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Abstract
In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with
linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on
an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target
task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on ltalian and
English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both
languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally
a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited

data availability.
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1. Introduction

Understanding “how linguistic concepts that were
common as features in NLP systems are captured
in neural networks” (Belinkov and Glass, 2019) has
been the focus of many studies in the recent NLP
research. It has been extensively shown that pre-
trained Neural Language Models (NLMs) are able
to capture syntax- and semantic-sensitive phenom-
ena (Hewitt and Manning, 2019; Pimentel et al.,
2020; Li et al., 2022) and that there is a correlation
between the degree of linguistic knowledge and
its ability to solve correctly a downstream task (Mi-
aschi et al., 2020; Sarti et al., 2021), although it
is still highly debated (Ravichander et al., 2021).
However, it has also been demonstrated that intro-
ducing additional linguistic information (Wang et al.,
2019b; Zhou et al., 2020; Glava$ and Vuli¢, 2021)
during the pre-training phase can enhance models’
performances. In addition, several works showed
that transfer learning methods, such as fine-tuning
on intermediate supporting tasks, are highly benefi-
cial to improve pre-trained models’ performance in
the resolution of multiple final target tasks (Phang
et al., 2018; Wang et al., 2019a).

Starting from these premises, in this work we
conducted multiple experiments devoted to evaluat-
ing the potential benefits of enriching a pre-trained
NLM with multiple linguistic information that may
enhance its performance in the resolution of a tar-
get task. Specifically, we defined a methodology
based on an intermediate fine-tuning phase where
the model is instructed to solve a set of raw, morpho-
syntactic and syntactic tasks both in a multi- and
single-task scenario. To this end, we tested our
method on an Encoder-Decoder model, i.e. T5 (Raf-
fel et al., 2020), that allows focusing the instruct-
ing process on specific linguistic tasks. Our target

Sentence: “We tried 4 different styles of
donuts.”. The distribution of numerals
in the sentence is equal to _.

Sentence: “No one’s going to take you
seriously if they're full of typos.”. The
distribution of subordinates in the
sentence is equal to _.

“Only a few books feel in the
reading room.”. The
complexity score of this
sentence is equal to _.

| Output '

Figure 1: lllustrated example of the proposed
methodology. T5 is previously fine-tuned on a sub-
set of linguistic intermediate tasks in a multitask
fashion. Then, the newly obtained model, LiT5, is
tested on the target task.

task is one that strongly relies on the knowledge
of the linguistic properties that characterize a sen-
tence, namely, predicting the linguistic complexity
of a sentence (see Figure 1 for an overview of the
methodology).

The methodology was tested on two languages,
ltalian and English, employing both mono- and
multi-lingual T5 models. Furthermore, we devised
a cross-lingual evaluation scenario to assess the
effectiveness of a model that underwent linguistic
fine-tuning on data from a language different from
that of the target task. The experiments on the
target task were conducted by varying the training
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data size to explore how linguistically informing the
models impacts their performance across scenar-
ios with limited data. Our purpose is not to propose
a new framework for achieving state-of-the-art per-
formance, but rather to inspect how this process of
enhancing a model with linguistic knowledge scales
across different languages and amounts of data.
Our main contributions are:

» We propose an intermediate fine-tuning ap-
proach to study the impact of enhancing pre-
trained Encoder-Decoder models with knowl-
edge of multi-level linguistic phenomena in
solving a target task that has not been tested
so far.

» We compare the effectiveness of linguistically
informing both mono- and multi-lingual models,
highlighting language-specific peculiarities.

» We test our approach on T5 models of increas-
ing size and compare their performance vary-
ing the dimensions of the target training, thus
uncovering the potential for resource-efficient,
linguistically-informed small models, particu-
larly in data-limited scenarios.

» We demonstrate the applicability of our method
of linguistic fine-tuning across languages, of-
fering valuable adaptability insights for cross-
lingual scenarios'.

2. Related Work

A large body of recent work focused on investigat-
ing whether performing multiple steps of fine-tuning
on one or more intermediate tasks can enhance
the performance of a pre-trained NLM before fine-
tuning it on a target task. The core concept behind
this approach is to specialize the pre-trained model
by exposing it to tasks other than language mod-
eling, which can enhance its capabilities through
a transfer-learning approach. While conducting a
comprehensive survey of the literature on this topic
is beyond the scope of our work, we aim to con-
centrate on three key aspects that are frequently
discussed about the effectiveness of the interme-
diate fine-tuning process. These aspects are inter-
connected, although we present them sequentially.
The first one concerns the size of the intermediate
fine-tuning and target datasets, and is generally re-
lated to a second aspect concerning the fine-tuning
approach adopted (Vu et al., 2020; Chang and Lu,
2021). Among the others, e.g. Weller et al. (2022)
showed that a multi-task learning approach (i.e.
fine-tuning on a supporting task and the target task

"Datasets and models are available at the follow-
ing repository: https://github.com/alemiaschi/
linguistically_informed_tb5.

simultaneously) to the intermediate fine-tuning on
the GLUE benchmark (Wang et al., 2018) is more
effective than conducting the two phases consec-
utively (a methodology often called STILTs) when
the target dataset is smaller than the supporting
dataset and vice-versa.

A third aspect highly discussed relates to the se-
lection of intermediate tasks (Zhang and Zhang,
2021; Padmakumar et al., 2022; Goot, 2023). Gen-
erally, the effectiveness of the intermediate fine-
tuning process is highly dependent on the choice
of these tasks. For instance, Pruksachatkun et al.
(2020) performed a study on the RoBERTa model
(Liu et al., 2019) by fine-tuning it on 110 different
combinations of intermediate tasks and evaluating
the trained models via probing tasks. The exper-
iments showed that intermediate tasks requiring
high-level inference and reasoning abilities tend
to work best. Differently from previous studies,
our approach to intermediate fine-tuning is more
‘phenomenon-oriented’ than ‘task-oriented’. Specif-
ically, we have devised a set of prediction tasks
that reflect the progressive acquisition of multiple
linguistic phenomena, which could prove beneficial
in resolving the target task.

On a different side, different works focused on en-
hancing NLMs with linguistic knowledge during their
pre-training phase (Wang et al., 2019b; Glava$ and
Vuli¢, 2021). Among these, Zhou et al. (2020) en-
hanced a BERT model by training it in a multi-task
learning technique with five syntax and semantics
tasks, showing that the model can outperform a
base one on several benchmarks.

In our work, we aim to bridge these perspectives
by exploring an approach that combines the en-
hancement of a model with linguistic knowledge
through intermediate-task fine-tuning, thereby ex-
ploiting the power of both transfer learning methods
and linguistic knowledge integration.

3. Experimental Setting

We devised a two-step STILTs approach. Firstly,
we fine-tuned the T5 models on several intermedi-
ate support tasks. They consist of a set of linguistic
phenomena modeling aspects of a sentence re-
lated in the literature to complexity. They serve
as input features for the models which are trained
for a total of 25 epochs to predict their values in
a multi-task setting. We saved model checkpoints
at regular intervals, specifically every 5 epochs,
thus resulting in 5 distinct snapshots of the models,
each representing a different phase in their devel-
opment?. Secondly, we fine-tuned the “Linguisti-
cally informed” T5 models, LiT5s, on the prediction

2The LiT5 models are available at the following
link:  https://huggingface.co/collections/
alemiaschi/1it5-65d5d480dd8841806fc0aza0.
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of sentence complexity (one for each checkpoint),
which we chose as the target task.

The two steps were tested using ltalian and En-
glish T5 and the multilingual version. Additionally,
we introduced a cross-lingual setting designed to
evaluate the efficacy of multilingual models linguis-
tically fine-tuned in a language other than that of
the task. For both the intermediate fine-tuning and
the target task phase, we verbalized each input se-
quence by adding a suffix that clarifies the task to
be solved. For example, to instruct the models with
linguistic knowledge we postpend each sentence
with a set of verbalizations, as in the following ex-
ample (the suffix is in bold): ‘In 1982, he started a
factory in Greece. The distribution of numerals
in the sentence is equal to _". While, for the tar-
get task, we postpend the string “The complexity
score of the sentence is equal to _"3.

We also proposed a further evaluation scenario
to investigate which linguistic feature is most in-
formative for improving the models in solving the
target task. To this end, we performed the same in-
termediate fine-tuning process, but in a single-task
scenario, training the small monolingual models
with each feature at a time.

3.1. Data

Target Task We considered the task of predicting
the level of linguistic complexity of a sentence and
we relied on the corpus introduced in Brunato et al.
(2018). It contains ltalian sentences taken from
the newspaper section of the Italian Universal De-
pendency Treebank (IUDT) (Simi et al., 2014) and
English sentences extracted from the Wall Street
Journal section of the Penn Treebank (McDonald
et al., 2013) manually rated by 20 crowdsourced
workers for the corresponding level of perceived
complexity on a 1-to-7-point scale. For our exper-
iments, we decided to consider the average judg-
ment of complexity given by all annotators to each
sentence. For instance, the average complexity
score associated with the following sentence "Only
a few books feel in the reading room." is 2.4.

All the sentences contained in the two treebanks
were grouped into 6 bins based on a different sen-
tence length, i.e. 10, 15, 20, 25, 30, 35 tokens.
Our intention in controlling sentence length was to
create sets of sentences that feature comparable
values for linguistic characteristics known to be as-
sociated with sentence length, such as parse tree
depth or dependency links. The original corpus was
divided in two: 50% was used as training and 50%
as testing. We made sure to maintain a balanced
distribution of sentences of 6 different lengths in
order to expose the model to a diverse range of

3The complete list of the verbalizations can be found
in Appendix A.

sentence lengths during training and testing. For
the two languages, we further divided the training
set into 5 bins containing an increasing number
of sentences and balanced for the six sentence
lengths. Specifically, we created 5 training sets
each containing 120, 240, 360, 480, and 600 sen-
tences for Italian and 72, 144, 216, 288, and 360
sentences for English. The test sets contain 600
and 360 sentences for ltalian and English, respec-
tively. We conducted experiments using training
sets of increasing dimensions to explore the impact
of enhancing the models with linguistic knowledge
also in scenarios with limited data.

Intermediate Tasks They consist of predicting in
a multi- and single-task setting the set of linguistic
features selected with the approach described in
3.3. The values of the features were extracted
from version 2.5 of the Italian and English Universal
Dependency (UD) treebanks (Zeman et al., 2019).
In total, we collected 16,000 and 4,000 sentences
for the training and tests of the Italian treebank, and
17,600 and 4,400 for the English one.

3.2. Models

We relied on different versions of the T5 model (Raf-
fel et al., 2020). For the experiments devised on
English, we utilized three models of increasing size,
all trained on the English language: t5-small (60M),
t5-base (220M), and t5-large (770M). For experi-
ments related to the Italian language, we employed
IT5 (Sarti and Nissim, 2022), a T5 model trained
on the Italian sentences extracted from a cleaned
version of the mC4 corpus (Xue et al., 2021). Just
like with the English models, we tested IT5 in three
different sizes: it5-small (60M), it5-base (220M),
and it5-large (738M).

In addition to these language-specific models,
we also conducted cross-lingual experiments using
the multilingual model. In this regard, we tested
both mt5-small (300M) and mt5-base (580M). We
used Huggingface’s transformers library (Wolf et al.,
2020) for accessing all the models®.

Evaluation We used Spearman correlation score
as evaluation metric. In particular, we computed
the Spearman correlation between the gold value
of each feature in the ltalian or English treebank
and the predicted value of the models for the in-
termediate tasks. For what concerns the target
task, we computed the correlation between aver-
age judgments of complexity and the complexity
scores obtained with the fine-tuned LiT5 models.

“For details regarding models, compute parameters
and training details see Appendix B.
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3.3. Linguistic Features

The set of linguistic features we used as interme-
diate tasks consists of a subset of those extracted
with the ProfilingUD (Brunato et al., 2020), a tool
that allows the extraction of more than 130 prop-
erties representative of the linguistic structure un-
derlying a sentence and derived from raw, morpho-
syntactic and syntactic levels of annotation based
on the UD formalism (de Marneffe et al., 2021).
The key advantage of relying on the UD formalism
lies in the possibility of encoding different sentence
properties consistently across various languages.
This choice facilitates the adaptation of our method-
ology to diverse languages with relative ease. Addi-
tionally, these features have been shown to play a
highly predictive role when leveraged by traditional
learning models on various classification problems
and can be also effectively used to profile the knowl-
edge encoded in the internal representations of a
pre-trained NLM (Miaschi et al., 2020).

We select the subset of linguistic features based
on the degree of correlation between sentence-
level complexity judgments and the values of lin-
guistic features extracted by Profiling-UD from
the target task datasets. Since, as pointed out
by Brunato et al. (2018), linguistic complexity is
strongly correlated with sentence length, we first
calculated the correlation for each of the 6 bins,
each containing sentences of different lengths, then
averaged the correlation scores. This step was un-
dertaken to minimize the influence of features di-
rectly related to sentence length, allowing us to con-
centrate on linguistic characteristics that contribute
more indirectly to influencing the human perception
of linguistic complexity. In the end, we obtained
a list of the most correlated features for each lan-
guage considered regardless of sentence length.

Selected features The list of the 10 most cor-
related ones, along with their Spearman correla-
tion scores, are reported in Table 1. A noteworthy
observation is that the scores for both languages
appear relatively low. This can be attributed to
our deliberate exclusion of features associated with
sentence length, which typically exhibits the high-
est correlations with complexity. Interestingly, for
each language, we find different linguistic phenom-
ena, covering diverse aspects of sentence com-
plexity. They include a raw text feature as the
average length of words (char_per_tok); distribu-
tion of specific parts-of-speech (upos_dist_*), i.e.
adjectives (ADJ), numbers (NUM), punctuation
marks (PUNCT), auxiliary verbs (AUX), determin-
ers (DET), pronouns (PRON), symbols (SYM), ratio
of content parts-of-speech over the total number of
words (lexical_density), of syntactic dependency
relations (dep_dist_*), i.e. function words associ-
ated with a verb (aux), markers introducing a sub-

Features Corr  Features Corr
Italian English

char_per_tok 0.28  upos_dist NUM 0.35
upos_dist_ADJ 0.21 dep_dist_nummod 0.31
upos_dist_ NUM 0.19 upos_dist_ SYM 0.27
lexical_density 0.17 upos_dist_ AUX 0.25
dep_dist_aux 0.17  dep_dist_ compound  0.25
dep_dist_mark 0.16  upos_dist PRON 0.24
aux_mood_dist_Ind 0.14  upos_dist DET 0.23
obj_post 0.14  subord_prop_dist 0.17
upos_dist_ PUNCT 0.13  aux_form_dist_Fin 0.16
subord_prop_dist 0.12  aux_mood_dist_Ind 0.14

Table 1: Linguistic features selected as interme-
diate tasks along with their average correlation
score (Spearman p coefficient) with the complexity
judgments. All scores are statistically significant
(p — value < 0.05).

ordinative clause (mark), multiword expressions
(compound), numeric modifiers of a noun (nhum-
mod), of auxiliary verbs by inflectional morphol-
ogy traits (aux_*), i.e. finite forms (form_dist_Fin),
indicative moods (mood_dist_Ind), and of syntac-
tic tree structures, i.e. direct objects in post-verbal
position (obj_post) and subordinate clauses (sub-
ord_prop_dist)®.

4. Results

In the following sections, we delve into the out-
comes of our experiments. First, we present the
results of the T5 models on the intermediate tasks.
Subsequently, we analyze the results of the target
task, comparing the performance of both the base
and LiT5 models.

4.1. Enhancing T5 with Linguistic
Features

Monolingual Models Figure 2 reports the results
for the intermediate task (in terms of Spearman cor-
relation coefficients) obtained with the monolingual
t5 models in a multi-task learning scenario. As
a first observation, we can see that for both ltal-
ian and English, all models tend to become pro-
gressively “linguistically-informed” over the 25
epochs of fine-tuning.

Interestingly, it seems that the size of the model
impacts the results of the fine-tuning process.
On the one hand, large models consistently outper-
form smaller ones; on the other hand, it’s notewor-
thy that the improvement over epochs is particularly
pronounced for smaller models. This observation
possibly suggests that weights of smaller models
even trained on the same amount of data and for
the same number of epochs are more susceptible
to modification. In addition, we can assume that
smaller pre-trained models implicitly encode less

®A detailed description of the selected linguistic fea-
tures is available in Appendix C.
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it5-small
All 0.49 0.53 0.55 0.56
aux_mood_dist_Ind ~ 0.17 0.31 0.34 0.38
char_per_tok 0.0056 -0.046 0.06 0.061 0.13
dep_dist_aux 0 0 0 0.14 0.17
dep_dist_mark 0 0 0.091 0.21 0.23
lexical_density 0.0054 0.14 0.15 0.2 0.17 0.21
obj_post 0.18 0.31 0.38
GG 0.51 0.52 0.58 0.63 0.64
upos_dist AD) 0.14 0.18 0.22 0.18 0.22
upos_dist NUM 0 0 0 0 0
upos_dist PUNCT -0.15 0.13 0.22 0.21 0.25
5 10 15 20 25 5

All
aux_form_dist_Fin
aux_mood_dist_Ind
dep_dist_compound
dep_dist_nummod
subord_prop_dist
upos_dist_AUX
upos_dist_DET
upos_dist_NUM
upos_dist_PRON
upos_dist_SYM

0.22

Italian

it5-base it5-large

0.22 0.25 0.29 0.18 0.18 0.17 0.2 0.19

10 15 20 25 5 10 15 20 25
English

t5-base t5-large

5 10 15 20 25

Figure 2: Spearman correlation coefficients for the intermediate tasks for the Italian (top) and English
(bottom) datasets obtained with the monolingual T5 models. Each column in the heatmaps contains the
results obtained by the models fine-tuned for multiple epochs (e.g. 5 = 5 epochs of fine-tuning).

linguistic knowledge than larger ones, thus making
the addition of new explicit linguistic information
more effective.

When we focus on the ranking of each learned
linguistic feature, we can generally observe that
there are multiple distinctions across models of dif-
ferent sizes. Specifically, it results that at the end
of the fine-tuning process the it5-small model ex-
cels in mastering the distribution of subordinate
clauses (subord prop_dist) in comparison with
other features learned by the same model, while
the distribution of numerals (upos_dist NUM) is
the best-mastered property by it5-base and large.
Conversely, the prediction of values of the lex-
ical density of a sentence and of token length
(char_per_tok) remains consistently a challenge:
they are among the worst-mastered sentence char-
acteristics for all the models.

Interestingly, model size also seems to have an
impact on the learning speed of specific features.
For example, the difference in the accuracy ob-
tained between after 5 and 10 fine-tuning epochs in
predicting the lexical density is much greater for it5-
small than for larger models, for which we obtained
quite similar scores across epochs. A quite peculiar
case is represented by numbers (upos_dist NUM):
its-small fails to master them even at the end of the
entire fine-tuning process.

Similar observations hold for t5: the model size
has an impact on the performance, even if En-
glish models consistently outperform the Italian
ones. However, regardless of their dimensions, all
three English models exhibit the lowest proficiency
considering the same three features: the distribu-
tion of numerical modifiers (dep_dist nummod),
compounds (dep_dist compound), and symbols
(upos_dist_SYM). When we focus on the learning
speed across epochs, we can observe that infor-
mation about the distribution of syntactic depen-
dencies (dep_dist_*) is acquired by t5-small when
it is fine-tuned for 10 epochs. Conversely, t5-base
and large master these features earlier and con-
sistently achieve superior results, in line with the
general trend already noted. The prediction of sym-
bols (upos_dist SYM) represents a quite peculiar
case: they start to be predicted by t5-small only af-
ter 20 epochs, and it is among the worst-predicted
features by the bigger models.

Multilingual Models As we can observe from
Figure 3, multilingual models consistently out-
perform monolingual ones for both languages.
In addition, some differences in terms of learning
speed can be highlighted. In particular, for all fea-
tures, the improvement of mt5-base fine-tuned on
the ltalian treebank for 10 epochs is much higher
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upos_dist_SYM 0

5 10 15 20 25

Figure 3: Spearman correlation coefficients for the
intermediate tasks for the Italian (fop) and English
(bottom) datasets obtained with the multilingual T5
models.

than for it5-base trained for the same numbers of
epochs: this suggests that it becomes more rapidly
informed on the same linguistic characteristics than
the monolingual model. In general, the small model
undergoes the main differences compared to its
monolingual counterpart.

Similar differences in the learning speed can be
highlighted for the English language, especially in
the case of the small model. For example, symbols
(upos_dist_SYM) are learned only after 20 epochs
by t5-small but after 10 by mt5-small, or numer-
ical modifiers (upos_dist NUM) after 15 epochs
by the monolingual model but only after 5 by the
multilingual counterpart.

4.2. Predicting Complexity with
Linguistically-Informed Models

Monolingual Models In Figure 4 we report the
performance trend of the Pre-Trained and the LiT5
models when fine-tuned on the different portions
of the target dataset and for increase numbers of
epochs (Intermediate_*).

The first notable observation is the varying trends
observed across model dimensions and languages.
For the two languages, smaller models con-
sistently outperform their pre-trained counter-
parts, exhibiting a more pronounced impact from
intermediate fine-tuning. This effect becomes even
more evident when working with limited train-
ing data, highlighting the advantages of linguistic
knowledge enhancement through a step of interme-
diate fine-tuning. Particularly evident is, in fact, the

performance gap when fine-tuning the models with
a small portion of the training dataset. For instance,
when the models are fine-tuned using only 1/5 of
the entire training dataset, the disparities in perfor-
mance of it5-small and t5-small are notably pro-
nounced (0.29 and 0.30 between the Pre-trained
and LiT5 correlation scores respectively). In con-
trast, when considering bigger models (base
and large), we notice different behavior across
languages. For the ltalian language, LiT5s out-
perform the pre-trained ones when fine-tuned on
the first three portions of the dataset. However,
their performance tends to converge with that of
the pre-trained models as the fine-tuning process
utilizes the majority of the available training data.
In contrast, the trends for the English portion of the
dataset are more nuanced, with variations between
base and large models and distinctions emerg-
ing across different intermediate training epochs.
These findings underscore the intricate interplay
between model size, language, and the efficacy of
intermediate fine-tuning in optimizing performance
for specific tasks and datasets.

Focusing instead on the distinctions among the
various LiT5 models, we uncover varying trends,
particularly when considering different languages.
For Italian, there appears to be no discernible differ-
ence among models or a consistent trend across
increasing training sizes and model dimensions. In
fact, scores among the LiT5 models remain gener-
ally quite similar. More pronounced variations are
exhibited by the it5-large model: when trained for
only 5 epochs (Intermediate_5) it yields generally
lower scores compared to its counterpart trained
for 25 epochs (Intermediate_25).

In contrast, surprisingly, English smaller mod-
els benefit most from extended intermediate
fine-tuning processes (> 5 epochs), whereas
the base and large models achieve their best
performance when linguistically enhanced for
only 5 epochs. This trend becomes especially
evident when evaluating performance on the entire
target dataset, where the LiT5 models outperform
the pre-trained ones. A possible explanation of
this trend is that a smaller model may require a
longer intermediate fine-tuning process to better
adapt to the task, by gradually acquiring the nec-
essary linguistic knowledge. On the other hand,
larger models have already learned a wider range
of linguistic features during their pre-training, reduc-
ing the need for extensive fine-tuning. This transfer
learning advantage allows them to quickly adapt
to specific tasks and perform well with shorter fine-
tuning processes.

Multilingual Models Figure 5 shows the perfor-
mance trend of the Pre-Trained and the LiT5 mul-
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Figure 4: Spearman correlation coefficients for the target tasks for the ltalian (top) and English (bottom)
datasets obtained with the monolingual models using pre-trained and LiT5 models.

tilingual models®. As it can be noted, there is a
similar trend to what we observed with monolingual
models. In most configurations, multilingual
LiT5 models intermediately fine-tuned either
on ltalian (*_Italian) and English (*_English) im-
prove the performance on the target task, espe-
cially for smaller models and with limited data
available. If we focus instead more on the various
LiT5 models, we notice that, in general, when train-
ing data is limited (1/5 or 2/5 of the entire dataset)
the most significant impact for small models is seen
in those that have completed the intermediate fine-
tuning cycle (25 epochs), while training with larger
portions of the dataset tends to reduce the differ-
ence between the models. In contrast, for mt5-base
this tendency is more attenuated: the improvement
is evident even when models are trained with only
1/5 of the dataset.

Additionally, we can see that, regardless of
whether the LiT5 multilingual models were obtained
through fine-tuning on a language different from
the target task, their impact is still evident, suggest-

5We reported only the results obtained by the LiT5s
fine-tuned for the minimum (5) and maximum (25) num-
ber of epochs. Complete results are reported in Appendix
D.

ing the effectiveness of the intermediate tuning
even in cross-lingual configurations. However,
it is interesting to notice a substantial difference be-
tween the target tasks in the two languages. In fact,
if we look at the results obtained on the Italian target
task, we can see that having performed intermedi-
ate tasks in the same language as the target tends
to be more effective than doing it in English. On
the other hand, a different trend emerges with the
English dataset: performing intermediate tasks on
Italian data tends to increase the performance more
than using a linguistically-informed model trained
on English data. In fact, the performance of the
LiT5 small model tested on Italian data and interme-
diately trained on English data increases by 0.31
points in terms of Spearman scores, while it in-
creases by 0.52 when tested on English data and
further trained on Italian data. Similar differences
are observed for the base models, with a differ-
ence of 0.13 and 0.25 in the two scenarios’. This
result seems to suggest that the enrichment of a
multilingual model with language-specific linguistic
knowledge is more effective for a language that
is poorly represented in the original training of a

"Further details about performance differences are
available in Appendix D.
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Figure 5: Spearman correlation coefficients for the
target tasks for the ltalian (fop) and English (bot-
tom) datasets obtained with the mt5-*. Intermediate
scores are reported for the models fine-tuned for
Italian and English for the minimum (5) and maxi-
mum (25) number of epochs.

Features Corr Features Corr
Italian English

upos_dist_ NUM 0.65 aux_mood_dist_Ind 0.92
subord_prop_dist 0.60 aux_form_dist_Fin 0.86
aux_mood_dist_Ind 0.52 subord_prop_dist 0.81
obj_post 0.48  upos_dist PRON 0.80
upos_dist_ADJ 0.22  upos_dist NUM 0.65
char_per_tok 0.18  dep_dist_nummod 0.34
lexical_density 0.13 upos_dist_DET 0.24
upos_dist_PUNCT 0.09  upos_dist AUX -0.03
dep_dist_mark -0.03  dep_dist_compound  -0.03
dep_dist_aux -0.08  upos_dist SYM H#HH

Table 2: Spearman correlation coefficients for
the intermediate tasks for the Italian and English
datasets obtained with the small models fine-tuned
with one linguistic feature at a time.

multilingual model, such as ltalian®. In contrast, a
more represented language such as English, which
might be widely informed of language-specific infor-
mation, benefits more from an intermediate training
on a different language.

4.3. Which linguistic features matter
most?

To have a deeper understanding of the contribu-
tion of each linguistic feature to the target task, we
propose a final evaluation by testing the Italian and
English monolingual small models (it5-small and t5-
small) when previously fine-tuned on each of the 10

8The ltalian language covers around 2.43% of the
mC4 corpus (Xue et al., 2021).
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Figure 6: Performance differences between the
Pre-Trained and the LiT5 models (trained on one
linguistic feature at a time) in both scenarios of
limited (1/5) and full training data (5/5) availability.

selected linguistic features at a time (i.e. one LiT5
model per property). Note that for this scenario,
we have selected only one LiT5 model per feature®
instead of testing different checkpoints, as in Sec.
4.2. First of all, we report in Table 2 the results for
the single-feature intermediate tasks. Overall, we
can notice that the linguistic features are mastered
by the two models with lower precision with respect
to the multi-task learning setting of fine-tuning. This
observation underscores the potential advantage
of jointly predicting these sentence characteristics,
potentially amplifying their interoperability and mu-
tual reinforcement.

In Figure 6 we report the performance differences
between the Pre-Trained and the LiT5 models in
both scenarios of limited (1/5) and full training data
(5/5) availability. The majority of negative differ-
ences indicate that, differently from the multi-task
configuration, only a few features effectively help
the models in the resolution of the target task.
However, the impact varies depending on the lan-
guage and the amount of training data. In the sce-
nario with limited resources, a higher number
of features seem to be more informative for the
Italian than for the English model and appear
to contribute more significantly to enhancing
the model performance in the resolution of the
target task. The two most effective ones for it5 are
a syntactic feature, i.e. the use of subordinative
clauses (subord_prop_dist), and a raw text one, i.e.
the length of tokens (char_per_tok). Interestingly,
being informed about the presence of subordina-

*We kept the models that maximize the performance
in the prediction of the linguistic features.
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tive clauses enhances also the ability of the English
model to predict the complexity of a sentence. Con-
versely, when more training data is available, the
addition of linguistic information does not improve
the Italian LiT5 models significantly, while it shows a
slightly more beneficial effect for the English ones.

5. Conclusion

In this work, we study the effectiveness of enhanc-
ing pre-trained T5 models Encoder-Decoder mod-
els (i.e. T5), with linguistic knowledge for the predic-
tion of sentence complexity. We conducted a series
of experiments on Italian and English datasets us-
ing both monolingual and multilingual T5 models
of various sizes. Our findings reveal several key
insights.

First of all, we showed that informing models
linguistically over several epochs allows them to
progressively improve their degree of language pro-
ficiency, albeit with some differences between lan-
guages and model size. Interestingly, model size
has an impact on the speed of learning specific
linguistic features.

For what concerns the resolution of the target
task, we found that our method of linguistic en-
hancement is particularly effective especially when
applied to smaller models and in scenarios with
limited availability of target training data. Interest-
ingly, we observe that a linguistically-informed small
model, refined through intermediate fine-tuning,
can frequently surpass the performance of a larger
model that has not undergone this intermediate
refinement process. This highlights the potential
for more resource-efficient models when linguis-
tic knowledge is incorporated. This holds both for
mono and multilingual models and when the linguis-
tic fine-tuning process is conducted in a language
other than that of the target task. The findings
indicate that refining smaller models through effi-
cient intermediate tuning phases could present a
promising approach to building more sustainable
models. Specifically, it may confer benefits com-
pared to larger models trained for extended periods
on more extensive datasets with a higher parameter
count.

Finally, preliminary experiments conducted by
investigating the impact of training linguistically-
informed models with a single linguistic feature,
highlighted that only a few of them seem to en-
hance the model performances. This result, on
the one hand, underscores the evident benefits of
intermediate fine-tuning within a multi-task frame-
work. On the other hand, it poses questions for
future research, emphasizing the need for a more
comprehensive exploration of the relative impact
of specific linguistic properties.

Looking ahead, there are several avenues for

future research, as detailed in the Limitations sec-
tion. Additionally, it could be interesting to see if
such an approach proves useful with generative
Large Language Models (LLMs) in zero- and few-
shot configurations. In fact, introducing linguistic
knowledge via an instruction-tuning phase might
enhance model performance, especially in tasks
where linguistic competence plays a crucial role.

Limitations

In this section, we discuss the limitations of our
work. 1) Languages and Tasks. The objective
of our work was to investigate if enhancing a pre-
trained model with linguistic knowledge has a pos-
itive impact on its performance. However, it's im-
portant to note that while the primary focus of our
work was not to propose a challenging model that
performs better on multiple tasks and benchmarks,
testing it on two languages and a single task could
be considered a limitation. 2) Different LLMs. For
our experiments, we primarily focused on models
with "moderate” sizes, therefore more efficient and
less computationally expensive. Furthermore, we
selected T5 since we precisely knew its pre-training
dataset. This choice was made in order to mitigate
potential concerns about the incorporation of in-
formation during the intermediate tuning task that
might have already been present in the model’s
training data. Nevertheless, we acknowledge the
relevance of comparing various models in terms of
architecture (e.g. encoder- or decoder-only mod-
els) and dimensions (e.g. > 1B parameters). 3)
Linguistic features. Selecting the top 10 linguis-
tic properties on the basis of the correlation with
complexity scores is only one of the possible ap-
proaches to identifying the set of characteristics to
be used for fine-tuning the model. Therefore, using
a different selection method or a wider set of linguis-
tic properties could provide more insights on how to
complement the model’s linguistic knowledge with
additional information.
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A. Intermediate Tasks Suffixes

As mentioned in Sec. 3, we define a set of specific
suffixes to be postponed to each input sentence
in the Italian/English datasets for the intermediate
tasks. Tables 3 and 4 report the suffixes used in
the experiments.

B. Model, Parameters and Training
Details

We fine-tuned the T5 models with the following
hyperparameters:

* Learning rate: 4e-5;
* Per device batch size: 4;

» Epochs: 20 epochs maximum for the complex-
ity prediction task and 25 for the intermediate
tasks.

We trained all the models on two NVIDIA
GeForce RTX 4090 GPUs.

C. Linguistic Properties

The first step of our approach consists of enhancing
the T5 models with multiple linguistic properties
in an intermediate fine-tuning process. For the
experiments conducted on the ltalian datasets we
considered the following properties which can be
grouped into five main groups:

Raw text feature:

* char_per_tok: the length of tokens computed
as the average number of characters per word
in a sentence (excluding punctuation).

Distribution of morpho-syntactic categories:

» ADJ: percentage distribution of adjectives
over the total amount of tokens in a sentence
according to the UD parts-of-speech tagset'?;

* NUM: percentage distribution of nhumerals
over the total amount of tokens in a sentence
according to the UD parts-of-speech tagset;

» PUNCT: percentage distribution of punctua-
tion marks over the total amount of tokens in a
sentence according to the UD parts-of-speech
tagset;

* lexical_density: ratio of content parts-of-
speech (verbs, nouns, adjectives and adverbs)
over the total number of words in a sentence.

Distribution of verbs by inflectional morphology
traits:

%https://universaldependencies.org/u/pos/index.html

» aux_form_dist_Fin: percentage distribution of
auxiliary verbs (also including modal verbs)
in finite form over the total number of auxil-
iary forms in a sentence according to the UD
tagset'';

» aux_mood_dist_Ind: percentage distribution
of auxiliary verbs (also including modal verbs)
in indicative mood over the total number of
auxiliary moods in a sentence according to the
UD tagset'?.

Distribution of syntactic dependency relations:

» aux: percentage distribution of auxiliary
verbs (also including modal verbs) over the
total amount of dependency relations in a sen-
tence according to the UD tagset'3;

» mark: percentage distribution of markers, i.e.
words introducing a finite clause subordinate
to another clause, over the total amount of
dependency relations in a sentence according
to the UD tagset.

Property referring to local syntactic tree structure:

» obj_post: percentage distribution of direct ob-
jects that occur in a post-verbal position in a
sentence.

Property referring to the use of subordination:

 subord_prop_dist: distribution of subordinate
clauses as defined in the UD scheme 4.

For the experiments conducted on the English
datasets, we considered the following sets of prop-
erties:

Distribution of morpho-syntactic categories:

+ AUX: percentage distribution of auxiliary
verbs over the total amount of tokens in a
sentence according to the UD parts-of-speech
tagset;

« DET: percentage distribution of determiners,
i.e. word, also including definite and indefinite
articles, that modify nouns or noun phrases,
over the total amount of tokens in a sentence
according to the UD parts-of-speech tagset;

* NUM: percentage distribution of humerals
over the total amount of tokens in a sentence
according to the UD parts-of-speech tagset;

"https://universaldependencies.org/u/feat/VerbForm.html

2https://universaldependencies.org/u/feat/Mood.html
Bhttps://universaldependencies.org/u/dep/index.html
“https://universaldependencies.org/u/overview/complex-
syntax.html#subordination
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Properties

Suffixes

char_per_tok
upos_dist_ADJ
upos_dist_ NUM
lexical_density
dep_dist_aux

dep_dist_mark

aux_mood_dist_Ind
obj_post
upos_dist_ PUNCT

subord_prop_dist

Il numero medio di caratteri per token nella frase & uguale a <extra_id_0> (transl. The
average number of characters per token in the sentence is ...).

La distribuzione di aggettivi nella frase & uguale a <extra_id_0> (transl. The distribution of
adjectives in the sentence is ...).

La distribuzione dei numerali nella frase & uguale a <extra_id_0> (transl. The distribution of
numbers in the sentence is ...).

Il rapporto fra parole piene e tutte le parole della frase € uguale a <extra_id_0> (transl. The
ratio of content words over all words in the sentence is ...).

La distribuzione dei verbi ausiliari nella frase € uguale a <extra_id_0> (transl. The distribution
of auxiliary verbs in the sentence is ...).

La distribuzione di marcatori che introducono una clausola subordinata ad un’altra clausola
nella frase € uguale a <extra_id_0>. (transl. The distribution of markers introducing a
subordinative clause to another clause in the sentence is ...)

La distribuzione di verbi ausiliari al’indicativo nella frase € uguale a <extra_id_0> (transl.
The distribution of indicative mood auxiliary verbs in the sentence is ...).

La distribuzione dei verbi in posizione postverbale nella frase € uguale a <extra_id_0>
(transl. The distribution of direct objects in a post-verbal position in the sentence is ...).

La distribuzione della punteggiatura nella frase & uguale a <extra_id_0> (transl. The
distribution of punctuation in the sentence is ...).

La distribuzione delle subordinate nella frase & uguale a <extra_id_0>. (transl. The distribu-
tion of subordinates in the sentence is ...)

Table 3: The suffixes used in the multi-task intermediate fine-tuning experiments for the ltalian sentences.

Properties

Suffixes

aux_form_dist_Fin
aux_mood_dist_Ind

dep_dist_compound

dep_dist_nummod
upos_dist_ AUX
upos_dist_DET
upos_dist_ NUM
upos_dist_ PRON
upos_dist_SYM
subord_prop_dist

The distribution of finite form auxiliary verbs in the sentence is <extra_id_0>.

The distribution of indicative mood auxiliary verbs in the sentence is <extra_id_0>.
The distribution of compounds in the sentence is <extra_id_0>.

The distribution of numerical modifiers in the sentence is <extra_id_0>.

The distribution of auxiliary verbs in the sentence is <extra_id_0>.

The distribution of determiners in the sentence is <extra_id_0>.

The distribution of numerals in the sentence is <extra_id_0>.

The distribution of pronouns in the sentence is <extra_id_0>.

The distribution of symbols in the sentence is <extra_id_0>.

The distribution of subordinates in the sentence is <extra_id_0>.

Table 4: The suffixes used in the multi-task intermediate fine-tuning experiments for the English sentences.

* PRON: percentage distribution of pronouns

Distribution of syntactic dependency relations:

over the total amount of tokens in a sentence

according to the UD parts-of-speech tagset;

» compound: percentage distribution of com-
pounds, including all categories of multi-word

» SYM: percentage distribution of symbols, i.e.
word-like entity that differs from ordinary words
by form, function, or both, over the total amount
of tokens in a sentence according to the UD
parts-of-speech tagset.

Distribution of verbs by inflectional morphology
traits:

» aux_form_dist_Fin: percentage distribution of
auxiliary verbs (also including modal verbs)
in finite form over the total number of auxil-
iary forms in a sentence according to the UD
tagset;

aux_mood_dist_Ind: percentage distribution
of auxiliary verbs (also including modal verbs)
in indicative mood over the total number of
auxiliary moods in a sentence according to the
UD tagset.
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expressions, over the total amount of depen-
dency relations in a sentence according to the
UD tagset;

» nummod: percentage distribution of numeric

modifiers, i.e. number phrases that serve to
modify the meaning of the noun with a quantity,
over the total amount of dependency relations
in a sentence according to the UD tagset.

Property referring to the use of subordination:

» subord_prop_dist: distribution of subordinate

clauses as defined in the UD scheme.

D. Multilingual Models Results

We report in Figure 7 and 8 the results (in terms
of Spearman correlation scores) for the target task
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Figure 7: Spearman correlation coefficients for the target task on Italian sentences obtained with the
multilingual models using pre-trained and LiT5 models.

obtained with the multilingual models on the Italian
(Figure 7) and English (Figure 8) datasets. Table
5 reports instead the performance differences be-
tween Pre-trained and top-performing multilingual
LiT5 models (trained on Italian/English sentences)
in both scenarios of limited (1/5) and full (5/5) data
availability.

Model LiT5  Diff LiT5  Diff
1/5 Training 5/5 Training
Intermediate = Italian, Target = Italian
mt5-small | 25 epochs 0.49 | 10 epochs 0.37
mt5-base | 10 epochs 0.22 5epochs 0.11

Intermediate = English, Target = Italian

mt5-small | 25 epochs 0.31 5epochs 0.37
mt5-base 5epochs 0.13 | 10 epochs 0.08
Intermediate = English, Target = English
mt5-small 5epochs 0.46 5epochs 0.15
mt5-base 5epochs 0.17 | 10 epochs 0.01
Intermediate = Italian, Target = English
mt5-small | 15 epochs 0.52 | 10 epochs 0.16
mt5-base | 10 epochs 0.25 | 10 epochs 0.02

Table 5: Performance differences between Pre-
trained and top-performing LiT5 models (trained
on ltalian/English sentences) in both scenarios of
limited (1/5) and full (5/5) data availability.
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Figure 8: Spearman correlation coefficients for the target task on English sentences obtained with the
multilingual models using pre-trained and LiT5 models.
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