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Abstract
Knowledge-based Visual Question Generation aims to generate visual questions with outside knowledge other
than the image. Existing approaches are answer-aware, which incorporate answers into the question-generation
process. However, these methods just focus on leveraging the semantics of inputs to propose questions, ignoring the
logical coherence among generated questions (Q), images (V ), answers (A), and corresponding acquired outside
knowledge (K ). It results in generating many non-expected questions with low quality, lacking insight and diversity,
and some of them are even without any corresponding answer. To address this issue, we inject logical verification
into the processes of knowledge acquisition and question generation, which is defined as LV2-Net. Through checking
the logical structure among V, A, K, ground-truth and generated Q twice in the whole KB-VQG procedure, LV2-Net
can propose diverse and insightful knowledge-based visual questions. And experimental results on two commonly
used datasets demonstrate the superiority of LV2-Net. The code is released at https://github.com/michelle19l/LV2-Net.
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1. Introduction

Visual Question Generation (VQG) aims to gener-
ate meaningful questions about the given images.
It has gained significant research efforts in recent
years due to its wide applications, such as data
augmentation for VQA (Shen et al., 2021), facili-
tating visual conversation systems (Patil and Pat-
wardhan, 2020), etc. And recently, the knowledge-
based visual question generation (KB-VQG), which
requires generating questions that need to be an-
swered with outside information other than the
image, has attracted more attention (Uehara and
Harada, 2023; Xie et al., 2022).

KB-VQG typically includes two key steps: acquir-
ing knowledge from large knowledge bases and
generating questions. In view of the highly similar
definitions of VQG and KB-VQG, the correspond-
ing approaches are somewhat related. Most no-
tably, since some researchers of VQG find that di-
rectly using answers as constraints can largely im-
prove the quality of generated questions (Wu et al.,
2022b; Kai et al., 2021), the answers can also be
used to aggregate the retrieved knowledge and
generate questions in KB-VQG (Xie et al., 2022).

However, these methods mainly focus on utiliz-
ing the semantic information from the images and
the target answer to generate questions, but few
of them, no matter whether outside knowledge is
considered, have checked whether the generated
questions can correspond to the given constraints.
As shown in Figure 1-(i), although the acquired
knowledge and the image contain enough infor-
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Figure 1: Illustration of answer-aware KB-VQG,
where the knowledge entries, represented as
(head, relation, tail), are retrieved from a knowl-
edge graph with the visual and the answer.

mation about “shingle”, “roof”, and “house”, the
first two generated questions are still far from the
ground-truth one. As the lack of logical verifica-
tion between the elements, the first two questions
cannot correspond to the given answer as well.

In this paper, we propose a Dual Logical Verifi-
cation Network (LV2-Net) to effectively inject log-
ical verification into the two essential steps of
knowledge-based visual question generation, in-
cluding the process of refining the retrieved knowl-
edge and the final generation process. Therefore,
LV2-Net consists of two corresponding modules:
the Logic-Verified Knowledge Refinement module
(LV-KR) and the Logic-Verified Question Genera-
tion module (LV-QG). Specifically, LV-KR leverages
both the visual and the answer information to refine
the external knowledge, working with the logical
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verification for knowledge, and producing a logic-
enhanced prompt. Then LV-QG utilizes the logic-
enhanced prompt to generate visual questions. In
addition to keeping consistency with ground-truth
questions, LV-QG introduces another logical ver-
ification to ensure that the generated questions
are logically correct for the whole image-answer-
question pair. The illustration of the dual logical
verification is shown in Figure 1-(ii). The logical ver-
ification for knowledge (the red solid line) is used to
ensure the logical rationality between the acquired
knowledge K and (V , A, Q) pair. And the blue
dashed arrow refers to the logical verification for
the question, which is to ensure the generated Q̃
can correspond to the target answers well (i.e., the
last green sentence in Figure 1-(i)) by checking the
logical coherence among Q̃ and (V , A, K) pair.

With the above logical-equipped modules, our
approach can improve the quality of generated
questions, and promote the logical coherence be-
tween the generated questions and other elements.
Eventually, experimental results on two benchmark
datasets demonstrate that our proposed approach
significantly outperforms state-of-the-art methods
in KB-VQG and VQG. And the generated questions
from our LV2-Net can directly serve as the data aug-
mentation for the task of knowledge-based visual
question answering (KB-VQA). The contributions
can be summarized as follows:

• We are the first to introduce logical verification
in KB-VQG. The proposed LV2-Net can ensure
logical correctness in knowledge refinement and
question generation.

• The achieved state-of-the-art performance on
widely used datasets indicates that questions gen-
erated by LV2-Net are of logical correctness to the
target answer and high quality.

2. Related Work

2.1. Visual Question Generation

Visual Question Generation (Mostafazadeh et al.,
2016a; Fan et al., 2018; Patro et al., 2018) has re-
ceived more and more research attention in recent
years. Early neural VQG methods generate ques-
tions solely from the image, namely unconditional
VQG (Jain et al., 2017; Mostafazadeh et al., 2016b;
Zhang et al., 2016). Such methods can generate
a large number of questions, but many of them
are not so valuable to be asked or hard to find any
correct answers (Bi et al., 2022). Some works im-
plement conditional VQG which incorporates some
other auxiliary information from the answer. Yet the
answer-type guided results (Krishna et al., 2019a)
are still noisy and not so informative. So recently,
some works (Wu et al., 2022b; Kai et al., 2021) in-
corporate the answer as direct supervision for high-

quality question generation. Also, a visual-question
answer pair generation method (Yang et al., 2021)
measured the consistency of the generated ques-
tion and answer pairs, but the consistency has not
been used to guide better generation. In this pa-
per, we focus on restricting the proposed questions
corresponding to the utilized target answers well.

Knowledge-based Visual Question Generation.
Traditional VQG aims to propose visual questions
that need to be answered with basic reasoning
skills like color recognition. And recently, two
specific tasks that require the integration of ex-
ternal information have been defined: Knowledge-
Aware VQG (KA-VQG) (Uehara and Harada, 2023)
and Knowledge-based VQG (KB-VQG) (Xie et al.,
2022). Specifically, KA-VQG refers to asking ques-
tions from the target image and a given piece of
knowledge, which requires extensive human anno-
tation efforts for the knowledge target. KB-VQG, on
the other hand, requires the model to retrieve rel-
evant knowledge and generate appropriate ques-
tions independently. In this paper, we focus on
KB-VQG due to its greater flexibility when generat-
ing better questions with less human labeling.

2.2. Knowledge-based Visual Question
Answering

Knowledge-based Visual Question Answering
aims to answer questions with external knowledge
except for the image content and can be frequently
seen in real scenarios. Recent works (Wang
et al., 2015, 2017; Narasimhan and Schwing, 2018;
Narasimhan et al., 2018; Zhu et al., 2020; Wu et al.,
2022a; Marino et al., 2021; Yang et al., 2022; Gui
et al., 2021; Lin et al., 2022) incorporated explicit
knowledge from various knowledge resources, like
ConceptNet (Speer et al., 2017) and Wikipedia
(Vrandečić and Krötzsch, 2014). And some other
works incorporated implicit knowledge with the abil-
ity of pre-trained language models (Yang et al.,
2022; Gui et al., 2021; Lin et al., 2022).

As for the datasets, the earliest ones are FVQA
(Wang et al., 2017) and KB-VQA (Wang et al.,
2015). While the questions and knowledge are
relatively trivial or fixed in the above datasets, OK-
VQA (Marino et al., 2019) and A-OKVQA (Schwenk
et al., 2022) consist of more flexible and insightful
questions and require retrieving knowledge from
the external knowledge bases explicitly. In this pa-
per, we follow the previous VQG works (Xie et al.,
2022) and implement our method on OK-VQA and
A-OKVQA for the KB-VQG model tests.
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Figure 2: Overview of our proposed Dual Logical Verification Network, in which “LV-KR” and “LV-QG”
indicate the logic-verified knowledge refinement module and the logic-verified question generation module,
respectively. The dual logic verification LVk and LVq are implemented to improve the refinement of outside
information and the final generated questions.

3. Method

3.1. Problem Formulation

In this paper, we focus on the KB-VQG
task. Formally, given a training dataset D =

{Vi, Ai, Qi}
Nsample

i=1 , where Vi, Ai, Qi represent the
image, the answer, and the question in the i-th
sample. Nsample denotes the number of samples.
Specifically, V and A are the inputs, Q represents
the ground-truth questions, and Q̃ denotes the gen-
erated ones, which are the outputs of the task. We
use K̃ to represent the retrieved raw knowledge,
while k̄ signifies the knowledge refined from K̃. Ad-
ditionally, a logic-enhanced prompt P̃ , combining
both the visual and knowledge information, plays a
crucial role in facilitating the generation of compati-
ble and contextually visual questions. Our object is
to propose meaningful questions that necessitate
both the image and external knowledge.

3.2. Overview

The overview of the model is depicted in Figure
2. The proposed model consists of three compo-
nents: Knowledge Retrieval Module, Logic-Verified
Knowledge Refinement Module (LV-KR), and Logic-
Verified Question Generation Module (LV-QG), and
the last two modules are trained end-to-end. First,
the raw knowledge K̃ is retrieved from Concept-
Net (Speer et al., 2017) with both the visual and
answer information. Then LV-KR refines the K̃
into k̄ with predicted weights to incorporate more
related and important information for the final ques-
tion generation. Also, a logic-enhanced prompt P̃ ,
combining both the knowledge k̄ and the visual in-

formation from V , is aggregated by LV-KR to guide
the next question generation. After that, LV-QG
generates the final question Q̃ with the prompt P̃ .
Meanwhile, the logical verification for knowledge
LVk works on the <A,Q, P̃> to improve the quality
of the refined knowledge. And, the logical verifica-
tion for question LVq among <A, Q̃, P̃> works on
Q̃ to make it correspond to the target answer. By
incorporating these modules, both the knowledge
refinement and the question generation procedure
are enhanced for better knowledge-based visual
question generation.

3.3. Knowledge Retrieval

In this section, we first encode the inputs and then
retrieve the raw knowledge. Initially, we implement
a pre-trained CLIP (Radford et al., 2021) to encode
the answer into a and the image into vp. Specifi-
cally, we encode the image vp after cropping it into
several patches to focus on the detailed informa-
tion of every visual part. And both the visual and
the answer features are used in the retrieval pro-
cedure for more expected-question-related knowl-
edge. First, we retrieve the related knowledge
entries from ConceptNet, by calculating the inner
product between a and the CLIP text embedding of
each entity from ConceptNet, and returning the
corresponding edges with higher results. This
approach provides more flexibility than keyword
matching, and the process is facilitated by FAISS
(Johnson et al., 2019). After searching, the re-
turned edges are then re-ranked based on the
maximum inner product between the embeddings
of each image patch vp and the node embedding
on the other side of the edge. Finally, we output
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the top Nk pieces as the raw knowledge K̃.

3.4. Logic-Verified Knowledge
Refinement Module (LV-KR)

In this section, LV-KR refines the raw knowledge K̃
into k̄ to extract the more accurate external infor-
mation, then combines the visual and external in-
formation into a logic-enhanced prompt P̃ to guide
the question generation in the next module. And
P̃ is optimized by the logical verification for knowl-
edge LVk, which can help improve the quality of
k̄. By incorporating LV-KR, the model is equipped
with the necessary knowledge and logic foundation
to propose insightful questions.

3.4.1. Knowledge Refinement

Knowledge encoding. First, we encode the raw
knowledge entries into GPT-2 style (Radford et al.,
2019), and map it into the scope of the CLIP em-
bedding with a transformer-based reversed map-
per innovated by ClipCap (Mokady et al., 2021).
Each piece of knowledge in K̃ is represented by
the CLIP-style embedding k̃cj , where j refers to
the j-th entry of the raw knowledge.

Knowledge entry’s weight calculating. Then,
we predict the weight of each knowledge entry.
We encode the whole picture into vg to leverage
the global visual feature. And a query q is cal-
culated with visual and answer information via
q = fq(vg +⃝a), where fq is a L2-normalized trans-
former, and +⃝ denotes the concatenate operation.
Then, the context weight wcon could be obtained
with a filter f con:

wcon = Wconf
con(q, k̃cj), (1)

where Wcon are trainable parameters, and the filter
f con can calculate the cross-attention between the
query and the knowledge piece embedding. After
that, the final weight w could be aggregated from
wcon and the weight for each piece wKB given by
ConceptNet:

w = softmax(Ww(w
con +⃝wKB) + b), (2)

where both Ww and b are trainable parameters.

Knowledge refining. With w and k̃cj , the refined
information k̄ of the retrieved raw knowledge can
be calculated as:

k̄ = Norm(

Nk∑
j

w · k̃cj). (3)

The information included by K̃ is refined, leaving
the useful external knowledge features being the
foundation of the next knowledge-based question
generation.

3.4.2. Logic-enhanced Prompt Acquisition

In this paper, we designed a logic-enhanced
prompt P̃ , which can measure the logical relation-
ship between Q and A, to prompt the final question
generation. And LV-KR obtains P̃ by combining
the refined knowledge k̄ with the whole picture
information vg:

P̃ = Mapper(WP (k̄ +⃝vg)), (4)

where WP are trainable parameters, Mapper(·)
(Mokady et al., 2021) can map the CLIP-scope
embedding into GPT-2-scope. The logic-enhanced
prompt P̃ can provide contextual and logical infor-
mation to guide better question generation.

3.4.3. Logical Verification for Knowledge

P̃ plays a crucial role in guiding the generation
of Q̃. And to improve the quality of P̃ , we intro-
duce the logical verification for knowledge function
(LVk) on P̃ , Q, and A , and make the plausibil-
ity p(A | (Q, P̃ )) be close to 1. Meanwhile, as P̃
is the combination of vg and k̄, LVk can build up
the strong logical relationship between (Q, A, V ,
k̄). Specifically, we utilize a sentence template,
"Question: Q, reason: P̃ . The answer is ". We
fill it and provide it as a prompt for a fixed GPT-
2. A tentative answer Ãk can be generated from
the expected question Q and the logic-enhanced
prompt P̃ . p(A | (Q, P̃ )) is maximized via the
Cross-Entropy Loss between Ãk and A. Thus with
LVk, the quality of P̃ , where k̄ in fact, can be im-
proved to be more accurate and rational. Enables
the model to effectively guide the next generation
of Q̃ better.

3.5. Logic-Verified Question Generation
Module (LV-QG)

In this part, the final sound question Q̃ would be
proposed, guided by the logic-enhanced prompt
P̃ , and another logical verification LVq would be
implemented to improve the quality of Q̃.

3.5.1. Question Generation

In the question generation phase, we generate
the final question Q̃ by inputting P̃ as the prompt
of a trainable GPT-2. We leverage its language
capabilities to generate contextually relevant and
logically correct questions with the help of P̃ .

3.5.2. Logical Verification for Question

We utilize a similar template introduced in LVk,
"Question: Q̃, reason: P̃ . The answer is ", to
prompt the generation of Ãq. In this round of verifi-
cation, as our object is maximizing the plausibility
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p(A | (Q̃, P̃ )), the generated Q̃, instead of Q, is
sent as the input to a fixed GPT-2. This allows us
to evaluate the logical correctness among the gen-
erated Q̃, the verified P̃ (which includes the image
information and the knowledge information), and
the given answer A. The verification is performed
by optimizing the cross entropy value between Ãq

and A. This process allows us to assess the qual-
ity of the generated questions in terms of logical
consistency and compatibility with the provided
answer, image, and the logic-verified k̄.

3.6. Loss Function

The loss function L incorporates three parts, the
question distance loss L0, LVk loss Lk, and LVq

loss Lq:

L = α0 · L0 + αk · Lk + αq · Lq, (5)

where α0, αk and αq are hyper parameters. Specif-
ically, L0 ensures Q̃ be similar to Q syntactically,
Lk and Lq can improve Q̃ semantically. While Lk

pays more attention to k̄ and Lq pays more atten-
tion to Q̃. And, all the 3 functions are calculated
with the Cross-Entropy Loss Lce:

L0 = Lce(Q̃,Q), (6)

Lk = Lce(Ãk, A), (7)

Lq = Lce(Ãq, A). (8)

Conclusively, L0 improves proposed questions
at the word level, Lk enhances the quality of the
refined outside knowledge, and Lq aims to build
up the strong logical relationship between the gen-
erated question and the target answer. By opti-
mizing these components collectively, the model
can generate high-quality questions that are both
contextually grounded and logically coherent.

4. Experiment

In this section, we first describe the basic infor-
mation of our experimental setup, then compare
our model with the existing methods. Next, the
effectiveness of the outside knowledge acquisition
part is tested. Moreover, the functionality of LVk

and LVq is fully experimented and thoroughly ana-
lyzed. Last, the quality of LV2-proposed questions
is proved by a data augmentation test on KB-VQA.

4.1. Experimental Settings

4.1.1. Datasets

Following the existing VQG works (Xie et al., 2022;
Kai et al., 2021; Wu et al., 2022b), we test our
model on VQA datasets. Specifically, we imple-
ment our KB-VQG experiments on two famous

KB-VQA datasets, OK-VQA (Marino et al., 2019)
and A-OKVQA (Schwenk et al., 2022). OK-VQA
is the first VQA large-scale dataset that the mod-
els have to answer the questions by retrieving the
related external knowledge by themselves, rather
than incorporating the given and fixed knowledge
entries. A-OKVQA is a recently proposed KB-
VQA dataset that includes questions should be
answered with comprehensive reasoning skills and
diverse sources of external knowledge.

4.1.2. Implementation Details

We use the pre-trained CLIP (ViT-B/16) to encode
the image and the answer. Also, we employ the
implementation of (Mokady et al., 2021) for GPT-2,
which can ensure both the capability and flexibility
when generating sentences, and all the GPT-2-
based baselines are compared sharing the same
scale fairly. Both the mapper and the reversed
mapper are transformer-based and include 8 multi-
head self-attention layers and each of them has 8
heads, and the other transformers with 8 layers but
4 heads. We train our model for 30 epochs with a
batch size of 20. And we use AdamW (Loshchilov
and Hutter, 2019) for optimization with a learning
rate of 1e−5 and 5000 warm-up steps. vp is calcu-
lated after the image being cropped into Nk = 9
pieces. For the loss function, we set α0 = 0.49,
αk = 0.21, and αq = 0.3. The number of the re-
trieved knowledge pieces is set to 10 for both the
two datasets.

4.1.3. Baselines

In this paper, we compare our model with baselines
that utilize different information.

• ClipCap (Mokady et al., 2021) can generate
image captions with GPT-2 with the image embed-
ding from CLIP. As the similarity between the image
caption task and the VQG task, the model can also
be trained to generate visual questions that are
solely based on the image information.

• IM-VQG (Krishna et al., 2019b) encodes the
image with ResNet (He et al., 2016) and decodes
it with GRU (Chung et al., 2014). The model con-
siders answer categories as auxiliary information.

• DH-GAN (Kai et al., 2021) introduce the visual
and the answer information, as in "double hints",
into the visual question generation process.

• KVQG (Xie et al., 2022) is the first knowledge-
based visual question generation model.

4.1.4. Metrics

Metrics for automatic assessment. Following
previous works, we compare our model with the
SoTAs in standard linguistic generation metrics,



10807

C B@1 B@2 B@3 B@4 M R S

ClipCap 43.27 25.68 12.79 8.11 5.36 12.41 26.51 10.96
IM-VQG 30.25 36.47 15.84 8.65 5.04 15.19 36.22 8.03

OK-VQA DH-GAN 27.27 22.73 9.49 5.92 3.33 7.84 25.61 7.52
KVQG* 55.38 27.18 15.02 9.87 6.75 13.27 27.17 13.16

LV2-Net (ours) 92.17 29.90 18.56 13.15 9.61 15.31 31.94 17.60

ClipCap 26.49 26.73 14.43 8.53 4.93 11.50 26.70 8.61
A-OKVQA IM-VQG 22.11 39.30 18.78 10.27 4.85 12.24 38.66 5.64

KVQG* 40.97 30.56 17.42 10.56 6.27 13.46 30.66 10.72
LV2-Net (ours) 60.06 32.11 19.45 12.94 8.64 14.14 33.05 12.84

Table 1: Comparison with existing approaches on two different datasets, OK-VQA and A-OKVQA. The
performance is evaluated with various metrics, where “C” denotes CIDEr, “B@1-B@4” denotes BLEU 1
to 4, “M” refers to METEOR, “R” refers to RougeL and “S” is SPICE. Also, the “*” in “KVQG*” denotes that
we change the LSTM decoder into a GPT-2 decoder to balance the model size difference with our model.

CIDEr (Vedantam et al., 2015), BLEU (1 to 4) (Pap-
ineni et al., 2002), ROUGEL (Lin, 2004), METEOR
(Banerjee and Lavie, 2005), and SPICE (Anderson
et al., 2016). All the automatic metrics are in %
from the tables.

Metrics for human evaluation. In this paper, we
follow KVQG(Xie et al., 2022) and design 4 met-
rics: 1) The fluency (F) of the generated ques-
tions. 2) Whether the question can be answered
(A). 3) Correctness of the retrieved knowledge and
their corresponding weight (K). K reflects whether
the information retrieved from outside is helpful
for proposing expected questions, and whether
the calculated weight of each knowledge piece is
rational. A higher K indicates better refined knowl-
edge. 4) Logical coherence (L) means whether
the generated questions correspond to the target
answers. For each metric, we score it with 0, 1,
and 2. Higher values on F represent higher flu-
ency, and the same for the other metrics. For each
human evaluation test, we randomly select 100
images from OK-VQA. And the performances for
each method are evaluated by 10 people with good
English skills.

4.2. Q1: Can LV2-Net outperform the
existing models?

Main results. As shown in Table 1, our meth-
ods can achieve much better results in both of
the two datasets on most of the metrics. Even
though IM-VQG can achieve better results in B@1
and R, it fails in other metrics. Specifically, for
the BLEU metrics, IM-VQG performs better only in
B@1. It means that although IM-VQG gives more
accurate words, it still fails to generate consecutive
phrases and reasonable sentences. Yet the latter
abilities on phrases and sentences are more im-
portant to propose fluent questions. On the other

hand, RougeL can be calculated as:

RougeL =
(1 + β2)Lcs

m
Lcs
n

Lcs
m + β2 Lcs

n

=
1 + β2

n+ β2m
·Lcs, (9)

where Lcs is the length of the longest common
subsequence, m the the word number of the refer-
enced sentence, and n is the length of the gener-
ated one, and β is a value set by humans. It can
be seen from the equation that with a similar Lcs,
the shorter sentence generated by IM-VQG can
achieve a higher RougeL score. To be short, the
simple and shorter sentence generated by IM-VQG
can achieve a higher RougeL score, which is not
what we expect. Thus, compared to baselines, our
model can generate more complex questions with
deep insight like the ones in the datasets.

Human evaluation. We implement human eval-
uation on three GPT-2-based models, ClipCap,
KVQG*, and LV2-Net. ClipCap works solely from
the image information. KVQG* implements the
knowledge, and our LV2-Net leverages more re-
fined knowledge and two logical verification.

As shown in Table 2, LV2-Net can achieve good
performance on most of the metrics. However, our
model is slightly lower than ClipCap on F. That is
because the questions generated by ClipCap are
relatively simple, even though they are knowledge-
based questions. For example, ClipCap is prone to
ask about the breed of the animal shown in the pic-
ture, but our model tends to ask more complicated
and diverse questions like the gestation period,
the habitat, and so on. It is obvious that the for-
mer questions asked by ClipCap, like ’What is the
breed of the animal’, are simple and fixed, which
are easy to be uttered fluently with high answerabil-
ity (A). Yet the latter questions from our model are
more comprehensive. Like the questions from the
datasets, such questions require more knowledge
equipped to answer all of them.

On the other hand, the huge progress on K and
L shows that our proposed knowledge method and
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F A K L

ClipCap 1.97 1.73 - 0.49
KVQG* 1.92 1.64 0.23 0.66
LV2-Net 1.94 1.76 1.22 1.33

Table 2: Human evaluation results of the generated
questions for the OK-VQA dataset.

C B@4 M R S

#0 42.37 5.30 12.16 26.17 10.64
#5 90.63 9.52 15.29 31.78 17.52

#10 92.17 9.61 15.31 31.94 17.60
#15 84.29 9.00 14.89 30.73 16.60
#20 88.99 9.43 15.18 31.58 17.04

Table 3: The performance comparison on OK-VQA
for different knowledge scales. #x denotes the
number of knowledge entries Nk imported for every
question generation.

the dual logical verification can work well. Improve-
ment on K means the correct outside information
properly retrieved and refined, and the progress
on L shows that our generated questions can cor-
respond to the target answers well. And the im-
provement on A indicates that our model can pro-
pose insightful questions that are available to be
answered, even though our proposed questions
are more complicated. Thus, the essential ques-
tion generation improvement in real-world scenar-
ios, associated with the huge promotion of utilizing
proper outside information, can be seen from the
improvement in A, L, and K. And the basic quality
of questions is guaranteed from F as well.

Case study. We exemplify cases Figure 3 1⃝- 4⃝
to show the good performance of our model. As
1⃝ and 2⃝, it is obvious that the knowledge entries
retrieved and refined by our model are more re-
lated to the expected question. The cases show
the success of LV-KR. As to the 3⃝ and 4⃝, we
can notice that ours can generate more target-
answer-related questions than the baseline mod-
els working with LV-QG. Therefore, our dual logical
verification strategy is useful for generating better
knowledge-based visual questions indeed.

4.3. Q2: May the knowledge part improve
the final performance?

Role of the knowledge scale. We can see from
Table 3 that knowledge plays a really important
role. The model can perform better when intro-
ducing more external information, yet too much
information with noise would put huge pressure
on the refinement part. Thus the model performs
the best when 10 pieces of related knowledge are

C B@4 M R S

LV2-Net 92.17 9.61 15.31 31.94 17.60
w/o K 42.37 5.30 12.16 26.17 10.64
Ktoken 43.04 6.13 12.30 27.00 9.03
Kavg 84.45 8.90 14.70 31.08 16.56

KKVQG 40.89 5.13 12.08 25.90 10.54

Table 4: Results of different knowledge refinement
methods on the OK-VQA dataset.

LVk LVq C B@4 M R S

✔ ✔ 92.17 9.61 15.31 31.94 17.60
✘ ✔ 78.93 8.49 14.69 30.90 15.67
✔ ✘ 84.69 8.97 14.87 30.80 16.48
✘ ✘ 70.71 7.44 13.64 29.50 14.89

Table 5: The performance of question generation
influenced by the dual logical verification.
✔ denotes our pipeline works with this verification,

and ✘ refers to work without it.

retrieved for every proposed question.

Effectiveness of the knowledge retrieval and re-
finement method. As the ablation results shown
in Table 4, it can be noticed that the method plays
an important role in better knowledge-based visual
question generation.

• w/o K is LV2-Net without any external knowl-
edge input. It shows that the knowledge retrieved
does help propose knowledge-based questions.

• Ktoken concatenates the words in all retrieved
knowledge entries into a paragraph and leverages
the token-style embedding from GPT-2 directly
without refinement. The performance of Ktoken

is limited by the long length of the input paragraph
severely.

• Kavg aggregates all the knowledge entries with
the same weights. Our LV2-Net outperforms Kavg

in all metrics, which means that the weight is useful
for knowledge refinement.

• KKVQG replaces the raw knowledge by the
retrieval method from KVQG. KKVQG is retrieved
solely with the recognized image objects.

We notice that the KKVQG results are even lower
than the w/o K. That is because KKVQG cannot
cooperate with our refinement process well. And
the information in KKVQG is relatively simple and
can be easily told by the pre-trained GPT-2. Thus,
the introduction of KKVQG with low quality even
introduces extra noise, resulting in the low quality.

4.4. Q3: How can the dual logical
verification really work?

Improvement concluded by automatic and man-
ual metrics. To evaluate the contribution of each
logical verification, we set up another two ablation
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ClipCap

Q

Ours 

Where would it be located in a house?

① ② ③ ④

A: bathroom

KVQG

What is this device used for?

Name the type of ceramic used to 
make this toilet in this picture? 

(toilet, at location, bathroom)

(toilet, at location, bathroom)

What part of the house would this be 
located in?

What is this type of vehicle called?

A: truck

(truck, is a, vehicle)

What kind of truck is this?

(truck, is a, vehicle)

What kind of vehicle is this?

What kind of truck is this?

What kind of store is across the street?

A: bodega

What is the name of the type of jacket 
the man wearing?

What kind of business is this?

(bodega, is a, shop)

(bicycle, at location, garage)

What kind of store is this?

Where would you find these items?

A: office

What type of computer is this?

(tv, is a, abbrevation for television)

ls this a new or old computer?

(computer , at location , office)

Where would you typicolly use this type 
of device?

K

�

K

�

⑤ ⑥

A: broccoli

Q: What vegetable is shown?
K:  (broccoli, is a, cruciferous vegetable)

w                         �   
0.05    What food is this?

0.10    

0.15    What are the veggies on the plate?

What is the green vegetable on 
top of this broccoli salad?

0.10     What beed of dog is this?

0.17     What beed of dog is this?

0.22     What beed of bear is this?

K:  (teddy bear, synonym, teddy)

                      w                       �       

Q: What kind of bear?

A:teddy

w/o LVq&LVq

w/o LVq

ours

w/o LVq&LVq

w/o LVq

ours

Figure 3: 1⃝ to 4⃝ are cases for comparing with some baselines, 5⃝ to 6⃝ are cases showing the
effectiveness of LVk and LVq. w/o LVk&LVq denotes our model working without the dual verification, and
w/o LVq means working with LVk but without LVq. We show the most representative knowledge piece
from the retrieved raw knowledge denoted as K in the figure. The samples are selected from OK-VQA.

LVk LVq K L

✔ ✔ 1.22 1.33
✘ ✔ 1.04 1.08
✔ ✘ 1.10 1.03
✘ ✘ 1.00 0.92

Table 6: An experiment of how the two verification
affect the process of question generation. The
quality of knowledge and logic are shown.

experiments shown in Table 5 and Table 6. We
can see from the automatic metrics (C, B@4, M,
R, and S) that both the two logical verification can
improve the model performance separately, and
moreover, they can work well together to achieve
even higher results. Such results show the suc-
cess of our dual logical verification training strategy.
And more sophisticated conclusions could be seen
from the human manual K and L in Table 6. That
the difference in K between (line3, line4) and also
(line1,line2) shows the capability of LVk. It means
that LVk can help work on more refined external
knowledge information. Similarly as the difference
in L between (line2, line4) and also (line1, line3), it
proves that LVq can improve the logical coherence
between the generated question and the given tar-
get answer. And both K and L are improved more
when LVk and LVq work together.

Detailed cases. Cases 5⃝ and 6⃝ for the dual log-
ical verification are shown in Figure 3, the weight

of the most ideal retrieved knowledge piece is
improved with LVk. But still, the questions pro-
posed solely with LVk suffer from the low quality.
Hence, LVq is added to improve the logical coher-
ence, which in return promotes the ideal knowl-
edge entry’s weight as well. And the expected and
insightful questions are proposed with LVk and LVq

working together.

4.5. Q4: Could LV2-Net work as the data
augmentation for KB-VQA?

To verify the quality of our generated questions, we
add them to the training set of OK-VQA for KB-VQA
data augmentation. Specifically, we train BUTD
(Anderson et al., 2018) and BAN (Kim et al., 2018)
with the same experimental setting, and test the an-
swering accuracy. Both the answering processes
are aided by the knowledge entries extracted with
the image objects followed KVQG. As the data
shown in Table 7, the performance of both of the
two models can be improved. And the more ca-
pable BAN, especially, achieve 5.55% higher after
being augmented. Therefore, LV-QG can propose
insightful questions corresponding to the target an-
swer and help the downstream applications.

5. Conclusion

In this paper, we propose a model named Dual Log-
ical Verification Network for the task of knowledge-
based visual question generation. The model can
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Original Augmented

BUTD+KKVQG 9.96% 10.33%
BAN+KKVQG 14.30% 19.85%

Table 7: Data augmentation for OK-VQA. The
results in the table show the VQA accuracy before
and after augmented by LV2-Net.

retrieve more related retrieved knowledge, and
work with dual logical verification, which can help
better knowledge refinement and more insightful
visual question generation. Our model shows su-
perior performance on two datasets compared to
the previous baselines with comprehensive and
abundant experimental results.
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