
LREC-COLING 2024, pages 10822–10832
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

10822

Low-Rank Prune-And-Factorize for Language Model Compression

Siyu Ren, Kenny Q. Zhu*

Shanghai Jiao Tong University, University of Texas at Arlington
Shanghai China, USA

roy0702@sjtu.edu.cn, kenny.zhu@uta.edu

Abstract
The components underpinning PLMs—large weight matrices—were shown to bear considerable redundancy. Matrix
factorization, a well-established technique from matrix theory, has been utilized to reduce the number of parameters
in PLM. However, it fails to retain satisfactory performance under moderate to high compression rates. In this paper,
we identify the full-rankness of fine-tuned PLM as the fundamental bottleneck for the failure of matrix factorization
and explore the use of network pruning to extract low-rank sparsity pattern desirable to matrix factorization. We find
such a low-rank sparsity pattern exclusively exists in models generated by first-order pruning, which motivates us
to unite the two approaches and achieve more effective model compression. We further propose two techniques:
sparsity-aware SVD and mixed-rank fine-tuning, which improve the initialization and training of the compression
procedure, respectively. Experiments on GLUE and question-answering tasks show that the proposed method has a
superior compression-performance trade-off compared to existing approaches.

1. Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019) have shown superb per-
formance on a variety of natural language pro-
cessing tasks. These models are heavily over-
parametrized (Nakkiran et al., 2019) as they usually
contain hundreds of millions of parameters, placing
a severe burden on local storage, network transfer-
ring, runtime memory, and computation cost. Due
to this disadvantage, the application of PLMs in
low-resource scenarios is limited.

To alleviate this issue, recent studies (Louizos
et al., 2018; Ben Noach and Goldberg, 2020) have
attempted to compress PLMs by reducing the pa-
rameter redundancy in the weight matrices. Ma-
trix factorization (MF), originated from matrix the-
ory, is leveraged by modern deep learning towards
achieving parameter efficiency. It works by decom-
posing large matrices into smaller sub-matrices
with structural properties. The factorized sub-
matrices serve as approximations of the original ma-
trices while having fewer parameters. Ben Noach
and Goldberg (2020) employ singular value de-
composition (SVD) for BERT compression with 2x
compression rate and show 5% drop in average
GLUE (Wang et al., 2018) performance compared
to full BERT. The degradation is more evident un-
der high compression rates (3 2). Through a pre-
liminary study, we identify the reason for the un-
satisfactory performance of matrix factorization to
be the full-rankness property of a fine-tuned lan-
guage model. It inevitably causes information loss

*The correspondence author, and was partially sup-
ported by Meituan-SJTU Joint Research Scheme and
NSF Award No. 2349713.

during the factorization process since the rank of
sub-matrices has to be significantly smaller than
the fine-tuned model to achieve parameter com-
pression.

In an attempt to address this limitation of MF, we
first explore the effect of network sparsification to
produce subnetworks with the majority of weights
set to zero. Ideally, we expect the subnetworks to
contain low-rank sparse weight matrices and mean-
while preserve useful information for the end task.
To this end, we conduct a systematic investigation
into unstructured pruning (UP) to study whether
the resulting subnetworks exhibit the desirable low-
rank property. From our experiments, we make the
following important observations: (1) zero-order
UP that only considers weight magnitude as prun-
ing criterion produces subnetworks as full-rank as
fine-tuned models; (2) first-order UP that incorpo-
rates gradient information into pruning decision is
able to identify subnetworks that are both accurate
and low-rank.

The above findings motivate us to further explore
the possibility of improving matrix factorization with
unstructured pruning. Specifically, we design a se-
quential framework in which the first-order UP is ex-
ecuted prior to matrix factorization. In this way, the
accurate low-rank subnetworks can be exploited by
matrix factorization with minimal accuracy degra-
dation while enjoying parameter and computation
efficiency.

Moreover, we noticed that the vanilla SVD is
not designed for sparse matrices because it pe-
nalizes the reconstruction error of each parame-
ter equally (Chen et al., 2018). Also, due to the
reduced capacity, the joint re-training of low-rank
sub-matrices may converge to solutions with lower
generalization ability. To address the first problem,

10823

Original Weight Matrix

Unstructured Weight Pruning

Matrix Factorization

Figure 1: Illustration of matrix factorization and
unstructured pruning on a single weight matrix.

we propose sparsity-aware SVD, a weighted variant
of SVD that better reconstructs unpruned (hence
more important) parameters. To address the
second problem, we introduce mixed-rank fine-
tuning, a regularized training scheme where the
low-rank sub-matrices are randomly replaced with
the sparse matrix from which they are factorized.
Our contributions are as follows:

• Through a comprehensive preliminary study,
we discover a low-rank phenomenon in models
obtained by first-order UP, which highlights the
possibility of a more efficient parametrization
of low-rank sparse matrices using low-rank
factorization.

• Based on our findings, we design a sequen-
tial framework named Low-rank Prung-And-
Factorize(LPAF) which makes high compres-
sion rate using matrix factorization possible.
As further optimizations, we propose sparsity-
aware SVD which prioritizes reconstruction of
unpruned weights at initialization, and mixed-
rank fine-tuning to compensate for the reduced
capacity during training.

• Comprehensive experiments on GLUE and
question-answering tasks show that our ap-
proach can achieve a 2x-6x reduction in model
size and FLOPs while retaining 99.8%-96.2%
performance of the original BERT.

2. Background and Related Work

In this section, we present the necessary back-
ground knowledge about matrix factorization and
unstructured pruning (Figure 1).

2.1. Matrix Factorization (MF)
Given the weight matrix W ∈ Rn×m, matrix factor-
ization (Ben Noach and Goldberg, 2020) decom-
poses it into sub-matrices with reduced total num-
ber of parameters to achieve model compression.

It first uses singular value decomposition (SVD) to
obtain an equivalent form of W as the product of
three matrices:

W = UΣV T (1)

where U ∈ Rn×r, Σ ∈ Rr×r, V ∈ Rr×m, and r is
the rank of matrix W . Σ is a diagonal matrix of non-
zero singular values {σ1, σ2, ..., σr} in descending
order. Then, low-rank approximation with targeted
rank k is obtained by keeping the top-k singular
values in Σ as well as their corresponding column
vectors in U and V :

W ≈ U[:,:k]Σ[:k,:k]V
T
[:,:k] = AB (2)

where A = U[:,:k]Σ[:k,:k] and B = V T
[:,:k] are the

two final sub-matrices of which the product is used
to replace W . After such factorization, the number
of parameters is reduced from nm to k(n + m).
Different compression rates can be achieved by
varying the preserved rank k.

2.2. Unstructured Pruning (UP)
Let W ∈ Rn×m denote a generic weight matrix
in a PLM. In order to determine which elements
in W are pruned, an importance score matrix
S ∈ Rn×m is correspondingly introduced. The
smaller Si,j is, the larger the probability of Wi,j will
be pruned. Given the importance scores, a pruning
strategy fprune(·) computes a binary mask matrix
M ∈ {0, 1}n×m = fprune(S), and the forward pro-
cess for an input x becomes y = (W⊙M)x, where
⊙ denotes element-wise multiplication.

Zero-order Pruning (UPzero) Zero-order pruning
refers to the family of algorithms that only use the
value of the weight as the importance measure. For
example, magnitude-based weights pruning (Han
et al., 2015; Chen et al., 2020) adopts the absolute
value of weight as importance score, i.e., Si,j =
|Wi,j |. The typical choice of fprune(·) is to keep v%
of weights with the largest importance scores:

Mi,j =

{
1, if Si,j is in the largest v%
0, otherwise

(3)

First-order Pruning (UPfirst) Unlike zero-order
pruning where S is directly derived from W , first-
order methods treat S as learnable parameters
and jointly train it with model weights during fine-
tuning. For example, SMvP (Sanh et al., 2020)
and CAP (Xu et al., 2021) randomly initialize S and
update it during the whole pruning process. The
pruning strategy fprune(·) is the same as in zero-
order pruning (Eq. (3)).

Since the gradient of the thresholding function is
0 everywhere, straight-through estimator (Bengio

10824

et al., 2013) is used as an approximation. The
importance score Si,j of Wi,j up to training step T
can be expressed as:

Si,j = −
∑
t≤T

(
∂L

∂Wi,j
)(t)W

(t)
i,j (4)

where L is the loss function. The formulation is also
equivalent to the first-order Taylor approximation of
the change in L if Wi,j is zeroed out.

Sparsity Scheduler The proportion of remain-
ing weights is controlled by the sparsity scheduler,
here we adopt the commonly used cubic sparsity
schedule to progressively reach target sparsity, i.e.,
vt at time step t is derived by:

vi t ∈ [0, ti)

vf + (vi − vf)(
T−tf−t
T−tf−ti

)3 t ∈ [ti, T − tf)

vf otherwise
(5)

where vi = 1.0, vf is the final percent of remained
parameters, ti and tf are the warmup and cool-
down steps. T is the total training steps. Moreover,
we discard M and directly set Wi,j to zero if S(t)

i,j

is not in the top-vt at time step t.

3. Preliminary Study

In this section, we conduct a preliminary study on
unstructured pruning and matrix factorization based
on BERT-base and try to find answers to the fol-
lowing two questions: (1) How does matrix factor-
ization perform under high compression rates? (2)
Do subnetworks produced by unstructured pruning
contain low-rank sparsity patterns while preserving
the majority of task accuracy?

3.1. Experimental Setting

Datasets We use two tasks from GLUE bench-
mark (Wang et al., 2018), namely MRPC and RTE,
as our evaluation testbeds. Both of them are for-
mulated as classification problems.

Implementation Details For matrix factorization,
we follow the algorithm in 2 1. Specifically, we first
fine-tune BERT-base on each downstream task fol-
lowing Devlin et al. (2019). Then, we perform trun-
cated SVD on weight matrices of each linear layer in
the fine-tuned BERT and re-train the whole model
to recover the lost accuracy. We select preserved
rank k from {390, 260, 130, 50}, which corresponds
to {0.75, 0.50, 0.25, 0.10} of BERT’s parameters.

For unstructured pruning, we evaluate both
UPzero and UPfirst. We set the value of vf from
{0.75, 0.50, 0.25, 0.10} to make a direct comparison
to matrix factorization.

80

85

90

1 0.75 0.5 0.25 0.1

F1
 S

co
re

Remaining Parameters

MRPC
zero-order first-order SVD BERT-base

0
200
400
600
800

1 0.75 0.5 0.25 0.1

Av
er

ag
e

Ra
nk

Remaining Parameters

MRPC
zero-order first-order SVD BERT-base

50
55
60
65
70

1 0.75 0.5 0.25 0.1

Ac
cu

ra
cy

Remaining Parameters

RTE
zero-order first-order SVD BERT-base

0
200
400
600
800

1 0.75 0.5 0.25 0.1

Av
er

ag
e

Ra
nk

Remaining Parameters

RTE
zero-order first-order SVD BERT-base

Figure 2: Task accuracy (top half) and average
matrix rank (bottom half) v.s. percentage of original
parameters retained. The dashed line indicates the
performance/rank upper bound by fine-tuning the
full-scale BERT-base model.

3.2. Results and Analysis
Accuracy Preservation The variation of task ac-
curacy with respect to the remaining parameters
is illustrated in the top half of Figure 2. Under a
small compression rate, i.e., 75% parameters re-
maining, all examined methods can retain ≥ 97%
performance of BERT-base across all tasks. Under
moderate compression rate, i.e., 50% parameters
remaining, UPzero and SVD start to show obvious
declines. When more extreme compression rates
are pursued, e.g., 25%-10% parameters remain-
ing, SVD exhibits the most drastic performance
drops compared to UP methods. On the contrary,
UPfirst still retains ∼ 97.6% of BERT’s performance.
UPzero lags behind UPfirst by a large margin under
high sparsity. This indicates that magnitude alone
cannot be used to quantify a weight’s contribution
because even a small weight can yield a huge influ-
ence on the model output due to the complicated
compositional nature of neural networks. In con-
trast, the importance criterion of UPfirst directly re-
flects the sensitivity of the model’s training loss w.r.t.
each weight and is therefore more accurate.

Rank Considering the inferior accuracy of SVD,
we hypothesize that the weight matrices of fine-
tuned BERT are high-rank, hence leading to a large
approximation error when k is small. The bottom
half of Figure 2 inspects the average rank of weight
matrices. We can see that the weight matrices in
fine-tuned BERT-base are nearly full-rank, which
explains the inefficacy of SVD when k is small. We
also plot the rank-parameter curve of UP methods.
For UPzero, it produces sparse matrices that are as
high-rank as densely fine-tuned BERT even when
90% weights are set to zero. In contrast, UPfirst pro-
duces sparse patterns whose rank monotonically

10825

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Zero-order UP
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

First-order UP

Figure 3: Sparsity patterns of the same 768x768
weight matrix pruned by UPzero (left) and
UPfirst (right) on MRPC with 10% of the parameters
remaining.

decreases as more weights are pruned. To gain
more insights into this phenomenon, we visualize
the weight matrix pruned by UPzero and UPfirst in
Figure 3. Though both are designed without struc-
tural bias, unlike UPzero, UPfirst learns to remove
entire rows from the weight matrix and the resulting
matrix enjoys a low-rank characteristic.

100 80 60 40
Preserved rank

0

10

20

30

40

50

Fr
ob

en
iu

s N
or

m

Reconstruction Error
fine-tuning
first-order

100 80 60 40
Preserved rank

0

20

40

60

80

100

Pe
rc

en
t(%

)

Sum of singular values
fine-tuning
first-order

Figure 4: Quantitatively measuring approximation
quality via reconstruction error (left) and cumulative
sum of singular values (right) on MRPC.

The Idea The key insight is: factorizing a high-
rank matrix into low rank sub-matrices loses signifi-
cant quantity of useful information, but factorizing a
low-rank matrix into low rank sub-matrices doesn’t
lose as much information. Our design is based on
this insight. As a sanity check of its feasibility, we
quantitatively measure the quality of low-rank ap-
proximation with various preserved ranks k. Figure
4 shows that given a specific k, the sum of top-k sin-
gular values of matrices produced by UPfirst takes a
much larger portion of total values than fine-tuning,
suggesting that we can reserve more information
of low-rank sparse matrix given the same k. The
reconstruction error (measured by Frobenius norm)
of UPfirst is also significantly lower, implying a higher
approximation quality. We thus expect that low-rank
matrix factorization on low-rank sparse models to
effectively combine: (1) the good performance of
first-order UP; (2) direct memory and computation
reduction by MF.

4. LPAF: Low-rank
Prune-And-Factorize

Here we formally propose the LPAF (Low-rank
Prune-And-Factorize) framework for language
model compression. In addition, we propose two
optimizations in the initialization and training of the
compression process.

4.1. The Overall Workflow

Given a pre-trained language model T and a down-
stream task with training set D = {(xi, yi), i =
1, 2, ...M}, LPAF consists of three steps to realize
model compression:

• Step-1: obtaining the low-rank sparse model
Tsparse = UPfirst(T,D, v). v is the percent of
remained parameters after pruning.

• Step-2: performing matrix factorization on
each weight matrix (excluding the embedding
layer) in Tsparse and obtain its low-rank factor-
ized form Tfactorized.

• Step-3: re-training Tfactorized on D using task-
specific loss function until convergence.

Next, we present two novel optimizations, namely
sparsity-aware SVD and mixed-rank fine-tuning,
that improve the matrix factorization and fine-tuning
process in step 2 and step 3 respectively.

4.2. Optimization 1: Sparsity-aware SVD

SVD has been shown (Stewart, 1998) to provide
the optimal rank-k approximation to W with respect
to the Frobenius norm:

min
A,B

||W−AB||F = min
A,B

∑
i,j

(Wi,j − (AB)i,j)
2

s.t. rank(AB) = k (6)

It is a generic factorization method in that it is ap-
plicable to any matrix W by penalizing the recon-
struction error of each individual weight equally.

In our case, W is a sparse matrix from Tsparse
in which the majority of weights are set to zero
by the pruning algorithm P . These zero weights
are deemed to have less impact on the task per-
formance compared to the retained (unpruned)
weights. However, the vanilla SVD treats each
weight equally without considering the inherent
sparseness of W , thus may be sub-optimal for pre-
serving useful information in W about the end task.
To address this issue, we propose sparsity-aware
SVD which considers different priorities of parame-
ters and weighs the individual reconstruction error

10826

based on its importance score Si,j :

min
A,B

∑
i,j

Si,j(Wi,j − (AB)i,j)
2 (7)

s.t. rank(AB) = k (8)

In this way, parameters that are more important
can be better reconstructed, hence retaining more
task performance from Tsparse at initialization. Nev-
ertheless, Eq. (8) does not have a closed form
solution (Srebro and Jaakkola, 2003; Hsu et al.,
2021) when each Wi,j has its own weight. We
therefore resort to a simplification by letting the
same row of W share the same importance. The
importance for row i is given by Ŝi =

∑
j Si,j∑
n Ŝn

. Let
Î = diag(Ŝ1, Ŝ2, ..., Ŝn) denote a diagonal matrix,
Eq. (8) is now converted to:

min
A,B

||ÎW − ÎAB||F (9)

s.t. rank(AB) = k (10)

This essentially amounts to applying rank-k SVD
upon ÎW , i.e., ÎW = ÛΣ̂V̂ T. Then the solution
of A and B can be analytically obtained by:

A = Î−1Û[:,:k]Σ̂[:k,:k],B = V̂ T
[:,:k] (11)

4.3. Optimization 2: Mixed-rank
Fine-tuning

Recall that the last step of LPAF is to fine-tune
Tfactorized on the training set D. This process has
been proven essential to regain the performance
lost during factorization (Ben Noach and Goldberg,
2020). However, during the experiments, we ob-
serve the performance of fine-tuned Tfactorized still
slightly lags behind Tsparse given a similar parameter
budget. We posit that, due to the reduced capac-
ity (less trainable parameters) and model-level ap-
proximation error incurred by low-rank factorization,
joint fine-tuning of low-rank matrices may converge
to sub-optimal solutions with lower generalization
ability. To mitigate this problem, we propose mixed-
rank fine-tuning, a regularized scheme for training
low-rank matrices.

Let {(AB)i, i = 1, 2..., N} denotes all low-rank
matrices in Tfactorized. During training, for each
(AB)i, we sample a binary Bernoulli random vari-
able zi ∼ Bernoulli(p), where p is a global hyper-
parameter. Then, the local computation process
involving (AB)i is modified to:

xout = (1− zi) ∗ (AB)ixin + zi ∗Wixin (12)

where Wi is the sparse matrix in Tsparse from which
Ai and Bi are derived. In this way, the low-rank
matrices can further benefit from gradient-level reg-
ularization from Tsparse, thus reducing the general-
ization gap. The hyper-parameter p is controlled

by a scheduler. We implement it such that p is lin-
early decayed from an initial value pinit to zero by a
constant step size d:

p = max(0, pinit − d ∗ t) (13)

As p decreases, Wi is gradually substituted by low-
rank sub-matrices (AB)i. When p reaches zero,
the training enters the phase of standard fine-tuning.
To further mitigate the training instability brought by
sampling, we let each input go through the forward
pass twice with different z1 = {z1i }Ni=1 and z2 =
{z2i }Ni=1, and impose a consistency objective on the
two outputs to promote stability:

Lc = D(yz1 , yz2) (14)

where D can be the KL divergence for classification
tasks and the MSE loss for regression tasks.

5. Experiments

In this section, we present the experiments of LPAF
for language model compression. We compare with
state-of-the-art compression methods and perform
detailed analysis of the results to provide guidance
under different resource budgets.

5.1. Experimental Setup
In this subsection, we present the detailed exper-
imental setup regarding the datasets, baselines,
training details, and compression settings.

5.1.1. Datasets

We evaluate our approach on general natural lan-
guage understanding tasks from GLUE bench-
mark (Wang et al., 2018), as well as extractive
question-answering tasks using SQuAD v1.1 (Ra-
jpurkar et al., 2016) and SQuAD v2.0 (Rajpurkar
et al., 2018). GLUE tasks include Recognizing Tex-
tual Entailment (RTE), The Corpus of Linguistic
Acceptability (CoLA), Standford Sentiment Anal-
ysis (SST-2) (Socher et al., 2013), Microsoft Re-
search Paraphrase Corpus (MRPC), Quora Ques-
tion Pairs (QQP), Question NLI (QNLI) (Dolan and
Brockett, 2005), and Multi-genre Natural Language
Inference (MNLI) (Williams et al., 2017).

Following previous work (Sun et al., 2019), we
evaluate under a task-specific setting, i.e., we utilize
no external corpus but only assume access to the
training data of each task.

5.1.2. Baselines

We compare LPAF as well as its three ablated ver-
sions that remove each of the three steps against
four categories of methods with a perceivable re-
duction in model size and computation.

10827

% of Params. FLOPs
Task All GLUE SQuAD
BERT-base 100% 7.4G 35.4G
LPAF-260 50% 3.7G 16.1G
LPAF-130 25% 1.9G 10.3G
LPAF-80 16% 1.3G 7.9G

Table 1: Percentage of parameters and FLOPs for
LPAF with different preserved rank.

Pre-training Distillation: DistilBERT (Sanh et al.,
2019), and TinyBERT (Jiao et al., 2020) are
two widely adopted pre-training distillation mod-
els, which use large amounts of unlabeled corpus
followed by task-specific fine-tuning.

Task-specific Distillation: PKD (Sun et al.,
2019) extends KD by intermediate feature match-
ing; Theseus (Xu et al., 2020) proposes a pro-
gressive module replacing method for knowledge
distillation; CKD (Park et al., 2021) transfers the
contextual knowledge via word relation and layer
transforming relation; MetaDistil (Zhou et al., 2022)
uses meta-learning for training the teacher to better
transfer knowledge to the student.

Structured Pruning: Iterative structured prun-
ing (ISP) (Molchanov et al., 2016) removes atten-
tion heads in multi-head self-attention layer and
neurons in feed-forward layer with the lowest sen-
sitivity in an iterative manner; FLOP (Wang et al.,
2020c) represents weight matrices as the sum of
rank-one component and adaptively removes the
least important ones during training; Block Prun-
ing (BPhybrid) (Lagunas et al., 2021) shares prun-
ing decisions for each 32x32 weight blocks in self-
attention layer and for each row/columns in feed-
forward layer; CoFi (Xia et al., 2022) jointly prunes
attention heads, neurons, hidden dimension, and
entire multi-head self-attention/feed-forward layer
via Lagrangian multipliers.

Matrix Factorization: SVDFt (Ben Noach and
Goldberg, 2020) applies truncated SVD on a
densely fine-tuned BERT and re-trains the factor-
ized model to recover accuracy loss.

5.1.3. Training Details

The sparsity-relevant hyperparameter v in step-1
is tuned for each task in GLUE and SQuAD. We
empirically search pinit in {0.7, 0.5, 0.3} and de-
cay it to zero after half of the total training steps.
During training, we fix the batch size to 32. The
maximum input length is set to 384 for SQuAD v1.1,
SQuAD v2.0, and 128 for other tasks in GLUE. We

use the AdamW (Loshchilov and Hutter, 2017) opti-
mizer and search learning rate in {2e-5, 3e-5}. We
follow the official implementation of all compared
baselines and run structured pruning and matrix
factorization methods with a unified logits distilla-
tion objective for a fair comparison.

5.1.4. Compression Setting

We opt for BERT-base as the main target language
model and compress it into various sizes. The
original BERT-base has 12 Transformer encoder
layers, and each of them is a stack of multi-head
self-attention sublayer and feed-forward sublayer.
We apply our proposed LPAF to {query, key, value,
output, up-projection, down-projection} matrices of
all layers and refer to BERT-base compressed by
LPAF with preserved rank k as LPAF-k. We select
k from {260, 130, 80}, which corresponds to {50%,
25%, 16%} of original parameters. We use Face-
book fvcore to compute FLOPs for measuring the
computation cost. See Table 1 for details. We set
the number of layers in distillation baselines to {6, 3,
2} and tune the sparsity-relevant hyperparameters
in structured pruning baselines such that their final
remaining parameters corresponds to {50%, 25%,
16%} of BERT-base’s parameters and the FLOPs
roughly equal to LPAF-{260, 130, 80}.

5.2. Main Results

Table 2 and Table 3 summarize the results on
GLUE, SQuAD v1.1/v2.0. Under 50% parameter
budget, as the previous state-of-the-art algorithms
in task-specific distillation and structured pruning,
CKD, MetaDistil, and CoFi deliver the strongest per-
formance on certain GLUE tasks (i.e., RTE, CoLA,
SST-2) respectively, while LPAF performs the best
on the others. As the compression rate increases,
all distillation methods suffer from evident accu-
racy declines compared to structured pruning and
matrix factorization methods, suggesting the diffi-
culty of knowledge transfer when the capacity of
the student model is insufficient. Compared with
ISP and CoFi which remove entire attention heads
and neurons, LPAF operates at a finer-grained ma-
trix level and is therefore more flexible. Compared
with FLOP and BPhybrid which remove rank-1 com-
ponent or consecutive blocks of weight matrices,
LPAF can effectively utilize the accurate low-rank
subnetwork identified by UPfirst and maximally re-
cover task accuracy via the proposed optimizations.
Through controlled ablation, we show that low-rank
sparsity (step-1) plays the most critical role in pre-
serving task accuracy, while sparsity-aware SVD
and mixed-rank fine-tuning yield further improve-
ments via more accurate sparse matrix approxima-
tion and regularized training.

10828

Task RTE MRPC SST-2 QQP QNLI MNLI

% Params. 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16%

Pre-training Distillation

DistilBERT 65.0 61.0 56.3 85.8 77.0 72.5 90.0 88.9 86.4 90.8 89.4 88.0 86.0 83.8 81.6 81.7 76.4 71.3
TinyBERT 67.7 67.2 64.6 86.3 85.3 78.2 92.3 89.8 88.0 90.5 90.0 88.7 89.9 87.7 84.5 83.1 80.6 77.4

Task-specific Distillation

PKD 65.5 59.2 53.8 81.9 76.2 71.3 91.3 88.1 87.2 88.4 88.5 87.5 88.4 82.7 78.0 81.3 75.7 72.7
Theseus 65.6 62.1 58.8 86.2 77.2 72.8 91.5 88.5 86.1 89.6 89.0 86.0 89.5 85.0 80.3 82.3 76.4 73.5
CKD 67.3 66.5 60.8 86.0 81.1 76.6 93.0 89.8 88.7 91.2 90.1 88.9 90.5 87.0 84.9 83.6 79.0 76.8
MetaDistil 69.0 66.7 61.0 86.8 81.8 77.3 92.3 88.9 87.0 91.0 88.9 86.9 90.4 86.8 84.9 83.5 79.5 76.8

Structured Pruning

ISP 66.4 65.0 63.9 86.1 83.6 82.8 90.6 90.4 89.4 90.8 90.1 89.3 90.5 88.7 87.2 83.2 81.9 80.8
FLOP 66.1 58.5 56.0 82.1 80.1 78.4 91.4 89.7 89.4 91.1 90.1 89.1 90.5 88.5 87.1 82.6 79.9 79.4
BPhybrid 66.4 64.3 63.9 84.1 83.8 81.1 90.8 89.8 89.2 90.8 90.1 89.8 90.2 88.7 88.1 83.2 80.6 80.1
CoFi 69.3 66.4 66.4 84.6 84.3 83.6 91.6 89.7 89.2 91.0 90.2 89.9 90.8 88.8 87.6 83.5 80.8 80.5

Matrix Factorization

SVDFt 62.1 60.3 55.6 79.9 70.1 70.0 90.8 88.9 85.3 91.3 90.0 87.9 91.0 86.1 83.8 83.0 79.9 76.6
LPAF 68.2 68.0 67.9 86.8 86.5 86.0 92.4 90.7 89.7 91.5 90.4 90.1 91.3 89.3 88.6 84.6 82.6 81.7
- Step-1 64.2 32.1 21.1 82.1 81.6 81.0 91.2 89.9 88.4 91.3 90.3 89.7 91.2 87.8 84.8 83.3 82.0 79.6
- Step-2 65.3 64.8 64.4 86.0 85.6 85.0 91.2 89.2 88.8 91.2 90.2 90.0 90.9 89.0 87.9 83.4 82.4 81.5
- Step-3 65.0 64.2 63.9 84.8 84.0 83.4 91.4 89.5 88.8 91.1 90.3 89.9 91.1 88.9 88.1 83.0 81.3 81.0

BERT-base 69.2 86.4 92.7 91.5 91.4 84.6

Table 2: GLUE results (average of 3 runs) of all compared baselines applied on BERT-base. The best
results are bolded. Significance test is conducted using paired student t-test and p-value <0.05.

Task SQuAD v1.1 SQuAD v2.0
% Params. 50% 25% 16% 50% 25% 16%
DistilBERT 85.8 78.0 66.5 68.2 62.5 56.2
TinyBERT 82.5 58.0 38.1 72.2 85.3 78.2
Theseus 84.2 72.7 63.2 71.2 77.2 72.8
ISP 86.0 84.9 81.9 76.9 74.1 71.8
FLOP 88.1 85.7 81.5 77.7 75.3 71.3
CoFi 87.7 86.8 84.9 77.3 73.9 72.4
SVDFt 87.8 85.5 81.1 77.4 70.1 70.0
LPAF (ours) 89.2 87.2 85.7 79.1 77.2 75.1
BERT-base 88.2 77.9

Table 3: SQuAD results (average of 3 runs) of all
compared baselines applied on BERT-base. The
best results (p-value < 0.05) are bolded.

5.3. Analysis

In this subsection, we conduct a comprehensive
analysis to shed light on the effectiveness of
each component in our proposed LPAF framework,
namely first-order pruning, sparsity-aware SVD,
and mixed-rank fine-tuning.

5.3.1. Effect of Different Tsparse

We analyze how different Tsparse impact the final
task performance of LPAF without sparsity-aware
SVD and mixed-rank fine-tuning. The results on
SST-2 are summarized in Table 4. As we decrease
v, Tsparse becomes more sparse and its rank also
monotonically decreases. We observe that for a
fixed k, the performance of LPAF-k resembles a
unimodal distribution of the rank of Tsparse: as the

Tsparse LPAF
v rank k=260 k=130 k=80

0.50 705 91.3 89.9 86.8
0.25 557 91.1 90.1 87.2
0.10 377 89.7 89.5 89.3

Table 4: Effect of different Tsparse on SST-2 dataset.
Generally, the more aggressive the compression
configuration is, the smaller the optimal v will be
located.

rank gets too high, the increased approximation
error overturns the benefit of improved accuracy;
when the rank is too low, the drop of accuracy also
overturns the benefit of decreased approximation
error. Generally, the best performance of LPAF-k
for a larger k is achieved at a higher rank of Tsparse
compared to that of a smaller k.

5.3.2. Effect of Sparsity-aware SVD

In our sparsity-aware SVD, the reconstruction error
of each parameter Wi,j is weighted by its impor-
tance score Sij . To examine its effectiveness in
factorizing sparse matrix, we experiment with two
variants on SST-2 dataset: (1) S is replaced by
coarse-grained binary score M ; (2) non-weighted
vanilla SVD.

In Table 5 we show that by informing the sparse
matrix factorization process with importance score,
more task-relevant information can be retained at
the beginning (Step-2). After further re-training,
weighting by importance score yields the best re-
sults under all choices of k, and a simple binary

10829

Before→After Step-3
Strategy/k 260 130 80

w/ S 81.4→92.4 79.9→90.7 77.5→89.7
w/ M 81.0→92.1 79.7→90.4 77.2→89.3
Vanilla 79.1→91.4 77.9→89.2 75.9→88.8

Table 5: Ablation study of sparsity-aware SVD on
SST-2 dataset. w/ S indicates the continuous im-
portance score. w/ M stand for a simple binary
weight strategy. Vanilla refers to the default sparsity-
unaware setting.

Fine-tuning Method k=260 k=130 k=80
mixed-rank 92.4 90.7 89.7
- w/o Lc 91.9 89.8 89.1
vanilla fine-tuning 91.4 89.5 88.8

Table 6: Ablation of mixed-rank fine-tuning on
SST-2 dataset. Mixed-rank fine-tuning consistently
brings improvement under various choices of pre-
served rank k. Adding the consistency regular-
ization objective Lc leads to further performance
gains.

weighting strategy using M also brings improve-
ment compared to vanilla SVD. This means that our
sparsity-aware SVD is still applicable even when S
is unavailable.

5.3.3. Effect of Mixed-rank Fine-tuning

In Table 6, we examine the effectiveness of mixed-
rank fine-tuning. Results show that mixed-ranking
fine-tuning consistently brings improvement over
standard fine-tuning under all choices of k. Adding
the consistency objective Lc stabilizes training and
leads to further improvement.

We also study the effect of using different values
of pinit on the performance of mixed-rank fine-tuning.
Table 7 reveals that: (1) for Tfactorized with smaller k,
it prefers a relatively large pinit because its model
capacity is largely reduced and it can benefit more
from mixed-ranking fine-tuning to improve gener-
alization; (2) for Tfactorized with larger k, a smaller
pinit is more favorable because its higher capacity
makes it less likely to converge into bad local min-
imum; (3) setting pinit to zero makes our method
loses regularization effect brought by gradient-level
interaction between factorized sub-matrices and
original sparse matrix, thus degenerating perfor-
mance under all compression ratios.

5.4. Applicability to Other PLMs
To verify the general utility of LPAF, we apply it to
compress an already compact 12-layer and 384-

pinit k=260 k=130 k=80
0.7 92.1 90.2 89.7
0.5 92.1 90.5 89.5
0.3 92.2 90.7 89.0
0.1 92.4 90.6 89.0
0.0 91.8 90.0 89.3

Table 7: Ablation of different pinit on SST-2 dataset.
Setting pinit to 0 is equivalent to LPAF without
mixed-rank fine-tuning (but still benefits from regu-
larized dropout (Liang et al., 2021)).

Task SST-2 QNLI MNLI-m/mm
CKD 91.2 89.3 83.0/83.7

SVDFt 90.0 89.6 82.8/83.0
LPAF 91.1 90.5 84.4/84.5

MiniLM 92.4 91.2 85.0/85.2

Table 8: Results (average of 3 runs) of compressing
MiniLM. Best results are bolded (p-value<0.05).

dimensional pre-trained MiniLM 1 (Wang et al.,
2020b) model with 21.5M parameters into 50% of
original parameters and FLOPs. The results are
shown in Table 8. For LPAF, we observe a simi-
lar low-rank phenomenon (281 on average) in the
sparse model, demonstrating the general low-rank
sparse pattern induced by Step-1 in the proposed
LPAF, i.e., first-order unstructured pruning. LPAF
performs better than or on par with SVDFt and the
strongest task-specific distillation method CKD on
three representative GLUE tasks, which confirms its
general applicability to pre-trained language mod-
els of different scales.

6. Conclusion

In this paper, we discover that the full-rankness
of fine-tuned language models is the fundamental
bottleneck for the failure of the traditional matrix
factorization approach. As a remedy, we employ
first-order unstructured pruning to extract the low-
rank subnetwork that maximally preserves the task-
specific information. We then propose sparsity-
aware SVD and mixed-rank fine-tuning as two opti-
mizations to boost the compression performance.
Thorough experiments demonstrate that LPAF can
achieve better accuracy-compression trade-offs
against existing approaches. When applied to al-
ready compact language models, our method can
further achieve a 2x compression with minor ac-
curacy degradation. Our work provides valuable
insight on the intrinsic low-rank structure of task-
specific knowledge within PLMs, paving the way for

1https://github.com/microsoft/unilm/
tree/master/minilm.

https://github.com/microsoft/unilm/tree/master/minilm.
https://github.com/microsoft/unilm/tree/master/minilm.

10830

future research on more sophisticated compression
techniques.

7. Bibliographical References

Matan Ben Noach and Yoav Goldberg. 2020. Com-
pressing pre-trained language models by matrix
decomposition. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the As-
sociation for Computational Linguistics and the
10th International Joint Conference on Natural
Language Processing, pages 884–889, Suzhou,
China. Association for Computational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional
computation. CoRR, abs/1308.3432.

Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong
Xiao, Lanshun Nie, Dechen Zhan, Yunxin Liu,
Ming Wu, and Lintao Zhang. 2019. Efficient
and effective sparse lstm on fpga with bank-
balanced sparsity. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’19, page
63–72, New York, NY, USA. Association for Com-
puting Machinery.

Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba,
and Cho-Jui Hsieh. 2018. Groupreduce: Block-
wise low-rank approximation for neural language
model shrinking. CoRR, abs/1806.06950.

Tianlong Chen, Jonathan Frankle, Shiyu Chang,
Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. 2020. The lottery ticket hypothe-
sis for pre-trained bert networks.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

William B. Dolan and Chris Brockett. 2005. Au-
tomatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third Inter-
national Workshop on Paraphrasing (IWP2005).

Md. Akmal Haidar, Nithin Anchuri, Mehdi Reza-
gholizadeh, Abbas Ghaddar, Philippe Langlais,
and Pascal Poupart. 2021. RAIL-KD: random

intermediate layer mapping for knowledge distil-
lation. CoRR, abs/2109.10164.

Song Han, Jeff Pool, John Tran, and William J.
Dally. 2015. Learning both weights and con-
nections for efficient neural networks. CoRR,
abs/1506.02626.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.
2015. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2(7).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
bert with adaptive width and depth. In Advances
in Neural Information Processing Systems, vol-
ume 33, pages 9782–9793. Curran Associates,
Inc.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian
Lou, Yilin Shen, and Hongxia Jin. 2021. Lan-
guage model compression with weighted low-
rank factorization. In International Conference
on Learning Representations.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, pages 4163–4174, Online. Association for
Computational Linguistics.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10619–10629, Online and
Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871–7880,
Online. Association for Computational Linguis-
tics.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang, and
Tie-Yan Liu. 2021. R-drop: Regularized dropout
for neural networks. CoRR, abs/2106.14448.

https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.1145/3289602.3293898
https://doi.org/10.1145/3289602.3293898
https://doi.org/10.1145/3289602.3293898
http://arxiv.org/abs/1806.06950
http://arxiv.org/abs/1806.06950
http://arxiv.org/abs/1806.06950
http://arxiv.org/abs/2007.12223
http://arxiv.org/abs/2007.12223
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://arxiv.org/abs/2109.10164
http://arxiv.org/abs/2109.10164
http://arxiv.org/abs/2109.10164
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2106.14448
http://arxiv.org/abs/2106.14448

10831

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Christos Louizos, Max Welling, and Diederik P
Kingma. 2018. Learning sparse neural net-
works through l_0 regularization. arXiv preprint
arXiv:1712.01312.

Pavlo Molchanov, Stephen Tyree, Tero Karras,
Timo Aila, and Jan Kautz. 2016. Pruning con-
volutional neural networks for resource efficient
transfer learning. CoRR, abs/1611.06440.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tris-
tan Yang, Boaz Barak, and Ilya Sutskever. 2019.
Deep double descent: Where bigger models and
more data hurt. CoRR, abs/1912.02292.

Geondo Park, Gyeongman Kim, and Eunho Yang.
2021. Distilling linguistic context for language
model compression. CoRR, abs/2109.08359.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. CoRR, abs/1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang.
2018. Know what you don’t know: Unanswerable
questions for squad. CoRR, abs/1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by
fine-tuning. CoRR, abs/2005.07683.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1631–1642, Seattle,
Washington, USA. Association for Computational
Linguistics.

Nathan Srebro and Tommi Jaakkola. 2003.
Weighted low-rank approximations. In Proceed-
ings of the 20th international conference on ma-
chine learning (ICML-03), pages 720–727.

Gilbert W Stewart. 1998. Perturbation theory for the
singular value decomposition. Technical report.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu.
2019. Patient knowledge distillation for BERT
model compression. CoRR, abs/1908.09355.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Well-read stu-
dents learn better: The impact of student ini-
tialization on knowledge distillation. CoRR,
abs/1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Wenhui Wang, Hangbo Bao, Shaohan Huang,
Li Dong, and Furu Wei. 2020a. Minilmv2:
Multi-head self-attention relation distillation for
compressing pretrained transformers. CoRR,
abs/2012.15828.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020b. Minilm:
Deep self-attention distillation for task-agnostic
compression of pre-trained transformers. Ad-
vances in Neural Information Processing Sys-
tems, 33:5776–5788.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei.
2020c. Structured pruning of large language
models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 6151–6162, Online. As-
sociation for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus
for sentence understanding through inference.
CoRR, abs/1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1912.02292
http://arxiv.org/abs/1912.02292
http://arxiv.org/abs/2109.08359
http://arxiv.org/abs/2109.08359
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2012.15828
http://arxiv.org/abs/2012.15828
http://arxiv.org/abs/2012.15828
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.18653/v1/2020.emnlp-main.496
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

10832

of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demon-
strations, pages 38–45, Online. Association for
Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen.
2022. Structured pruning learns compact and
accurate models. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1513–1528, Dublin, Ireland. Association
for Computational Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu
Wei, and Ming Zhou. 2020. Bert-of-theseus:
Compressing BERT by progressive module re-
placing. CoRR, abs/2002.02925.

Runxin Xu, Fuli Luo, Chengyu Wang, Baobao
Chang, Jun Huang, Songfang Huang, and Fei
Huang. 2021. From dense to sparse: Contrastive
pruning for better pre-trained language model
compression. CoRR, abs/2112.07198.

Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen
Zhang, and Lanshun Nie. 2018. Balanced spar-
sity for efficient DNN inference on GPU. CoRR,
abs/1811.00206.

Wangchunshu Zhou, Canwen Xu, and Julian
McAuley. 2022. BERT learns to teach: Knowl-
edge distillation with meta learning. In Proceed-
ings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 7037–7049, Dublin, Ireland.
Association for Computational Linguistics.

8. Language Resource References

https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
http://arxiv.org/abs/2002.02925
http://arxiv.org/abs/2002.02925
http://arxiv.org/abs/2002.02925
http://arxiv.org/abs/2112.07198
http://arxiv.org/abs/2112.07198
http://arxiv.org/abs/2112.07198
http://arxiv.org/abs/1811.00206
http://arxiv.org/abs/1811.00206
https://aclanthology.org/2022.acl-long.485
https://aclanthology.org/2022.acl-long.485

	Introduction
	Background and Related Work
	Matrix Factorization (MF)
	Unstructured Pruning (UP)

	Preliminary Study
	Experimental Setting
	Results and Analysis

	LPAF: Low-rank Prune-And-Factorize
	The Overall Workflow
	Optimization 1: Sparsity-aware SVD
	Optimization 2: Mixed-rank Fine-tuning

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Training Details
	Compression Setting

	Main Results
	Analysis
	Effect of Different Tsparse
	Effect of Sparsity-aware SVD
	Effect of Mixed-rank Fine-tuning

	Applicability to Other PLMs

	Conclusion
	Bibliographical References
	Language Resource References

