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Abstract
Open Information Extraction (OIE) is a structured prediction (SP) task in Natural Language Processing (NLP) that
aims to extract structured n-ary tuples - usually subject-relation-object triples - from free text. The word embeddings
in the input text can be enhanced with linguistic features, usually Part-of-Speech (PoS) and Syntactic Dependency
Parse (SynDP) labels. However, past enhancement techniques cannot leverage the power of pretrained language
models (PLMs), which themselves have been hardly used for OIE. To bridge this gap, we are the first to leverage
linguistic features with a Seq2Seq PLM for OIE. We do so by introducing two methods - Weighted Addition and
Linearized Concatenation. Our work can give any neural OIE architecture the key performance boost from both
PLMs and linguistic features in one go. In our settings, this shows wide improvements of up to 24.9%, 27.3% and
14.9% on Precision, Recall and F1 scores respectively over the baseline. Beyond this, we address other important
challenges in the field: to reduce compute overheads with the features, we are the first ones to exploit Semantic
Dependency Parse (SemDP) tags; to address flaws in current datasets, we create a clean synthetic dataset; finally,
we contribute the first known study of OIE behaviour in SP models.
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1. Introduction

The Open Information Extraction (OIE) task
involves extracting structured knowledge from
natural-language text - usually as a set of triples.
For example, for the sentence The cat sat on the
mat. the OIE triple is: (cat;sat;mat). Unlike Closed
Information Extraction (CIE) that relies on a given
ontology, OIE can generalize to multiple domains.

Traditionally, OIE was performed using rule-
based or statistical methods (Yates et al., 2007;
Mausam et al., 2012; Angeli et al., 2015; Chris-
tensen et al., 2011; Saha and Mausam, 2018;
Gashteovski et al., 2017). Presently, neural meth-
ods have been explored (Stanovsky et al., 2018;
Kolluru et al., 2020; Cui et al., 2018). Recently,
the first comprehensive survey on neural OIE was
presented by (Zhou et al., 2022). It suggests that
though neural models do improve on rule-based
approaches, the improvement is not as significant
if they rely on training data bootstrapped from rule-
based systems. This is a notable contrast to other
NLP tasks, such as machine translation, that show
large performance gains by neural models. This
occurs due to the ambiguity in deciding which OIE
outputs are ’correct’ - suggesting the need for gold
training data for neural OIE. Our work addresses
this too.

Current research in OIE focuses on improv-
ing neural models in either of two main ap-
proaches: generative, or discriminative. Gener-
ative (Seq2Seq) models produce the tuples as
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a sequence, conditioned on the input sentence
and optionally on a possible predicate. On the
other hand, discriminative (tagging-based) mod-
els tag each token in the sentence, usually a BIO
scheme for arguments and predicates. However,
they are limited to extracting one tuple for a predi-
cate, though there may be more than one for that
predicate. Moreover, such models cannot extract
implicit facts. A detailed comparison can be found
in the survey (Zhou et al., 2022).

Explicit structural or syntactic information, like
a Part-of-Speech (PoS) tag or Dependency Parse
(DP) head, has been shown to be useful, but they
have not been investigated clearly (Zhan and Zhao,
2020). We show how we can take advantage of
such task-independent structure from within the
sentence to improve on OIE, a structured predic-
tion (SP) task.

SP tasks focus on finding useful information from
text (making them similar in nature), like relation
or event extraction, named entity recognition, se-
mantic role labeling and OIE. Very recent research
- TANL (Paolini et al., 2021) and DeepStruct (Wang
et al., 2022) - shows that training a single gener-
ative model for such tasks achieves SOTA perfor-
mance on many of them. Standardising all such
tasks to one format and training on all of them to-
gether has been shown to boost the model’s ability
to learn to extract task-dependent structure from
the input sentence for a required task. We build
upon these findings too.

Lastly, Pretrained Language Models (PLMs)
have become immensely popular in the NLP com-
munity majorly due to their transfer learning capa-
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bilities. Though fine-tuning PLMs has become the
new paradigm of NLP, few works have explored
this for OIE. In fact, no such attempt has been
done for leveraging Seq2Seq PLMs (like T5 (Raffel
et al., 2020) or BART (Lewis et al., 2020)) in the
generative approach to OIE. We address this in
our work.

This paper’s major contributions can be summa-
rized as follows:

• To demonstrate the usefulness of linguistic
structure in boosting performance for the OIE
task, we propose two distinct novel word em-
bedding enhancement techniques - Weighted
Addition and Linearized Concatenation - that
increase performance by upto 24.9%, 27.3%
and 14.9% on Precision, Recall and F1 scores
over the baseline. We are thus the first to suc-
cessfully integrate features with a PLM (T5)
in OIE, while also being the first to exploit
Seq2Seq PLMs for the generative approach
to OIE. We believe this to be an important di-
rection in the field, as this can give any neural
OIE architecture the power of both PLMs and
linguistic tags in one go.

• We empirically study the effects of using
three important word-level linguistic informa-
tion from the sentence alone: PoS, Syntactic
DP (SynDP) and Semantic DP (SemDP) tags.
We are the first to exploit SemDP tags, which
is also the strongest contender among single
linguistic features. They reduce computing
overheads by using 72% less tags compared
to its SynDP counterpart, while maintaining
the same performance boost. We thus believe
SemDP to be a crucial novel step for incorpo-
rating useful, scalable linguistic features.

• We contribute a synthetic dataset (built from
ClausIE) that boosted performance by 73.7%
and 37.9% on Recall and F1 scores over the
Seq2Seq version of the best-existing dataset
(LSOIE), the latter which we show to be largely
unclean and flawed. We believe researchers
in the field will find this to be an integral re-
source, which includes extracted linguistic
tags and processed LSOIE outputs too.

• We are the first to study how a model trained
on all other SP tasks, TANL, affects OIE perfor-
mance, contributing novel insights along the
wider SP research direction.

We publicly release our code and datasets at
https://github.com/ThanmayJ/llee_oie.

2. Related Work

In line with our core contributions, this section de-
scribes existing work that takes advantage of lin-

guistic structure for OIE tasks or trains a single
model on all such SP tasks.

2.1. Linguistic Features

Past work has looked towards including linguistic
features such as PoS and SynDP for the OIE task.

Older works such as Stanford OpenIE (Angeli
et al., 2015) use handcrafted rules based on
SynDP tags. ClausIE (Del Corro and Gemulla,
2013) uses syntactic information like clause type,
PoS and SynDP roles to extract tuples in a rule-
based framework. Its good performance by exploit-
ing solely such linguistic information makes it very
promising to use such structure in neural OIE too.
We create a synthetic dataset using its outputs, as
described in Section 4.

MinIE (Gashteovski et al., 2017) shifts informa-
tion from ClausIE’s extractions to tuple annotations.
OPIEC is the largest OIE dataset built from MinIE’s
outputs on the Wikipedia database. Though meta-
data rich, its special SpaTe format cannot be di-
rectly used by existing OIE approaches.

With the advent of neural networks, RnnOIE
(Stanovsky et al., 2018), SenseOIE (Roy et al.,
2019) and SpanOIE (Zhan and Zhao, 2020) ex-
plore concatenation of such feature embeddings
along with source word embeddings. SenseOIE
conducts a feature ablation study - as a discrimina-
tive model, concatenating other models’ predicted
label tags for each word as part of the input hugely
boosts the performance. Atop this, simply con-
catenating PoS and SynDP tags further improves
the model. However, embeddings from further re-
lated words (parent, left-child, right-child) on the
syntactic dependency tree have very little effect,
noting that simple concatenation is not the best
method to do so. SpanOIE’s results suggest that
concatenating the SynDP head’s word embedding
does not help the model - perhaps because they
do not make explicit the SynDP role tags them-
selves as SenseOIE does. However, they do note
that outputs improved in some cases and point
out that a better model can be built with a high-
quality training corpus and an accurate SynDP
tagger. These results echo that of SenseOIE that
the SynDP head’s word embedding may not be
as useful as the SynDP role tag itself (though we
note that SenseOIE does not study the effects of
including only the syntactic parent embedding).

The findings from these papers suggest that in-
cluding information that is directly relevant to the
source word could be enough, and a better way
to include so should be explored. We present two
such methods in the following section.

In the direction closer to our work, (Mtumbuka
and Lukasiewicz, 2022) concatenate linguistic tag
embeddings to the input vectors, and then use
GNNs over these inputs to enrich them using other

https://github.com/ThanmayJ/llee_oie
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EAdaptation ENNwtsrc × wtPoS × 

Ewill EMDwtsrc × wtPoS × T5

+

+

Ensubj:pass+ wtDP × 

+ wtDP × Eaux

(Adaptation;will required;everywhere)

(Adaptation;prioritized;now for the most vulnerable people
 with the fewest resources to cope with climate hazards)

Adaptation will be required everywhere, but must be prioritized now for the most
vulnerable people with the fewest resources to cope with climate hazards.

. . . . . .wtsrc × wtPoS × + + wtDP × . . .

Token
Embeddings

PoS Tag
Embeddings

DP Tag
Embeddings

Figure 1: Structure Embedding Addition (Source sentence from the United Nation’s website)

words related through the dependency tree. Their
conclusion echo the results of past work on the
benefits of including linguistic information. How-
ever, this work doesn’t investigate how the choice
of tag embedding size. More importantly, the em-
beddings have been taken from PLMs but they
have not used the full Seq2Seq architecture. We
believe to be the first to incorporate linguistic fea-
tures while using a PLM for the task.

2.2. Multi-task SP models

Work demonstrating the advantages of multi-task
SP is very recent. TANL (Paolini et al., 2021)
treats various SP tasks as a general translation
task, by formatting the output for each task as an
augmented target language using a Seq2Seq PLM,
T5. It is the first such model that generalises on
SP tasks, and does it successfully. However, it
does not address the OIE task. We bridge this gap
by extending TANL’s format for OIE, and fine-tune
both T5 and TANL models on it to study the affect
SP pretraining has on OIE. Details of the format
and the dataset creation is described in Section 4.

DeepStruct (Wang et al., 2022) performs task-
agnostic structural pretraining by formatting various
SP tasks, including OIE, as triples, treating the tu-
ple format as the structure itself. The authors fine-
tune on an auto-regressive language model called
GLM (Du et al., 2022), citing its better performance
than T5 on text summarization, a task similar to
SP. During their structural pretraining, they train
on a subset of the large OPIEC dataset (Gash-
teovski et al., 2019). However, they benchmark on
evaluation frameworks and datasets (like OIE2016
(Stanovsky and Dagan, 2016)) that have shown to
be less accurate and noisy (Kolluru et al., 2020,
Bhardwaj et al., 2019). As explained earlier, the
OPIEC dataset may also not be suitable directly for
this Seq2Seq formulation. Hence, there is a need
to test whether DeepStruct still achieves compa-
rable performance on recent OIE benchmarks like

CaRB.
While successfully modeling SP as a Seq2Seq

task, the above methods rely on information al-
ready apparent from the output. Though the PLM
may have learned some latent linguistic structure,
these models do not explicitly take advantage of
such information present independently in the in-
put sentence itself. We address this through our
methods explained in the next section.

3. Method

SP tasks have outputs that already closely model
their function in the input sentence. For example,
in terms of PoS, main relation words in OIE tuples
are verbs. In Relation Extraction, both arguments
are nouns. Training the model to explicitly exploit
such structure within the input will help generate
outputs conditioned on an apt linguistic role for
that position in the tuple, and also learn linguistic
relations between predicates and arguments for
better regressive output.

To do this, we propose two novel embedding
frameworks to better combine the source word
embedding and its linguistic features’ tag vectors:
by "weighted addition" or "linearized concatena-
tion". These take advantage of the structure al-
ready present in the sentence, without depending
on the task at hand, unlike DeepStruct and TANL.
They are further independent of whether the task is
formulated as generative or discriminative. These
approaches are explained in this section. Both
methods take the embeddings for the input tokens
from a PLM, T5 or TANL. T5 was chosen for the
successful experiments by the TANL work.

We use Stanza (Qi et al., 2020) for obtaining the
PoS and SynDP tags, and SuPar (Zhang, 2023)
for the SemDP tags. These tag embeddings are
learnt during training. To refer to either SynDP or
SemDP (or both) tags, we will simply refer to them
as DP tags. These tags are detailed in Appendix
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D.

3.1. Weighted Addition

The input word embeddings from the PLM are
added to the embeddings of the linguistic tags.
The tag embeddings are learnt during training, with
their dimensions being the same as the word em-
bedding size of the architecture (for additive com-
patibility). These enhanced embeddings are then
finally passed on to the model, which learns to
output the triple extractions (Figure 1).

Formally, let S be the input sentence of length
N words, P be the possible set of PoS tags and
D be the possible set of DP tags. For each word
wi ∈ S, the structurally enhanced word embedding
xi⟨i → 1, 2, ..., N⟩ is as follows:

xi = wtsrc × emb(wi)

+ wtPoS × emb(PoS(wi)

+ wtDP × emb(DP (wi))

where PoS(wi) ∈ P and DP (wi) ∈ D are re-
spectively the the PoS tag and DP tag of wi; emb(·)
is the respective d-dimensional embedding, that
is either learnt during training time, or pre-trained;
wtsrc, wtPoS and wtDP are the fractional weights
given to the source, PoS and DP tag embeddings
respectively.

Note that we take weight values such that,
wtsrc + wtPoS + wtDP = 1 and set all the em-
beddings emb(·) to have the same dimension, in
order to make the addition possible. The DP term
can be further split between SynDP and SemDP
to include both types.

We hypothesize that a weighted addition would
help the source embedding to take explicit ac-
count of the word’s linguistic function across sen-
tences. Instead of storing such information sepa-
rately, adding it to the embedding itself would easily
shift the word in the embedding vector space to
better group around words with similar linguistic
properties, while also retaining semantic similarity
with other words in the OIE task context.

3.2. Linearized Concatenation

The input word embeddings from the PLM are con-
catenated to the embeddings of the linguistic tags.
We then introduce a linear layer that learns to com-
press this elongated raw vector to the input embed-
ding size that the model expects. These enhanced
embeddings are then passed on to the model to
get the tuple predictions (Figure 2).

Formally,

xi = g(emb(wi)

⊕ emb(PoS(wi)))

⊕ emb(DP (wi)))

where g(·) denotes a linear layer that brings the
concatenated size back to the dimensions that the
PLM expects, ie. it is a linear transformation func-
tion from Rdimsrc+dimPoS+dimDP → Rdimsrc . Here,
dimsrc, dimPoS and dimDP denote the dimensions
of the source token, PoS tag and DP tag embed-
dings respectively. The remaining notations hold
the same meaning as in the previous setting.

Differing from previous works that use simple
concatenation, the linear layer helps us take advan-
tage of the PLM while simultaneously fine-tuning
it. We hypothesize that it also helps distribute
the linguistic properties throughout the embedding
vector (rather than only at the end of the vector).
This would directly update the source embedding
itself in its vector space, unlike the simple shift by
weighted addition. This would make the linguistic
information be used less explicitly than direct addi-
tion, but the learning process would make such an
update more permanent for the OIE task.

EAdaptation

ENN

Ewill

EMD

T5

. . .

. . .

Adaptation will be required everywhere, but must be prioritized now for the most
vulnerable people with the fewest resources to cope with climate hazards.

(Adaptation;will required;everywhere)

(Adaptation;prioritized;now for the most vulnerable people
 with the fewest resources to cope with climate hazards)

Token
Embeddings

PoS Tag
Embeddings

Ensubj:pass Eaux . . .DP Tag
Embeddings

+

+

++

+ +

Linear Layer

dimsrc  +  dimPoS  + dimDP   

dimsrc 

Figure 2: Structure Embedding Concatenation
(Source sentence from the United Nation’s web-
site)

3.3. Learning of tag embeddings

For learning the PoS and DP tag embeddings, we
employ a separate embedding layer that is trained
from scratch, as mentioned earlier in this section.
The weight update of this layer is done as part of
the main transformer (T5) network weight update,
and there is no change in the underlying T5 model.

4. Datasets, Processing and
Evaluation

LSOIE (Solawetz and Larson, 2021) is a large OIE
dataset made by "algorithmically re-purposing" the
QA-SRL BANK 2.0, a human-annotated question-
answering dataset. Encouraging explicit extrac-
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LSOIE Sentence LSOIE Labels Generated Labels
Akerson will also relinquish his
chairman role, to be replaced by
current director Theodore Solso.

(Akerson;will relinquish;his chair-
man role)

(Akerson;will relinquish;his
chairman role) (current di-
rector Theodore Solso;will
replaced;Akerson)

Road accidents killed 8,600 on
the nation’s roads last year.

(on the nation’s roads last
year;killed;8,600)

(Road accidents;killed;8,600 on
the nation’s roads last year)

He said the world and the Para-
lympic movement is aware of the
situation in the Ukraine, but the
IPC needs to stay true to its mis-
sion.

(the IPC;needs;to stay true to its
mission) (the IPC;stay;true to its
mission)

(the IPC;should stay;true to its
mission)

Table 1: Examples where the original LSOIE (test) data is not clean and how our model (trained on the
LSOIE-extracted dataset) gives better extractions despite being trained on it

tions, it labels each word as an argument/predicate
within the BIO scheme, for each predicate. There
may be multiple extractions for the same predicate.
The order of words in the tuple would then be the
same as in the original sentence. They formulate
OIE as a discriminative task and train some mod-
els that are benchmarked on their own evaluation
scorer. It also contains a domain split between the
Wiki and Science domains.

The authors of LSOIE show how models trained
on their dataset perform better than when trained
on other datasets. However, it is still quite noisy,
which makes it harder to get good scores when
benchmarked, especially recall. A subjective anal-
ysis of LSOIE’s test set (Refer Section 4.1) shows
that our model’s output when trained on it is of-
ten better than LSOIE’s labels themselves. Be-
sides, we see that a simple cleaning wasn’t enough.
We bridge this gap for the need for higher-quality
datasets in OIE by finding an almost instant remedy
by creating a synthetic dataset by using ClausIE’s
extractions on the LSOIE inputs. The large im-
provement obtained through just changing the
dataset shows that the issue with low scores is
indeed due to LSOIE’s dataset. The noise could
have come because of either the conversion pro-
cess or the primary QA dataset used by LSOIE.
However, we acknowledge that LSOIE is more
diverse its preceding datasets, and has a valu-
able domain split. Thus, we use its input sen-
tences themselves to create the ClausIE-extracted
dataset.

4.1. Subjective Analysis

Table 1 shows three sentences from the LSOIE test
set. The first example shows that LSOIE’s annota-
tions don’t teach the model to extract all candidate
tuples, which heavily affects recall scores. How-
ever, our model has still learned to output both
required tuples in this case. The second example
shows that LSOIE has wrong extractions where

the main subject itself was not extracted, affect-
ing both precision and recall. Again, our model
has still learnt to give a complete extraction. The
third example shows the redundancy of multiple
extractions in the dataset, and reinforces the is-
sue of not extracting all candidate tuples. Such
examples are common across the dataset, heavily
affecting both precison and recall. In this case,
our model has learnt to not be redundant, but has
missed extracting information from the first part
of the sentence, as such noisy training examples
are frequent in LSOIE. This clearly shows that re-
gardless of whether the OIE model is generative
or discriminative, LSOIE’s outputs will become a
bottleneck to performance, as we show later.

4.2. Converting LSOIE to a Seq2Seq
dataset

We convert each example’s OIE output from the
BIO form to the triple form before training. For
creating the sequential triples, we use the tags as-
signed to them in the dataset: A0-B, A0-I... forms
the subject, P-B, P-I... forms the predicate and A1-
B, A1-I..., forms the object. Further subjects (A2,
A3...) are concatenated with the A1 subject itself.
Each extraction is surrounded with the standard
( ) tokens, with the ; token separating the triples.
If a sentence has multiple extractions, they are
sequentially concatenated to the output. Hence,
we finally have an input sequence sentence and
an output sequence of triples demarcated with ( )
tokens, which can now be fed to any Seq2Seq ar-
chitecture. We use the Wiki split as we believe that
this is better suited for OIE, since the examples are
not restricted to any domain. Henceforth, we shall
refer to this as the LSOIE-extracted dataset.

4.3. Synthetic Dataset using ClausIE

ClausIE has largely been a successful clause/rule-
based OIE system that extracts facts comprehen-
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sively. We find that for the same input sentences,
its outputs are almost always better than LSOIE’s
labels. As the system is transparent and extracts
all expected facts (except implicit facts), we create
a seperate synthetic dataset from ClausIE outputs
to alleviate LSOIE’s lack of quality data.

4.4. Extending TANL’s format for OIE

As mentioned earlier, the TANL model is trained for
other SP tasks but not for OIE. To bridge this gap,
we create a format in line with TANL’s aims. The
general TANL format allows our format to also han-
dle multiple extractions per verb-predicate. More-
over, we design a strategy to explicitly handle multi-
predicate sentences to help the model better out-
put words conditioned on an "expected" predicate
before hand. All the models that were fine-tuned
on TANL use this dataset formatted on the LSOIE-
extracted dataset. Henceforth, we shall refer to
this as the TANL-format.

4.5. CaRB Evaluation

CaRB (Bhardwaj et al., 2019) is an evaluation
benchmark for OIE. The dataset was created by
crowdsourcing manual annotations for OIE2016’s
(Stanovsky and Dagan, 2016) sentences. It con-
tributes a comprehensive evaluation framework
that fairly takes into account the output styles of
diverse OIE systems. CaRB matches relation with
relation, and arguments with arguments, which is
a much better evaluation criteria than some older
benchmarks, such as OIE2016 itself, which serial-
izes the tuples into a sentence and just computes
lexical matches. Though CaRB can give AUC and
PR curves when confidence scores are provided
for each extraction, we do not do so as we use
a generative architecture which doesn’t give such
direct tag scores.

We note that the LSOIE dataset allows n-ary
tuples, but OIE benchmarks expect multiple triples
to be extracted instead. This would cause models
directly trained on LSOIE to score lower on CaRB
than other models trained on triple-only datasets.
Due to this, we follow the pre-processing stage
outlined in Section 4.1.

5. Experiments

We create a baseline for each model that trains
without any linguistic feature. Our intention isn’t to
propose a full new architecture to beat SOTA, but
rather to give a framework that can help any model,
including a SOTA one. Thus, we experiment with
three types of datasets (LSOIE-extracted, ClausIE-
extracted and TANL-format), each of which forms

their own baseline. We demonstrate that our meth-
ods help improve performance on each such base-
line.

When incorporated, the feature tag embeddings
are learned during training. All our models are
trained on the LSOIE-wiki split of the dataset, to
keep the model independent of domain. We use
the pre-trained t5-base version for the T5 model.

For weighted addition, we assign a fractional
weight to the input word embeddings and linguistic
feature(s). For concatenation, we fix a embedding
size for the linguistic feature(s). We experiment
with various such embedding fractional weights
and sizes.

As TANL and DeepStruct show state-of-the-art
results for structured prediction tasks on Seq2Seq
training, we chose the generative approach for
OIE. Further, we use TANL’s success with the pre-
trained T5 model. We train on processed LSOIE
datasets and benchmark our models on CaRB.

5.1. Results

Table 3 and Table 5 present chosen results for the
Weighted Addition (WA) and Linearized Concate-
nation (LC) settings respectively on the LSOIE-
extracted dataset. Table 2 and Table 4 present cho-
sen results for the WA and LC settings respectively
on the ClausIE-extracted dataset. The dataset
baseline being compared to for that model forms
the first line of each table (plain implies without
linguistic features).

A wide range of fractional weights and concate-
nation sizes were tested for the LSOIE-extracted
and ClausIE-extracted datasets using the PoS fea-
ture, which are presented in Figure 3 and 4 respec-
tively. The best results from these models were
used to inform our choices of our further experi-
ments. For example, from our figures we see that
the best scores are almost always obtained with
0.4 and 0.1 for the fractional weight and 10 and
30 for the concatenation size of the linguistic in-
formation respectively. These values were used
to inform our choices of further experiments using
SemDP and SynDP and we report these values
in the tables. We could have done a similar ex-
haustive analysis for all possible combinations in
SemDP and SynDP but that is extremely inefficient
(and also has environmental concerns of unneces-
sary carbon emissions each time) compared to an
evidence-based decision of choosing the values.
Also, since we mention that training on the ClausIE-
extracted dataset (Table 1,3) gave superior scores
than LSOIE (Table 2,4) in all cases, we limited our
experiments for LSOIE.
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Figure 3: Scores for different wtpos for Weighted Addition (left) and different PoS embedding dimensions
for LC (right), trained on the ClausIE-extracted dataset.
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Figure 4: Scores for different wtpos for Weighted Addition (left) and different PoS embedding dimensions
for LC (right), trained on the LSOIE-extracted dataset.

5.2. Analysis

Both our proposed embedding enhancements, WA
and LC, provide significant improvements over the
plain-embedding model. The best improvement in
Precision P (+12.6/+24.9%) happens with adding
just 10% of the PoS tag embeddings (Table 3)
for the LSOIE-extracted dataset. The best im-
provement in Recall R (+9.4/+27.3%) happens
with just concatenating a 30-dimension-size tag
of SemDP embedding for the ClausIE-extracted
dataset (Table 4). Overall, the best F1 score im-
provement (+6.3/+14.9%) happens due to just a
30-dimension-size tag of PoS embedding for the
ClausIE-extracted dataset (Table 2). This indeed
points to the importance of enhancing word em-
beddings with their linguistic information.

Choice of dataset: We observe a general trend
that if a jump in one parameter is high, the other
parameter’s increase isn’t as significant. We elabo-
rate on this further. Recall in the original dataset is
very limited. Both our synthetic datasets (ClausIE-
extracted and TANL-format) give an immediate so-
lution with the large jump in recall scores. Thus, we
attribute the low recall scores to the unclean LSOIE

wtsrc wtPoS wtSynDP wtSemDP P R F1
1 - - - 54.6 34.4 42.2

0.6 0.4 - - 55.0 39.8 46.2
0.6 - - 0.4 54.4 40.1 46.2
0.6 0.15 0.25 - 54.7 38.3 45.0
0.9 0.1 - - 54.3 43.4 48.2
0.9 - - 0.1 54.3 41.6 47.1

Table 2: P, R and F1 scores for various WA settings.
Trained on the ClausIE-extracted dataset.

wtsrc wtPoS wtSynDP wtSemDP P R F1
1 - - - 50.5 26.1 34.4

0.6 0.4 - - 60.2 29 39.1
0.6 - 0.4 60.5 29.2 39.4
0.6 0.15 0.25 - 61.1 28.9 39.3
0.9 0.1 - - 63.1 28.2 39.0

Table 3: P, R and F1 scores for various WA settings.
Trained on the LSOIE-extracted dataset.

extractions (as pointed out earlier). Moroever, both
the plain P and R scores of the ClausIE dataset are
quite higher than that of LSOIE. However, P sees
little to no improvement for the ClausIE dataset.

This interesting contrast may happen due to the
way the model learnt to extract the tuples, as elab-
orated below. Because LSOIE is unclean, our hy-
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dimsrc dimPoS dimSynDP dimSemDP P R F1
768 - - - 54.6 34.4 42.2
768 30 - - 52.6 43.2 47.5
768 - - 30 53.0 43.8 47.9
768 30 30 - 53.5 43.7 48.1
768 10 - - 53.4 43.6 48.0
768 - - 10 53.3 42.1 47.1
768 40 - - 52.0 45.4 48.5

Table 4: P, R and F1 scores for various LC settings.
Trained on the ClausIE-extracted dataset.

dimsrc dimPoS dimSynDP dimSemDP P R F1
768 - - - 50.5 26.1 34.4
768 30 - - 59.5 27.7 37.8
768 - 30 - 58.2 26.5 36.4
768 10 - - 56.7 25.1 34.8

Table 5: P, R and F1 scores for various LC. Trained
on the LSOIE-extracted dataset.

pothesis of using linguistic features hugely benefits
P in the first place. However, R observes only
a slight help, which is because after the first or
second tuple, multi-tuple extractions in the dataset
are very noisy and the linguistic features would be
confused with them.

On the other hand, the ClausIE extractions are
already due to transparent, syntax-based rules.
Hence, our linguistic features cannot provide more
improvement on it. On the other hand, they help
jump up recall because the model has clean multi-
tuple extractions to learn to associate the linguistic
features with. This shows that the features help
span across tuples. This key observation also
forms an exciting argument as to why neural OIE
systems can do better than clean rule-based sys-
tems (when helped by them in the first place). Even
though training on a ClausIE dataset may not cover
implicit facts or such aspects, it seems that feeding
the linguistic structure could have helped in doing
so.

Overall, because of either P or R improvement
limitations in a dataset, the F1 score doesn’t seem
so large. However, that at least one parameter
does indeed improve hugely, given the contrasting
natures of the datasets, establishes the usefulness
of both our methods on any type of dataset.

How does the TANL-format help the LSOIE
dataset? The TANL-format on LSOIE show bitter-
sweet results: on just the plain model, R comes up
by +10 over LSOIE, but P goes down by exactly
that much - though F1 does improve. To test the
TANL model, we try only one linguistic feature, PoS.
Like the ClausIE-extracted dataset, this dataset im-
proves much better on recall, but unlike ClausIE,
also shows a modest improvement on P . TANL
highly relies on a fully correct sequence genera-
tion. However, OIE multi-tuple extraction for long
sentences can get very long to correctly generate
in one shot. Thus, we break it down by tagging
each verb (for a possible predicate proxy) to gen-
erate all extractions, with multi-tuple facts possible

for each predicate. This forms the primary reason
for the low P - because all predicates are tagged,
we get many extractions for a sentence, many of
which may be spurious. Besides, due to the tags
appearing as full words instead of symbols, this fur-
ther distances facts by elongating the tuple, which
makes room for more mistakes. However, it’s excit-
ing to note that the same strategy contributes to the
large jump in recall - because now each predicate
is being focused on every input, a larger extent of
the expected facts can be covered.

Finally, fine-tuning models trained for multiple
SP tasks (like TANL) seem to help in OIE. How-
ever, OIE still seems harder than other SP tasks
- the tagging strategy seems to be the primary in-
fluence over scores, rather than the pre-training
itself. Future work can better help quantify TANL
(or DeepStruct) on OIE performance.

TANL Format P R F1
Plain wtsrc = 1, 40.5 36.1 38.2

PoS wtsrc = 0.6, wtPoS = 0.4 42.4 39.6 40.9
PoS dimsrc = 768, dimPoS = 30 44.7 43.3 44.0

Table 6: P, R and F1 scores for fine-tuning on TANL.
Trained on the LSOIE-extracted dataset using the
TANL-format.

How do WA and LC perform with respect to
each other? We note that both have advantages
in differing settings. For example, WA performs
beter for the LSOIE-extracted dataset, but LC per-
forms better for its TANL-format. For the ClausIE-
extracted dataset, there is little difference in per-
formance boost. Hence, although both methods
seem mathematically similar, we experimentally
validate the need for both types.

Which linguistic features better help the
model? There seems to be no clear winner among
the three features. Each perform better than the
other in different settings, showing the utility of
all tags. Interestingly, combinations of PoS and
SynDP didn’t seem to improve the model. Hence,
we also do not experiment with including the head
word/tag in SynDP.

How does the new SemDP feature fare? We
bring to attention that SemDP shows as much im-
provement as other features, cementing it’s use-
fulness. In fact, this improvement came with just
using the first tag of each word, meaning most
such tags were just blank ’_’ tokens. Multiple tags
(of the other heads that that word depends on) may
strengthen performance, which can be investigated
in the future. Because SemDP uses the smallest
tagset - with just about three tags being most fre-
quently used - to gain equivalent performance, it
could mean lesser training time and lower energy
cost. Thus, we consider SemDP to be the best
amongst the features.
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6. Conclusion

We propose two novel frameworks for enhancing
word embeddings with their linguistic features (PoS,
SynDP and SemDP) for the OIE task - demon-
strated for the generative approach. Both tech-
niques, Weighted Addition and Linearized Con-
catenation, exhibit strong improvements over plain
baselines, and each shows importance in different
settings. We also show how SemDP can be used
successfully as a linguistic feature, which has not
been explored before. We contribute a high quality
synthetic dataset made using the ClausIE system.
We also extend the TANL format for OIE. We also
contribute the first study of how SP pretraining af-
fects OIE performance.

7. Limitations and Future Directions

We understand that it is necessary to check if other
OIE models benefit from our methods. However,
this would mean configuring each model with their
host of dependency requirements, checking how
each system produces output and again directing
that to the format benchmarks expect. Due to
space constraints, we believe that it would be better
to keep this investigation as extended work as we
work on almost exhaustively covering all aspects of
our model. A future more in-length comparison can
then allow for detailed and patient investigations
that would be overwhelming to present here.

The usefulness of including linguistic features
highly depends on how accurate such taggers are.
We point out that a better study of available lin-
guistic annotating tools and how they affect per-
formance needs to be carried out in the context
of OIE. As noted earlier, OPIEC makes for a valu-
able resource but its extractions come from MinIE,
whose tuple-annotated format largely differs from
current triple formats.

The predicate-tagging strategy developed hurts
precision but increases recall. A better way that
either limits the predicate tags or proposes a novel
strategy for generative OIE needs to be explored
to help multi-tuple extractions.

DeepStruct is an alternative model to TANL, but
doesn’t benchmark on better standards like CaRB.
Due to their final code not presented for OIE, we
weren’t able to explore this model. Its usefulness
for OIE needs to be evaluated to better contribute
to the study of the SP-OIE relationship.

Our SemDP and SynDP information only consid-
ers the linguistic tag. To further test previous works’
conclusions, it would be useful to experiment with
combining the embeddings of the head word or tag
too.

As our proposed embedding approaches can
be used regardless of whether the OIE system is

tagging-based or generative, it would be important
to explore various tagging-based models with our
proposed improvements.

As OIE is a structured prediction task, it would
be insightful to explore our embedding approach
for other such tasks, and even more so if the model
is being trained on all structured prediction tasks,
like TANL. As this approach is not dependent on
the task itself, future work can benchmark struc-
tural utility for other NLP tasks, like translation and
question answering.
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A. Ablations

A.1. Dataset size and domain

We experiment our PoS enhancement approach by
scaling it to a much larger dataset, that combines
both the Wiki and Science domains. Though more
data is preferred for neural networks, we observe
that training on such a specific domain actually
hurts the plain model (Table 7) However, with both
our embedding frameworks, we are able to turn
this around and actually help the model perform
at least on par with the wiki-only dataset. Fur-
ther performance is possibly hindered due to the
dataset quality and imbalance in the domain ratio
of the original LSOIE dataset: Wiki has around
24k total sentences and Sci has around 48k to-
tal. In our Seq2Seq processed versions of the
LSOIE dataset, we had around 22k and 45k total
sentences respectively for Wiki and Sci.

Dataset Model P R F1

LSOIE-(wiki)
Plain wtsrc = 1 50.5 26.1 34.4
wtsrc = 0.6, wtPoS = 0.4 60.2 29 39.1
dimsrc = 768, dimPoS=30 59.5 27.7 37.8

LSOIE-(wiki+sci)
Plain wtsrc = 1 48.7 26.0 33.9
wtsrc = 0.6, wtPoS = 0.4 60.6 28.8 39.1
dimsrc = 768, dimPoS=30 59.7 28.9 38.9

Table 7: CaRB scores comparing wiki+sci and wiki
splits of our Seq2Seq processed version of LSOIE.

A.2. Frozen source embeddings

We have allowed our model to update its pre-
trained source embeddings, and now compare
freezing the input source embeddings from the
T5 model. This allows only the feature tags to be
trained with respect to the original source, while
preserving the pre-trained meaning in the source
embedding. As can be seen in Table 8, freez-
ing doesn’t help the model, except for marginally
improved precision. This demonstrates the impor-
tance of actually enhancing the source word em-
bedding with respect to its structural information.

Model P R F1
wtsrc = 0.6, wtPoS = 0.4 60.2 29 39.1
wtsrc = 0.6, wtPoS = 0.4 (F) 60.6 28.1 38.4
dimsrc = 768, dimPoS = 30 59.5 27.7 37.8
dimsrc = 768, dimPoS = 30 (F) 59.9 27.3 37.5

Table 8: CaRB scores (trained on the LSOIE-
extracted dataset) for freezing pre-trained word
embeddings (denoted by F ) compared to allowing
the model to fine-tune them along with PoS.

B. Task-specific prefix

For fine-tuning the pre-trained T5 model, we fol-
low the “text-to-text framework” used by the au-
thors of T5 to fine-tune their T5 models. For each
task (translation, question answering etc.), they
add a “task-specific prefix” (text) to the original
input text before feeding it to the T5 model. For
example, to translate from English to French, the
model would be given the sequence “translate
English to French: ” followed by the actual
sentence. As our task focuses on OIE, we use
the prefix “info_extract: ” for each input se-
quence. Naturally, we do not want the model to
associate linguistic features with the text in the
task-specific prefix. Keeping this in mind, we kept
the <pad> tag for the tokens in the prefix and used
the linguistic features of the actual sentence.

C. Experimental Details

We train all the models with the Adam (Kingma
and Ba, 2014) optimizer with a learning rate of 1e-
4. We train all the models for 15 epochs and the
best models are chosen based on the validation
set results. The hyperparameters were determined
over a set of preliminary experiments, and were
kept constant throughout the experiments. These
are summarized in Table 9. We use a batch size of
32, and the training time per epoch was around 5 -
7 minutes.

C.1. Carbon Emissions from
Experiments

Using Electricity Maps1 , an estimate for the carbon
efficiency was obtained. Our zone is Western India,
of which we chose to use the average of the last 12
month’s consumption factor, 0.713 kgCO2eq/kWh.

Around 50 hours of experiments were conducted
on a single Titan RTX (TDP of 280W). Total emis-
sions are estimated to be 2.99 kgCO2eq.

Estimations were conducted using the Machine-
Learning Impact calculator2 (Lacoste et al., 2019).

Hyperparameter Value
Learning Rate 1e-4
Batch Size 32
Epochs trained 15
Max. Token Length 64

Table 9: Hyperparameters

1https://app.electricitymaps.com
2https://mlco2.github.io/impact#

compute

https://app.electricitymaps.com
https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute


10377

Token Part-of-Speech
(PoS)

Syntactic Dependency Parse
(SynDP)

Semantic Dependency
Parse (SemDP)

info_extract <pad> <pad> <pad>
: <pad> <pad> <pad>
The DT (determiner) study: det (determiner) _
study NN (common

noun)
published: nsubj:pass (passive
nominal subject)

The: BV | published: ARG2 |
Change: ARG1

was VBD (past tense
verb)

published: aux:pass (passive auxil-
iary)

_

published VBN (past partici-
ple verb)

0: root 0: root | in: ARG1 | yesterday:
loc

in IN (preposition) journal: case (case marking) _
journal JJ (adjective) published: obl (oblique nominal) _
Nature NNP (singular

proper noun)
Change: compound _

Climate NNP Change: compound _
Change NNP journal: appos (appositional modi-

fier)
0: root | in: ARG2 | Climate:
compound | yesterday: loc

yesterday NN published: obl:tmod (temporal mod-
ifier)

_

. . (sentence termi-
nator)

published: punct (punctuation) _

</s> (EOS to-
ken)

</s> </s> </s>

Table 10: Example of linguistic tags for the sentence "The study was published in journal Nature Climate
Change yesterday." (Token indices were replaced by the actual token in the SynDP and SemDP tags)

D. Linguistic features

D.1. Part of Speech

Part of Speech (PoS) categorizes words that have
similar syntactic and grammatical functions in a
sentence. Familiar examples of these word classes
in English include nouns, verbs and adjectives. We
use the Stanza PoS tagger, which uses the UPenn
TreeBank PoS Tagset. The complete list of tags
and their descriptions can easily be seen by run-
ning the code using NLTK (Bird, 2006):

impor t n l t k
n l t k . download ( ’ tagsets ’ )
n l t k . help . upenn_tagset ( )

More about PoS tagging can be found here:

• https://en.wikipedia.org/wiki/
Part_of_speech

• https://en.wikipedia.org/wiki/
Part-of-speech_tagging

• https://www.nltk.org/book/ch05.
html

D.2. Syntactic Dependency Parsing

SynDP tags describe the syntactic relationships
amongst words in a sentence, such as which words

are subjects or objects of which clause. A token
can be a "dependent" of only one "head" token.
The relations are thus seen as directed edges -
for example, the PoS for "The" in the table is "De-
terminer", while the SynDP tag specifies that it
is the determiner for the word "study". A root to-
ken is identified that helps visualize the words as
a rooted tree. We use Stanza’s SynDP tagger,
which uses the framework set by Universal Depen-
dencies (UD). The complete tagset and their de-
scriptions can be found under the alphabetical list-
ing here: https://universaldependencies.
org/u/dep/index.html

Details about SynDP can be found here:

• https://web.stanford.edu/
~jurafsky/slp3/old_oct19/15.pdf

• https://courses.grainger.
illinois.edu/cs447/fa2019/Slides/
Lecture19.pdf

• https://stanfordnlp.github.
io/stanza/depparse.html#
accessing-syntactic-dependency-information

D.3. Semantic Dependency Parsing

SemDP focuses on identifying meaningful relations
between words. Unlike SynDP, not all words are
tagged, because many words only contribute to the

https://en.wikipedia.org/wiki/Part_of_speech
https://en.wikipedia.org/wiki/Part_of_speech
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://universaldependencies.org/u/dep/index.html
https://universaldependencies.org/u/dep/index.html
https://web.stanford.edu/~jurafsky/slp3/old_oct19/15.pdf
https://web.stanford.edu/~jurafsky/slp3/old_oct19/15.pdf
https://courses.grainger.illinois.edu/cs447/fa2019/Slides/Lecture19.pdf
https://courses.grainger.illinois.edu/cs447/fa2019/Slides/Lecture19.pdf
https://courses.grainger.illinois.edu/cs447/fa2019/Slides/Lecture19.pdf
https://stanfordnlp.github.io/stanza/depparse.html#accessing-syntactic-dependency-information
https://stanfordnlp.github.io/stanza/depparse.html#accessing-syntactic-dependency-information
https://stanfordnlp.github.io/stanza/depparse.html#accessing-syntactic-dependency-information
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LSOIE Sentence LSOIE Labels Generated Labels
Akerson will also relinquish his
chairman role, to be replaced by
current director Theodore Solso.

(Akerson;will relinquish;his chair-
man role)

(Akerson;will relinquish;his
chairman role) (current di-
rector Theodore Solso;will
replaced;Akerson)

Road accidents killed 8,600 on
the nation’s roads last year.

(on the nation’s roads last
year;killed;8,600)

(Road accidents;killed;8,600 on
the nation’s roads last year)

He said the world and the Para-
lympic movement is aware of the
situation in the Ukraine, but the
IPC needs to stay true to its mis-
sion.

(the IPC;needs;to stay true to its
mission) (the IPC;stay;true to its
mission)

(the IPC;should stay;true to its
mission)

Table 11: Examples where the original LSOIE (test) data is not clean and how our model (trained on the
LSOIE-extracted dataset) gives better extractions despite being trained on it

grammatical structure but aren’t important to the
meaning of the sentence. In fact, most tokens end
up not being tagged, but the ones that are tagged
are allowed to have multiple heads (unlike SynDP),
including those that don’t have a tag. SemDP has
a much smaller tagset need than SynDP. Most tags
are usually ARG1 and ARG2 (similar to subj/obj),
meant to show the importance of the connection of
those words directly - without verbose syntactic for-
mality. For example, in the table, "study" is semanti-
cally connected to both "published" (as ARG2) and
to the journal’s name (here, the final compounded
token "Change" as ARG1). However, in SynDP,
"study" and "journal" can only meet at the common
head "published", which indirectly shows the link
between the two,

We use SuPar for SemDP, which in turn uses
the DM tagset. We believe that SemDP hasn’t
received as much attention as SynDP has. In fact,
although there is research literature on improving
SemDP parsers, there are far fewer resources
attempting to explain its tagsets to a layman.
However, we endeavour to at least make a list of
the DM tagset available to the reader, but couldn’t
find official explanations for them. However, their
use can be easily understood in context when
parsing various example sentences. The DM
tagset is as follows: ARG1, ARG2, compound,
BV, root, poss, loc, -and-c, ARG3,
times, mwe, appos, conj, neg, subord,
-or-c, -but-c, _

SuPar follows the parser developed by (Dozat
and Manning, 2018). A good description of the
three common SDP tagging frameworks can be
found in Section 3 of the Proceedings of the
Shared Task on Cross-Framework MRP at the
2019 CONLL (Oepen et al., 2019)

D.4. Additional tags for T5

In addition to the linguistic tags mentioned earlier,
we also three tags that go hand in hand with the

special subword tokens of T5. They are:

• <pad>: Used when the token at hand is a
<pad> token or is the task-specific prefix as
mentioned earlier.

• <unk>: Used when the token at hand is a
<unk> token.

• </s>: Used when the token at hand is an
end-of sentence (</s>) token.

Unlike other models, T5 does not have a special
token to mark the beginning of sentence. The
decoder is made to be aware of the semantics of
the input sentence with the help of the task prefix
itself.

E. ClausIE-extracted Dataset Creation

For each source sentence in the LSOIE-extracted
dataset, we obtain the OIE triples from the ClausIE
extractor3. As a pre-processing step, we neglect
the triples which are redundant. For example, for
the sentence "She replaces Daniel Akerson , who
was appointed by the government as both chief ex-
ecutive and chairman in 2009 during the company
’s bankruptcy" ClausIE’s extractor gives 4 triples:

• ’(She; replaces; Daniel Akerson)’

• ’(the company; has; bankruptcy)’

• ’(Daniel Akerson; was appointed; by the gov-
ernment as both chief executive and chairman
in 2009)’

• ’(Daniel Akerson; was appointed; by the gov-
ernment as both chief executive and chairman
in 2009 during the company ’s bankruptcy)’

3https://resources.mpi-inf.mpg.de/d5/
clausie/

https://resources.mpi-inf.mpg.de/d5/clausie/
https://resources.mpi-inf.mpg.de/d5/clausie/
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Clearly, the information present in the third triple
is already contained in the fourth triple. For such
cases, we only keep the triple which contains more
information and remove the others.

Additionally, a NullPointerException is
raised by ClausIE’s ClauseDetector for certain sen-
tences, and its triples couldn’t be extracted. We
remove such sentences since their count was quite
low compared to the entire dataset ( 2%). Table 12
summarizes the dataset statistics of the LSOIE and
ClausIE extractions. Table 14 subjectively shows
how the ClausIE-extracted triples are better than
the LSOIE-extracted ones.

Dataset # train sent. # valid sent.
LSOIE-wiki (Original) 19,625 2,402
LSOIE-extracted (Seq2Seq) 18,100 2,086
ClausIE-extracted (Seq2Seq) 17,630 2,045

Table 12: Number of training and validation sen-
tences in our Seq2Seq processed versions com-
pared with the original LSOIE-wiki dataset that they
were created from.

Furthermore, the PoS, SynDP and SemDP tags
were extracted for each source sentence and
added as part of the dataset.

F. Extending TANL’s format for OIE

TANL was designed for various structure prediction
tasks, but was not designed for OIE. We extended
the TANL format for OIE. The input format was:
info_extract: The cat [sat] on the mat.

The verb of each sentence in the input is tagged,
to tell the model explicitly about the main verb of
the sentence. If there are multiple verbs in the sen-
tence, each is tagged separately, and the sentence
is passed as input tagging a different verb each
time to generate as many tuples as possible.

The output generated by the TANL is in the given
format: [[The cat | subject 1] [sat | predicate 1] [on
the mat | object 1] | tuple 1]

The output format is modelled after the other
formats that TANL was originally trained on. The
model will generate multiple tuples if possible, how-
ever, it is rare as the model is trained to generate
the tuples associated with the tag verb, and usually
one tag verb only results in one extraction.

Input Sentence LSOIE Label for TANL
The new elections are
[scheduled] to take
place on February 2 of
next year.

[[The new elections|
subject 1] [scheduled|
predicate 1] [to take
place on February 2|
object 1]| tuple1][[The
new elections| subject
2] [scheduled| predi-
cate 2] [to take place
February 2 of next year|
object 2]| tuple2]

The new elections are
scheduled to [take]
place on February 2 of
next year.

[[The new elections|
subject 1] [will take|
predicate 1] [place on
February 2 of next year|
object 1]| tuple1]

Table 13: TANL’s input sentence format. The sen-
tence is: "The new elections are scheduled to take
place on February 2 of next year." Each verb is
tagged separately with square brackets and the
sentence is passed as input, tagging a different
verb each time. The outputs are correspondingly
generated and merged.

LSOIE Sen-
tence

LSOIE Labels ClausIE Labels

Road accidents
killed 8,600 on
the nation ’s
roads last year
.

(on the nation
’s roads last
year;killed;8,600)

(the nation;
has; roads)
(Road acci-
dents; killed;
8,600 last year)
(Road acci-
dents; killed;
8,600 on the
nation ’s roads)

Approximately
45,000 service
members are
currently as-
signed to the
military base
, located in
central Texas

(Approximately
45,000 ser-
vice mem-
bers;assigned;in
central Texas)

(the military
base; be
located; in
central Texas)
(Approximately
45,000 service
members; are
assigned; to
the military
base located in
central Texas
currently)

Table 14: Examples where ClausIE-generated la-
bels are better than LSOIE labels
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