech (Gemmeke
et al., 2017a), command (Warden, 2018) and
also difference between human and environmental
sounds (Piczak, 2015). The Audio Spectrogram
Transformer (AST) (Gong et al., 2021) is particularly
well-suited for analysing prosody due to its ability to
model inter-dependencies across time and thereby
extract intricate patterns from audio data. AST’s
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Figure 1: Overview over the M3TCM Model. Several consecutive therapist and client utterances (uti and
uci, respectively) are encoded using RoBERTa and AST models, producing text and audio embeddings. A
shared self-attention layer models conversation context across utterances. Finally, separate classification
networks produce predictions for therapist and client utterances.

attention-based mechanism allows it to focus on
specific aspects of the audio spectrogram, such as
the variations in pitch, tempo, and volume, which
are integral components of prosody.

3.2. M3TCM Approach
Our model processes k utterances of each pa-
tient and therapist in parallel. At each time step
i = 1..k we have the textual utterances of the
therapist and client, denoted as uti and uci re-
spectively, along with their corresponding audio
spectrograms. RoBERTa is used to extract 2k text
embeddings Etext = etextt1 ..etexttk , etextc1 ..etextck from
therapist and client utterances. AST on the other
hand produces the corresponding audio embed-
dings Eaudio = eaudiot1 ..eaudiotk , eaudioc1 ..eaudiock .
Text and audio embeddings for any given utterance
are subsequently concatenated:

E = Eaudio ⊕ Etext (1)

which results in the combined embeddings E =
et1..etk, ec1..eck. To incorporate conversation con-
text in our classification approach, we model re-
lations between utterances with a self-attention
layer (Vaswani et al., 2017):

E′ = SelfAttention(E) (2)

Our multi-task learning approach employs two
task-specific networks working on separate sub-
sets of the 2k transformed embeddings E′ =
e′t1..e

′
tk, e

′
c1..e

′
ck. The therapist utterance classifica-

tion network ft receives as input the first k embed-
dings E′

therapist = e′t1..e
′
tk and outputs k classifica-

tion decisions ŷt = ŷt1..ŷtk, one for each therapist
input utterance:

ŷt = ft(E
′
therapist) (3)

Analogously, the client classification network fc pro-
duces predictions ŷc = ŷc1..ŷck for the k client input
utterances. While client and therapist classification
networks have separate weights, the self-attention
layer is shared between both tasks. This allows our

self-attention layer to learn both task-dependent
and task-independent aspects of behaviour. To be
precise, the multi-task-learning takes place through
query-key interactions across client and therapist
utterances.

3.3. Implementation Details
To address the class imbalances(Sub-section 4.1)
resulting from client and therapist behaviour, we
use the Focal Loss function, suitable for imbal-
anced classification scenarios Lin et al. (2017).
M3TCM Shared layer has the dimension of 1551×
1024. Both client and therapist specific heads have
two layers, with 1024 × 512 and 512 × 256 dimen-
sions. To improve reproducibility, we make our
code publicly available1.

4. Experiments
4.1. Data Prepossessing
We began with the AnnoMI dataset from Wu et al.
(2023a), consisting of 13551 utterances transcribed
from 133 Youtube videos. Since the initial publish-
ing of AnnoMI, some of those videos have been
removed fromYoutube, our dataset contained in the
end 125 videos. Given our multi-modal approach in-
cluding audio, we had to remove utterances of non-
available videos, leaving us with 12778 instances,
6338 for client and 6440 for therapist. To extract
the per-utterance audios, we isolated audio from
videos and segmented them using the utterance
timestamps provided with AnnoMI. Instances with
multiple annotators were harmonized by selecting
the most frequent annotation.
Our targets were the client talk type class and the
main therapist behaviour. The client class was im-
balanced: 63% “neutral”, 25% “change”, and 12%
“sustain”. On the other hand, the therapist’s class
distribution showcased a more even spread: 31%
for “other”, 29% for “question”, 25% for “reflection”,
and 15% for “therapist_input”.

1https://git.opendfki.de/philipp.
mueller/m3tcm

https://git.opendfki.de/philipp.mueller/m3tcm
https://git.opendfki.de/philipp.mueller/m3tcm
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Client Therapist
Models Average Change Neutral Sustain Average Reflection Question Input Other
Random Baseline 0.33 0.25 0.63 0.12 0.25 0.25 0.29 0.15 0.31
Wu et al. (2023a) 0.55 0.51 0.74 0.39 0.72 0.77 0.86 0.63 0.64
M3TCM Without Finetuning 0.54 0.70 0.42 0.41 0.73 0.65 0.82 0.81 0.63
M3TCM Text Only Single Task 0.58 0.76 0.56 0.43 0.77 0.73 0.86 0.82 0.68
M3TCM Audio Only Single Task 0.40 0.65 0.38 0.18 0.44 0.40 0.60 0.44 0.31
M3TCM Audio Only No Context 0.38 0.65 0.36 0.13 0.40 0.38 0.58 0.40 0.25
M3TCM Text Only No Context 0.57 0.73 0.52 0.45 0.77 0.74 0.86 0.82 0.67
M3TCM Audio Only 0.46 0.73 0.43 0.21 0.49 0.46 0.68 0.48 0.33
M3TCM Text Only 0.63 0.80 0.59 0.49 0.80 0.76 0.89 0.85 0.68
M3TCM No Context 0.61 0.78 0.57 0.48 0.76 0.70 0.83 0.87 0.65
M3TCM Single Task 0.60 0.78 0.57 0.46 0.77 0.70 0.85 0.87 0.65
M3TCM 0.66 0.83 0.62 0.52 0.83 0.81 0.89 0.88 0.73

Table 1: Classification results for M3TCM compared to baselines and ablation conditions. We report
per-class, as well as macro-averaged F1 scores for both client and therapist classification tasks.

4.2. Training Details
We used 5 Fold Cross Validation stratified by video
to guarantee that no utterances form the same
video can appear both in train and test sets. We
used 3

5 of the data for training, 1
5 for validation, and

1
5 for testing.
In a first step, we fine tuned both AST (Gong et al.,
2021) and RoBERTA Large (Liu et al., 2020) model
on our dataset. We also tried using AST and
RoBERTa without finetuning, but that led to infe-
rior results. In a second step, we trained the full
M3TCM model for 100 epochs and choose the best
model based on the performance on the validation
set. One thing to note is that at this stage of the
training the weights of the finetuned RoBERTa and
AST layer were fixed and as we said before was
selected based on the best performance on the
validation set.
Both for the finetuning and the final training phase
we used the the AdamW optimizer at a learning rate
of 1e-5 Loshchilov and Hutter (2019) and trained
for 100 epochs. We selected the best model from
these 100 epochs by evaluating F1 score on the
validation set.

5. Results
In line with previous work (Wu et al., 2022b, 2023a),
we evaluated all approaches using the F1 score.
We do so both with per-class F1 scores as well
as separate macro-averaged F1 scores for the pa-
tient and therapist utterance classification tasks. In
Table 1, we report results for M3TCM as well as
baselines and ablation conditions.
M3TCM outperforms all other approaches, reach-
ing 0.66 F1 for the client and 0.83 F1 for therapist
utterance classification. This is a clear improve-
ment over the previous state of the art by Wu et al.
(2023a) (0.55 F1 client, 0.72 F1 therapist). Cru-
cially, our ablation experiments confirm the utility
of multi-task learning. Models trained separately

Figure 2: Performance for therapist and client ut-
terance classification for different context sizes.

on patient and therapist utterance classification
(“M3TCM Single Task”), only reached 0.60 F1 for
client and 0.77 F1 for therapist. Furthermore, con-
sistent improvements over mono-modal ablations
(“M3TCM Audio Only / Text Only”) document the
utility of fusing text and audio information. In addi-
tion, we observed that the inclusion of conversation
context leads to clear improvements: we see that
without context it achieves for client F1 of 0.61 and
for therapist 0.76.
Our M3TCM model has a slightly lower F1 score
(0.62) for the majority "neutral" class for client talk
type compared to random guessing (0.63 F1). The
reason for this is that we decided to optimise our
model to perform well on all classes (and not pri-
marily on the majority class), which is reflected in
consistently higher scores for the minority classes.
For “change”, M3TCM reached 0.83 F1 versus 0.51
F1 for Wu et al. (2022b), and 0.25 F1 for the ran-
dom baseline. For the challenging minority class
“sustain”, M3TCM reached 0.52 F1 versus 0.39 F1
for Wu et al. (2022b), and 0.12 F1 for the random
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Figure 3: Performance of therapist and client utter-
ance classification for different context sizes in an
online evaluation scenario.

baseline. A precise distinction between “change”
and “sustain” is especially important in motivational
interviews, as these are highly informative classes
concerning behaviour change.
To better understand the utility of conversation con-
text, we conducted an experiment with varying num-
bers of utterances as context (see Figure 2). We
observed a clear increase in F1 score for both ther-
apist and patient when increasing the number of
patient/therapist utterances we input to the model
from 1 to 10. For more than 10 utterances perfor-
mance reaches a plateau, while memory utilization
continues to increase. We therefore determine 10
utterances per patient/therapist as the optimal in-
put size, which is much larger than the input win-
dow of maximally 3 utterances used in previous
work (Tavabi et al., 2020).
It is important to note that our model is evaluated
in an offline scenario, i.e. for the classification of
a given utterance it also has access to future utter-
ances. To understand its capabilities in an online
classification setup, we analyze the prediction per-
formance when only using the prediction on the
last utterance of the input window. We present the
corresponding results for varying sizes of the in-
put window (i.e. previous) utterances in Figure 3.
In general, the performance is very similar to the
offline approach, demonstrating the utility of our
approach in online classification scenarios.

6. Conclusion and Future Work
In this work, we presented M3TCM, a multi-modal
and context-sensitive approach to utterance classi-
fication in motivational interviews that for the first
time leverages multi-task learning to model both
therapist and patient at the same time. We showed
clear improvements over the previous state of the
art as well as ablated versions of our model. As
such, our work underlines the importance of mod-
els that make use of all the available information

to build highly accurate conversation analysis sys-
tems. For future work, it would be interesting to inte-
grate the video modality alongside text and prosody.
Furthermore, our multi-task approach could be ap-
plied to different scenarios that exhibit asymmetrical
roles in conversation. These may include psychi-
atric interactions (König et al., 2022), sales conver-
sations, teacher-student interactions (Cafaro et al.,
2017), or police interrogations. In addition, it will be
interesting to integrate predicted utterance classes
as input features in nonverbal conversational be-
haviour generation approaches (Withanage Don
et al., 2023).
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