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Abstract
Large language models have become increasingly popular and demonstrated remarkable performance in various
natural language processing (NLP) tasks. However, these models are typically computationally expensive and
difficult to be deployed in resource-constrained environments. In this paper, we propose LLMR, a novel knowledge
distillation (KD)method based on a reward function induced from large languagemodels. We conducted experiments
on multiple datasets in the dialogue generation and summarization tasks. Empirical results demonstrate that our
LLMR approach consistently outperforms traditional KD methods on different tasks and datasets.

1. Introduction

Large language models (LLMs) have achieved re-
markable performance in various text generation
tasks, such as summarization (Ahmed and De-
vanbu, 2022; Nair et al., 2023) and dialogue sys-
tems (Deng et al., 2023; Cao et al., 2020). More-
over, this can be accomplished in a zero-shot
manner, that is, a user enters a natural language
prompt (e.g., “Summarize the following text”) and
the LLM will generate a desired output for the
task (Brown et al., 2020). However, LLMs also
present significant challenges. For example, the
GPT-3 model has 175 billion parameters, which
is resource-intensive, requiring significant comput-
ing power and memory. This might hinder real-
world applications in resource-constrained envi-
ronments.
Therefore, knowledge distillation (KD; Hinton

et al., 2015) becomes an increasingly important
research direction for LLMs (Gu et al., 2024; Wu
et al., 2023; Hsieh et al., 2023), where the goal is
to transfer the knowledge of LLM (called a teacher)
to a smaller and more efficient model (called a
student). Conventionally, this is accomplished
by training the student from the teacher’s pre-
dicted sentences or distributions (Kim and Rush,
2016). However, it has inherent limitations: dur-
ing training, the student learns to predict the next
word based on the teacher’s previous predictions,
whereas during inference, the student has to do
so based on its own previous predictions. Such a
discrepancy is known as exposure bias, and often
leads to a performance degradation (Chiang and
Chen, 2021; Ranzato et al., 2016).
In this paper, we propose a novel knowledge

distilling method, based on reinforcement learn-
ing with a Large Language Model-induced Re-
ward (dubbed LLMR). Instead of directly training
from LLM’s output, we first induce a q-value func-

tion from the LLM’s policy (predicted probabilities)
based on a widely adopted assumption (Chan
and van der Schaar, 2021; Ramachandran and
Amir, 2007; Ziebart et al., 2008), and then fur-
ther induce a reward function based on the Bell-
man optimality equation (Sutton et al., 1999);
this process follows our recent theoretical anal-
ysis between policies and rewards (Hao et al.,
2022). The induced reward function is subse-
quently used to distill LLM’s knowledge into the stu-
dent, achieved by sampling a candidate sequence
from the student-predicted distributions and evalu-
ating it with the LLM-induced reward for policy gra-
dient learning (Williams, 1992). In this way, our
proposed LLMR distilling approach allows the stu-
dent model to explore on its own during KD in a
reinforcement learning (RL) fashion, thus alleviat-
ing the exposure bias problem.
We conducted experiments on two text genera-

tion tasks: dialogue generation and text summa-
rization. Empirical results show that our LLMR ap-
proach largely outperforms traditional KD based
on cross-entropy loss. We further quantitatively
analyzed the exposure bias of the student models,
verifying that RL indeed alleviates exposure bias
arising during the KD process.1

2. Related Work

Knowledge distillation (KD) is effective in reduc-
ing the computing and memory demands of large
neural networks while retaining high performance.
Common KD approaches include matching out-
put distributions (Hinton et al., 2015; Wu et al.,
2023) and matching intermediate-layer represen-
tations (Romero et al., 2015; Polino et al., 2018;
Sun et al., 2019).

1Our code is released as a GitHub repo: https://
github.com/MANGA-UOFA/Prompt-LLMR

https://github.com/MANGA-UOFA/Prompt-LLMR
https://github.com/MANGA-UOFA/Prompt-LLMR
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KD has been applied to the sequence level for
distilling text generation models (Kim and Rush,
2016; Wen et al., 2024) and autoregressive lan-
guage models (West et al., 2022). Typically, the
student learns from the teacher step by step with
a cross-entropy loss, but such an approach may
suffer from exposure bias (Ranzato et al., 2016).
Researchers have proposed reverse Kullback–
Leibler (Tu et al., 2020; Gu et al., 2024) and gen-
eralized f -divergence (Wen et al., 2023b) losses,
which involve student sampling but still follow the
spirit of traditional KD pushing the student’s dis-
tribution to the teacher’s step by step. In our
LLMRmethod, on the other hand, the teacher only
scores a student-sampled sequence, which allows
more exploration during the KD process.
Reinforcement learning (RL) has been widely

used for text generation, especially for alleviating
exposure bias (Ranzato et al., 2016; Gu et al.,
2024). A key design choice is the reward func-
tion, which in previous work is often given by task
heuristics with groundtruth sequences (Sokolov
et al., 2016; Pang and He, 2021) or trained re-
ward models (Bahdanau et al., 2017; Paulus et al.,
2018). Our LLMR method follows previous theo-
retical work (Hao et al., 2022), but directly induces
a reward function from a pretrained LLM in a prin-
cipled and task-agnostic manner.

3. Approach

Problem Formulation. Knowledge distillation
(KD) aims to transfer the knowledge of a teacher
model to a student. Although the student can
solely learn a task from a parallel corpus Dp =
{(x(i), y(i))}Mi=1, it is argued that the teacher’s pre-
dicted distribution contains more knowledge than
an annotated label y (Hinton et al., 2015). Kim
and Rush (2016) propose SeqKD and minimize
a Kullbuck–Leibler loss, equivalent to minimizing
a cross-entropy loss, at the sequence level be-
tween a teacher p and a student qθ by JSeqKD =

Ey∼p

[
log p(y|x)

qθ(y|x)

]
. In practice, the expectation over

the sentence space is intractable. To tackle this,
they use a hard sequence y generated by beam
search on the teacher model as an approximation:
ĴSeqKD = − log qθ(y|x).
In our work shown in Figure 1, we prompt a large

language model (LLM) and treat it as the teacher.
However, we do not follow the common KD that
minimizes the divergence between LLM’s probabil-
ity pLLM and the student qθ. Instead, we propose to
induce a reward functionRLLM from pLLM and adopt
reinforcement learning for KD with objective:

maximizeθ Ey∼qθ [RLLM(y)] (1)

Our approach alleviates the exposure bias prob-
lem (Chiang and Chen, 2021; Ranzato et al., 2016)

Figure 1: Overview of the approach.

in traditional KD, where the student is fed with the
teacher’s predicted prefix during training, but only
has access to its own partial prediction during in-
ference. By contrast, our RL-based KD allows the
student to explore with its own predicted sequence,
shown by y ∼ qθ in (1), which bridges the gap be-
tween training and inference.
In the rest of this section, we will introduce the

reward RLLM and the optimization of (1) in detail.
Inducing Reward from LLMs. We propose to

induce a reward function from large languagemod-
els (LLMs) for RL-based KD, inspired by the theo-
retical analysis that links policies (predicted proba-
bilities) and reward functions (Hao et al., 2022). In
our work, we design an intuitive prompt to obtain
the LLM’s policy for reward induction.
Consider a task T and an input sentence x.

We formulate a prompt as pmtT (x). In fact, the
prompt depends on the task of interest, and in our
experiments, two common text generation tasks
are considered: summarization (Ahmed and De-
vanbu, 2022; Nair et al., 2023) and dialogue gen-
eration (Deng et al., 2023; Cao et al., 2020). Our
prompts are

pmtsum(x) ≡ “Summarize [ x ]:”
pmtdialog(x) ≡ “The dialogue response of [ x ] is:”

where x is the original input sentence and the
square brackets are delimiters specifying the input
boundaries.
Given a candidate output y = (y1, · · · , yT ), our

goal is to induce a reward function RLLM(y) that
evaluates the “goodness” of y. This requires mod-
eling text generation as aMarkov decision process
(MDP), where an action is the prediction of the
next word and a state is the partially predicted se-
quence in addition to the prompt. The state transi-
tion is a deterministic process that simply appends
the newly generated word to the previous state.
Our reward induction starts by querying an LLM

in a step-by-step fashion to obtain the next word
probability pLLM(yt|y<t,pmtT (x)). Notice that we
do not let the LLM generate outputs during RL-
based KD, but the prefix y<t and the next word yt
are from the student-sampled sequence. The role
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of LLM is to predict its probability and to induce a
reward for y.
With the next-word probability, we are able to in-

duce a q-value function for step t, which indicates
the goodness of an action, i.e., the word yt, at the
state (y<t,pmtT (x)). The q-value induction pro-
cess is based on the common assumption (Chan
and van der Schaar, 2021; Ramachandran and
Amir, 2007; Ziebart et al., 2008) that an action is
taken stochastically based on a Boltzmann distri-
bution induced by q-values:

pLLM(yt|y<t,pmtT (x)) =
exp{q-val(yt; y<t)}∑
y′ exp{q-val(y′; y<t)}

(2)

where the q-value function also depends on
pmtT (x) but is omitted for simplicity.
In other words, the assumption implies that a

higher-valued action will be taken with a larger
probability, which makes much sense in practice.
Moreover, the resemblance between (2) and a
softmax function suggests that we may directly
take the LLM’s logit (pre-softmax value) fLLM as
the q-value in the MDP modeling.
The final step of reward induction is based on

Bellman optimality (Degris et al., 2012; Sutton and
Barto, 2018), which derives an optimal q-value
function from a reward. We follow the practice
of inverse reinforcement learning (Ramachandran
and Amir, 2007; Ziebart et al., 2008; Chan and
van der Schaar, 2021) and use Bellman optimality
in an opposite way to derive a reward RLLM from
the q-value function in (2):

RLLM(yt; y<t) =q-val(yt; y<t)

−maxy′ q-val(y′; y<t+1)
(3)

In this way, our derived reward RLLM evaluates
the appropriateness of a word yt at every step
given its context y<t. That is to say, such a re-
ward function is dense as opposed to various other
heuristic rewards (e.g., BLEU scores) that only
come at the end of a sequence (Wu et al., 2017).
The overall reward induction process follows our
previous work (Hao et al., 2022), but this paper ex-
tends it to a new scenario. Hao et al. (2022) train
a sequence-to-sequence network in a supervised
manner on a parallel corpus and perform semi-
supervised learning on non-parallel corpora. Our
paper shows that a reward function can be derived
directly from a pretrained LLM and helps various
text generation tasks, which is a new insight, es-
pecially in the LLM era.
Reinforcement Learning-Based KD. Our de-

rived reward function allows us to perform rein-
forcement learning (RL) for KD. Specifically, a se-
quence is sampled from the student’s prediction,
given by y ∼ qθ. Then, each word yt in y is eval-
uated by the induced reward function (3), and our

total reward of the sequence is

RLLM(y) =
∑

t
RLLM(yt; y<t) (4)

which is our objective to maximize, as shown in
Eqn. (1).
Since the parameter θ occurs during the sam-

pling process, the gradient cannot be obtained by
backpropagation, and RL is required to train θ in a
trial-and-error manner. In NLP, the REINFORCE
method is commonly used (Ranzato et al., 2016;
Wang et al., 2020), where the gradient is given by

∇θ E
πθ

[∑
t

RLLM(yt; y<t)

]
= E

πθ

[∑
t

Gt(y) logπθ(yt; y<t)

]

where Gt(y) is known as the gain in the RL liter-
ature, being the accumulated reward from step t,
given by Gt(y) :=

∑
τ≥t RLLM(yτ ; y<τ ).

Overall, our RL-based KD differs from traditional
sequence-level KD, where the teacher teaches
unilaterally with its own prediction, i.e., y ∼ pLLM.
Instead, we allow the student to generate its own
prediction, and the LLM teaches by evaluating the
“goodness” of the student’s output. In this way, our
approach alleviates the exposure bias problem, as
the student is aware of its own partial prediction
during training. Compared with classic RL-based
text generation, we do not require heuristically de-
signed reward functions (Bahdanau et al., 2017;
Shen et al., 2016) or human feedback reward mod-
els (Ouyang et al., 2022; Ziegler et al., 2019).

4. Experiments

Setups. We evaluated our approach on two
text generation tasks with three datasets: Daily-
Dialog (Li et al., 2017) and OpenSubtitles (Lison
and Tiedemann, 2016) for dialogue generation, as
well as CNN/DailyMail (See et al., 2017; Hermann
et al., 2015) for summarization. In particular, di-
alogue datasets tend to have sample-overlapping
issues between training and test sets, andwe used
the cleaned version (Wen et al., 2022) for rigorous
experimentation.
Our teacher was a T0-3B model (Sanh et al.,

2022) and the student was T5-Base with 220 mil-
lion parameters (Raffel et al., 2020). Since our
RL-based KD requires meaningful sampling from
the student, we performed pre-distillation by the
standard cross-entropy loss (Kim andRush, 2016),
which is common in KD research (Wen et al.,
2023b; Shleifer and Rush, 2020) and shows our
method provides add-on improvement.
It should be emphasized that our work ad-

dresses unsupervised KD, where the training pro-
cess only used unlabeled input sentences without
groundtruth references. During validation and test
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DailyDialog OpenSubtitles CNN/DailyMail
Model BLEU2 BLEU4 BLEU2 BLEU4 ROUGE-1 ROUGE-2 ROUGE-L

1 Prompting Teacher 5.57 1.49 4.67 1.51 36.16 14.99 24.05
2 Prompting Student 1.35 0.31 1.21 0.25 21.23 6.73 17.88
3

Distilled
Students

SeqKD 6.19 1.71 3.87 1.35 35.46 14.52 23.68
4 KL 5.03 1.40 3.84 1.33 34.11 14.21 22.83
5 RKL 5.02 1.29 4.12 1.36 32.07 13.77 22.87
6 JS 6.60 1.73 3.64 0.87 35.88 14.72 23.97
7 Our LLMR 7.00 1.88 5.13 1.85 36.42 15.21 24.83

Table 1: Main results on dialogue generation and summarization tasks.

phases, the ground truths were used in the stan-
dard evaluation metrics: BLEU (Papineni et al.,
2002) for dialogue generation and ROUGE (Lin,
2004) for summarization.
Main Results. Table 1 presents the perfor-

mance of our model and baselines. As seen, the
teacher model (Row 1) achieves decent perfor-
mance in these tasks. The results are slightly
lower than, or comparable to, those of supervised
methods reported in previous literature, for exam-
ple, 8.96 BLEU2 for DailyDialog (Hao et al., 2022)
and 39.5 ROUGE-1 for CNN/DailyMail (Vaswani
et al., 2017). This is understandable because our
teacher is directly prompted for the tasks without
finetuning. On the other hand, prompting the stu-
dent (Row 2) does not yield meaningful perfor-
mance, which is consistent with the findings of the
scaling effect (Kim and Rush, 2016; Hinton et al.,
2015; Wen et al., 2023b). The strong teacher and
weak student jointly set up a reasonable founda-
tion for our distillation research.
Rows 3–7 present the performance of differ-

ent distilling methods, showing that KD can in-
deed transfer the teacher’s knowledge into the stu-
dent. Among different KD methods, SeqKD (Kim
and Rush, 2016) employs hard samples to train
the student, and achieves close performance
to the teacher; in particular, it surpasses the
teacher on DailyDialog, which can be interpreted
by smoothing the noise of the teacher (an un-
finetuned prompting system). We also experi-
mented with soft distillation based on various f -
divergence functions, including Kullback–Leibler
(KL), Reverse KL (RKL), and Jenson–Shannon
(JS) divergences (Wen et al., 2023b). As seen, the
results are not fully consistent, although JS tends
to perform better in general.
Our LLMR (Row 7) performs reinforcement

learning based on a reward function induced from
the teacher model. It achieves superior perfor-
mance across all the metrics and datasets, con-
sistently demonstrating the effectiveness of our ap-
proach.
Diversity Analysis. The diversity of output text

is considered an important aspect of text genera-
tion systems (Li et al., 2016; Wen et al., 2023a).
We evaluated the diversity of competing models
by the standard distinct n-grammeasures (Li et al.,

DailyDialog OpenSubtitles CNN/DailyMail

Model Dist1 Dist2 Dist1 Dist2 Dist1 Dist2

SeqKD 4.93 27.37 4.78 23.15 3.86 33.59
KL 4.76 26.77 4.99 24.00 3.76 33.59
RKL 5.76 29.01 5.38 23.72 4.07 32.27
JS 5.84 32.25 4.44 19.21 3.83 31.47
Our LLMR 6.02 34.83 5.82 27.21 4.20 35.38

Table 2: Distinct n-gram (Distn) scores.

Figure 2: The averaged excess error (ExError)
with respect to sequence length of different mod-
els on DailyDialog.

2016; Pang and He, 2021; Ji et al., 2023), given by

Distinct-n =
Number of unique n-grams
Total number of n-grams

As seen in Table 2, the KL loss achieves low dis-
tinct scores, which is consistent with previous ev-
idence that the KL training makes the model gen-
erate dull and short utterances (Wei et al., 2019;
Wen et al., 2023a). By contrast, our LLMR yields
much higher distinct scores, which verifies that our
RL mechanism allows the model to explore differ-
ent regions of the sentence space, leading tomuch
more diverse output.
Exposure Bias Analysis. As mentioned in §1,

our LLMR adopts RL and is supposed to alleviate
exposure bias during KD. We quantify the amount
of exposure bias by adapting a recently estab-
lished measure, Excess Error Percentage (ExEr-
ror%, Arora et al., 2022). In our scenario, ExEr-
ror% is defined by

ExError%(l) =
Ds(l)−Dt(l)

Dt(l)
× 100%
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Here, Ds(l) stands for the accumulated Kullback–
Leibler (KL) divergence between the teacher and
student, when the models follow the student’s tra-
jectory up to the (t− 1)th step:

Ds(l) =

T∑
t=1

E y<t∼qθ(·|x)
yt∼p(·|y<t,x)

[
log p(yt|y<t, x)

qθ(yt|y<t, x)

]

whereasDt(l) is the KL divergence when the mod-
els follow the teacher’s trajectory up to the (t−1)th
step:

Dt(l) =

T∑
t=1

E y<t∼p(·|x)
yt∼p(·|y<t,x)

[
log p(yt|y<t, x)

qθ(yt|y<t, x)

]

Overall, ExError% measures the percentage of ex-
cess error when the models follow the student’s
trajectory, compared with following the teacher’s
trajectory. Typically, ExError% is positive and a
higher value indicates more exposure bias. It can
go over 100% because the KL divergence is not
upper bounded.
As seen in Figure 2, KL- and RKL-based KD

methods yield high exposure bias, which is ex-
pected as the KL and RKL divergence functions
are asymmetric and do not push the student to the
teacher well. The JS divergence is symmetric and
JS-based KD requires both teacher and student
samplings. Its ExError% remains low at the be-
ginning, but grows when the sequence becomes
longer. Our LLMR approach employs RL training
and achieves low ExError% throughout different
lengths. The experiment confirms our approach
alleviates exposure bias and explains the perfor-
mance improvement in main results.

5. Conclusion

In this paper, we propose a novel knowledge dis-
tillation method, called LLMR, based on a large
language model-induced reward function. Experi-
ments on dialogue generation and text summariza-
tion show that our approach outperforms previous
KD methods in terms of various metrics. We also
conducted a detailed analysis to verify that our re-
inforcement learning-based method indeed allevi-
ates the exposure bias problem present in com-
mon KD approaches.
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