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Abstract
In this paper, we present an evaluation of two different approaches to the free-form Question Answering (QA) task.
The main difference between the two approaches is that one is based on latent representations of knowledge,
and the other uses explicit knowledge representation. For the evaluation, we developed DynaKnowledge, a new
benchmark composed of questions concerning Wikipedia low-frequency entities. We wanted to ensure, on the
one hand, that the questions are answerable and, on the other, that the models can provide information about
very specific facts. The evaluation that we conducted highlights that the proposed benchmark is particularly
challenging. The best model answers correctly only on 50% of the questions. Analysing the results, we also found
that ChatGPT shows low reliance on low-frequency entity questions, manifesting a popularity bias. On the other
hand, a simpler model based on explicit knowledge is less affected by this bias. With this paper, we want to pro-
vide a living benchmark for open-form QA to test knowledge and latent representation models on a dynamic benchmark.

Keywords: Question Answering, Knowledge Representation, LLMs

1. Introduction

The introduction of the transformer architecture
(Vaswani et al., 2017) revolutionised Natural
Language Processing (NLP). It brought a new
paradigm in the field with the development of Large
Language Models (LLMs), such as BERT (Devlin
et al., 2019) and GPT (Brown et al., 2020), pre-
trained on plain text and specialized on defined
tasks. This new paradigm introduced a new way
to perform prediction tasks in machine learning, in
which instead of modelling directly the probability
of an output label y given an input x, it provides for
the modification of the input x using a template and
prompting the LLM to fill it. The desired output y
can be then extracted or inferred from the LLM’s
response (Liu et al., 2023). A seminal work in this
area has been proposed by Raffel et al. (2020),
introducing a unified framework that converts text-
based language problems into a text-to-text format.

The task of Question Answering (QA) has also
been influenced by this new paradigm. Petroni et al.
(2019), starting from the assumption that LLMs
can learn relational knowledge in the same way
they learn linguistic knowledge, proposed an ap-
proach to extract this knowledge using fill-in-the-
blank cloze statements. This line of research paved
the way for the development of models that use
the latent representations of LLMs as Knowledge
Bases (KBs) (Petroni et al., 2019) and use latent
representations and KBs in conjunction to approach
knowledge-intensive tasks (Lewis et al., 2020; Guu
et al., 2020). However, the performance of such

models on open-domain QA is still quite low (Siri-
wardhana et al., 2023).

A related and more general line of research in
this context culminated with the development of
conversational agents such as ChatGPT (OpenAI,
2022). These models can interact with humans and
provide answers and solutions to different tasks
prompted by the users. If, from one side, the popu-
larity of this kind of models is increasing constantly,
the research community has raised two main con-
cerns to them. The first one is related to the LLMs’
tendency to hallucinate (Ji et al., 2023) with the con-
sequent generation of biased or harmful content
(Bender et al., 2021). The second concern regards
the evaluation of ChatGPT’s performance due to
the closed nature of this model and its continuous
updates via Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) (see Sec-
tion 3.1.1). If the first bias has social implications,
the second may compromise a fair evaluation of the
model. This is because it is not possible to assess
if ChatGPT has been contaminated, seeing during
one of its training phases evaluation datasets. This
problem has been demonstrated in other recent
LLMs (Carlini et al., 2021; Dodge et al., 2021).

To deepen these concerns, we propose a new
evaluation based on specialist knowledge. We de-
veloped DynaKnowledge, a new benchmark for
QA based on information extracted from Wikipedia
and related to non-popular entities in the music
domain. In this way, we can test how reliable Chat-
GPT is on very specific questions and a dataset
that has never been published. However, it is im-
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portant to note that the questions in our bench-
mark are not impossible to answer. This is be-
cause we extracted questions and answers from
the English-language Wikipedia, one of the most
popular sources in NLP. We developed this evalu-
ation inspired by the idea that LLMs have difficul-
ties dealing with low-frequency entities and that if
prompted with them, they are likely to hallucinate,
producing fluent but unrealistic text. We compared
the performance of ChatGPT with a knowledge
extraction pipeline that uses explicit knowledge rep-
resentation in the form of Abstract Meaning Rep-
resentation (Banarescu et al., 2013, AMR) graphs
to answer the questions. This explicit knowledge
is structured as a Knowledge Graph (Hogan et al.,
2021, KG) and thus can be queried. Such a struc-
ture also provides the source from which the answer
was extracted, a desirable feature also for LLMs but
not directly derivable from them, given that they are
based on latent and not explicit representations.

The contributions of this paper can be listed as
follows:

• a new dynamic benchmark for open-format QA
models;

• a new Knowledge Extraction pipeline based
on explicit knowledge that can be used for QA;

• a systematic comparison between ChatGPT
and the explicit knowledge model centred on
entity popularity.

DynaKnowledge and the evalua-
tion results can be found at https:
//github.com/polifonia-project/
llms-vs-specialised-knowledge.

2. Related Work

In this section, we first introduce recent works on
the evaluation of ChatGPT, and then we present
recent works about the use of AMR for knowledge
extraction and QA.

2.1. ChatGPT evaluation
Laskar et al. (2023) proposed a systematic evalua-
tion of ChatGPT in NLP tasks covering 140 tasks,
including QA, text summarization, code generation,
and commonsense reasoning, and analyzing 255K
responses. The results of this large-scale evalua-
tion show that ChatGPT can perform a wide variety
of tasks with impressive performance. However,
it is still far from achieving good performances in
some of them. A domain-specific evaluation of
ChatGPT was proposed by Jahan et al. (2023).
This evaluation centred on the biomedical domain
and covered tasks such as relation extraction, doc-
ument classification, QA, and summarization. The

authors of this work found that ChatGPT in a zero-
shot setting can outperform fine-tuned generative
models, such as BioGPT (Luo et al., 2022) and Bio-
BART (Yuan et al., 2022), only when the training
set for the task is small. Otherwise, if the train-
ing set for fine-tuning is large, specialized models
outperform ChatGPT by a large margin.

A different evaluation aimed at checking how
the predictions of ChatGPT change over time was
presented by Aiyappa et al. (2023). The authors
of this work used stance detection as a case in
point and followed the experimental setting pro-
posed in previous work by Zhang et al. (2022).
In this work publicly available data from SemEval
2016 Task 6 (Mohammad et al., 2016, 2017) and
P-stance (Li et al., 2021) were used. The authors
prompted ChatGPT using, for each sentence in the
dataset, the following template: what’s the attitude
of the sentence: input sentence select from “favor,
against or neutral”. The evaluation shows big im-
provements comparing results from different time
periods, highlighting the difficulty of evaluating this
model that is continuously updated with unknown
data. The authors concluded that a fair evaluation
of this model should be novel in order to prevent
test data leakage.

A common view in the literature concerns the
closed nature of this model and the high variability
of the results, which change substantially depend-
ing on apparently uncorrelated factors, such as the
moment in which the model was used or a slight
modification of the prompt. In such conditions, the
parameters of the model, such as the temperature
that controls the creativity of the model, are difficult
to tune and adapt to the task at hand.

2.2. AMR for Knowledge Extraction and
Question Answering

Graph-based semantic parsing has gained atten-
tion due to the potential of general-purpose rep-
resentations, such as AMR. Text-to-AMR trans-
duction based on neural machine translation
and sequence-to-sequence (seq2seq) models
achieved high performances (around 85% accu-
racy) both in English (Bevilacqua et al., 2021; Zhou
et al., 2021), multilingual parsing (Blloshmi et al.,
2020; Cai et al., 2021) and multi-formalisms sce-
narios (Procopio et al., 2021).

Regarding information extraction end-tasks,
Rao et al. (2017) leveraged AMR semantic
parsing for extracting information (molecular
events/interactions) from biomedical documents,
achieving promising results. With a similar objec-
tive (extracting fine-grained information from the
biomedical scientific literature), Zhang et al. (2021)
employed AMR to obtain an in-depth semantic
structure of sentences and further enriched the

https://github.com/polifonia-project/llms-vs-specialised-knowledge
https://github.com/polifonia-project/llms-vs-specialised-knowledge
https://github.com/polifonia-project/llms-vs-specialised-knowledge
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resulting graphs with domain-specific information
from external KBs through edge-conditioned graph
attention network (GAT, (Velickovic et al., 2018)).
The fusion of the semantic structures uncovered
by the AMR parsing and the highly specialistic
knowledge integrated from a domain-focused KB
brought tangible advantages for achieving high per-
formances in the end-task goal.

Kapanipathi et al. (2021) satisfactorily employed
AMR as an intermediate logic for the semantic pars-
ing of natural language to develop a Knowledge
Base Question Answering (KBQA) neuro-symbolic
system. Similarly, Zhang and Ji (2021) proved the
advantages of employing the rich semantic rep-
resentation offered by pre-trained AMR parsers
to extract entities, relations, and events from un-
structured sentences and encapsulate them into
Information Networks through an encoder-decoder
architecture. In Lim et al. (2020), Commonsense
QA is pursued considering the importance of rep-
resenting the question’s meaning to predict the cor-
rect answer. The semantic parsing of the question
is obtained by expanding an AMR graph with an
external KG, which contains commonsense infor-
mation (ConceptNet, (Speer et al., 2017)). The
resulting graph is subsequently pruned to retain
only the most informative knowledge to accomplish
the task, then used to analyse the reasoning path
and derive the correct answer. Kapanipathi et al.
(2021) proposes a Neuro-Symbolic Question An-
swering (NSQA) system, in which AMR parsing is
used to understand questions, and the resulting
AMR graph is mapped into query graphs (SPARQL
queries) aligned with a KB utilising deterministic
mappings. Bornea et al. (2021) considers those
deterministic mappings as prone to coverage and
granularity mismatch and proposes a framework
in which a transition-based semantic parser which
integrates a BART-based model learns to transpile
AMR into the SPARQL training language. Deng
et al. (2022) employs AMR-based modules (AMR
parsing, AMR graph segmentation and AMR-To-
Text generation) to better understand complex ques-
tions through question decomposition and achieve
more interpretable multi-hop QA.

3. Methodology

In this paper, we want to compare the performance
of explicit and latent knowledge models on the QA
task. To this end, we first collected a new bench-
mark for the task and then selected two represen-
tative models for latent and explicit knowledge rep-
resentation. The latent representation model is
ChatGPT, and the explicit knowledge model is a
Knowledge Extraction pipeline whose core compo-
nent is (Gangemi et al., 2023, Text2AMR2FRED), a
framework based on Abstract Meaning Representa-

Figure 1: The Knowledge Extraction pipeline
schema.

tion (AMR) (Banarescu et al., 2013) that produces
graph-based semantic representations of the tex-
tual evidence we employed for the QA task. In
the following sections, we describe the models and
then the dataset.

3.1. Models

3.1.1. ChatGPT

As far as it is known, ChatGPT is trained in a three-
step process (OpenAI, 2022). First, an initial LLM
based on GPT 3/3.5 (Ouyang et al., 2022) is fine-
tuned on a dataset created by asking human anno-
tators to write what is the desired output to prompts
submitted to the OpenAI API. The next phase con-
sists of sampling a set of prompts from a larger col-
lection of prompts submitted to the OpenAI API. For
each of them, the LLM produces multiple responses
that human annotators then rank. With this infor-
mation starts the second training phase in which a
reward model is learned on the response-ranking
task using the reinforcement learning from human
feedback (RLHF) mechanism (Ouyang et al., 2022).
This step keeps the LLM frozen and solely trains
the RM. In the last training step, the LLM generates
responses to a new set of prompts that were not
included in the previous steps. In this phase, the
now-frozen reward model is used as a reward func-
tion, and the LLM is further fine-tuned to maximize
this reward using the Proximal Policy Optimization
algorithm (Schulman et al., 2017).
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Table 1: Example of data collection for the named entity corresponding to the Wikipedia page
Teresina_Brambilla, Giuseppina_Ronzi_de_Begnis and Wolfgang_Amadeus_Mozart. ID
column reports the sample’s unique identifier in DynaKnowledge to facilitate the reader in retrieving the
sample in the benchmark.

ID Gender Analyst’s Question Analyst’s Answer Sentence from Wikipedia containing the answer
18 F How long was Teresina Bram-

billa’s career as a musician?
25 years Teresa "Teresina" Brambilla (15 April 1845 – 1 July

1921) was an Italian soprano who sang in the major
opera houses of Europe in a career spanning 25
years.

41 F Which female colleague did
Giuseppina Ronzi de Begnis ar-
gue with during the rehearsals of
Maria Stuarda?

Anna Del Sere Ronzi was also known for her capricious attitudes
and for having confrontations and arguments with
female colleagues, including the famous altercation
with Anna Del Sere during the rehearsals of Maria
Stuarda.

5 M How old was Wolfgang Amadeus
Mozart when he started to com-
pose?

5 years old Already competent on keyboard and violin, he com-
posed from the age of five and performed before
European royalty.

3.1.2. The Knowledge Extraction pipeline

The knowledge extraction pipeline that we used
in this paper relies on Text2AMR2FRED, which
exploits AMR parsing to extract knowledge from
unstructured text. AMR formalism is grounded in
PropBank’s Frames (Palmer et al., 2005), which
constitute the core lexicon of this resource. Frames
consist of predicate-argument structures named
rolesets. AMR can be expressed by using the PEN-
MAN serialisation format (Matthiessen and Bate-
man, 1991), a notation convention that enables
encoding the semantic dependencies of directed
and rooted graphs such as AMR graphs. In our
framework, depicted in Figure 1, AMR graphs serve
as an event-centric representation of an input text,
well-suited for retrieving the essential elements of
a situation described in one or multiple sentences.
As we can see for example in 2, the Arg0 of the
PropBank predicate sing-01 encodes information
about the singer (an agent in an act of singing).
The advantage of AMR representation is that it
detaches from syntax variability and word forms,
providing the same graph for sentences conveying
almost the same meaning with a different syntac-
tic or lexical realisation. Our Knowledge Extrac-
tion pipeline extracts information from the text and
stores it in AMR-based KGs through its core com-
ponent, Text2AMR2FRED.

Implementation details. In our Knowledge Ex-
traction pipeline, we implement techniques for min-
imising the loss of information in the source text,
such as coreference resolution, i.e., the task of
clustering spans of text (mentions) that correspond
to the same single entity (referent). For our ex-
periments, we used the model proposed by Clark
and Manning (2016) and applied referent substitu-
tions only to a subset of pronominal mentions, the
third-person personal pronouns. We evaluated the
substitutions performed, achieving a 92% accuracy

on a set of 52 third-person pronominal mentions
occurring in a sample of sentences extrapolated
from Wikipedia.

The text2AMR parsing module of our Knowl-
edge Extraction pipeline relies on a neural seman-
tic parser, i.e., (Bevilacqua et al., 2021, SPRING),
which allows us to perform the AMR2text task with
the same model. This model exploits BLINK (Wu
et al., 2020) to link named entities to their unique
entry in Wikipedia (wikification).

As a last step, our Knowledge Extraction pipeline
includes (Meloni et al., 2017, AMR2FRED), a tool
that transforms AMR graphs into RDF/OWL KGs
that follow (Gangemi et al., 2017, FRED) machine
reader’s knowledge representation patterns. The
resulting KGs are further enriched with knowledge
from external Knowledge Bases (KBs) through
Framester (Gangemi et al., 2016), a semantic re-
sources hub. An example of knowledge used to
enrich the resulting Knowledge Graphs is Word
Sense Disambiguation (WSD) information, which
is obtained by submitting the original sentence to
(Bevilacqua and Navigli, 2020, EWISER) and used
to associate WordNet’s synsets from the RDF ver-
sion of WordNet1, included in Framester, to AMR
nodes missing links to any external source.

Text2AMR2FRED APIs2 enable tools such as
the Machine Reading suite3 to generate RDF
named graphs, which allows reporting informa-
tion about the source of the input text analysed.
Text2AMR2FRED is also released to the public via
a user-friendly web app4.

1https://www.w3.org/TR/wordnet-rdf/
2http://framester.istc.cnr.it/

txt-amr-fred/api/docs
3https://github.com/polifonia-project/

machine-reading
4https://arco.istc.cnr.it/

txt-amr-fred/

https://www.w3.org/TR/wordnet-rdf/
http://framester.istc.cnr.it/txt-amr-fred/api/docs
http://framester.istc.cnr.it/txt-amr-fred/api/docs
https://github.com/polifonia-project/machine-reading
https://github.com/polifonia-project/machine-reading
https://arco.istc.cnr.it/txt-amr-fred/
https://arco.istc.cnr.it/txt-amr-fred/
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3.2. DynaKnowledge: a new Dynamic
Benchmark for QA

With this paper, we introduce DynaKnowledge, a
new manually curated dataset for open-form QA
made of questions based on the Wikipedia pages
of historical entities picked from a corpus of mu-
sic historical periodicals5, whose publication dates
range from 1823 to 1900. The dataset comprises
82 samples (question, answer, textual evidence tu-
ples). The textual evidence element consists of the
Wikipedia page sentences containing the answer to
the question. To ensure that our benchmark’s ques-
tions are not impossible to answer, we included
only questions that were unambiguously answer-
able by reading a passage from English-language
Wikipedia. In fact, English-language Wikipedia is
commonly included in LLMs training sets, for exam-
ple, in the GPT-3 training set (Brown et al., 2020).

Given the nature of the corpus, the selected his-
torical characters are domain-specific (music) and
known to be active or alive before the periodicals’
publication dates range. We maintained a 50-50
gender distribution between the selected named
entities6. As a result, half of the questions focus
on male historical characters and the other half
on female historical characters. DynaKnowledge
is intended to be dynamic and updated over time
with new samples always related to low-frequency
entities.

3.2.1. Data collection

Data collection was performed by Foreign Lan-
guages and Literature undergraduate students who
received ad hoc training as part of their bachelor’s
degree curricular internship. They recorded the
data in a spreadsheet following the format as in
the sample reported in Table 1. On a more nu-
anced level, the analysts (i) selected a historical
character (technically, a named entity of type per-
son) occurring in a corpus of music historical pe-
riodicals; (ii) accessed the chosen historical char-
acter’s Wikipedia page and selected one or more

5This corpus is the Periodicals module of the broader
Polifonia Textual Corpus (https://github.com/
polifonia-project/Polifonia-Corpus). As
we cannot release the module’s data for copy-
right reasons, we release at https://zenodo.org/
records/6671912 its metadata containing title, year,
and issue number information, allowing for its complete
reconstruction.

6In our study, we restrict to binary gender categories,
which, although not reflecting real-world diversity, let us
move the first steps towards the definition of our method.
We consider a female person named entity a historical
character that is referred to, in its Wikipedia page, with
the pronoun she, a male person named entity a historical
figure who is referred to, in its Wikipedia page, with the
pronoun he.

Figure 2: AMR subgraph containing the answer
to the question "How long was Teresina Brambilla
career as a musician?".

sentences reporting a fact relating to the entity;
(iii) formulated a question related to the historical
character, answerable by the selected Wikipedia
page sentences.

For each sample, we report the following infor-
mation:

1. ID: the sample’s unique identifier;

2. Date: the date, or range of dates, on which
the sample was collected;

3. Wikipedia page: the Wikipedia page of the
sample’s named entity;

4. Gender: the gender of the sample’s named
entity;

5. Question: the question about a fact concern-
ing the sample’s named entity;

6. Prompt: the prompt submitted to ChatGPT,
containing the question;

7. Answer: the ground truth answer;

8. Provenance: the textual evidence, i.e. the
sentence(s) from the entity’s Wikipedia page
containing the answer to the question.

The data collection method that we followed for
DynaKnowledge is designed to support an ever-
evolving benchmark continuously enriched with
new examples that focus on less common entities.

4. Experimental setup

We tested GPT-3.5 (Default) model, accessed via
its free online version (ChatGPT7 and our Knowl-
edge Extraction pipeline (cfr. 3.1.2). We designed

7https://chat.openai.com/

https://github.com/polifonia-project/Polifonia-Corpus
https://github.com/polifonia-project/Polifonia-Corpus
https://zenodo.org/records/6671912
https://zenodo.org/records/6671912
https://chat.openai.com/
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Table 2: Evaluation - ChatGPT’s answer assessment. ID column reports the sample’s unique identifier in
DynaKnowledge.

ID Evaluator’s Prompt ChatGPT’s answer Assessment
18 How long was Teresina Brambilla’s career as a musi-

cian? Give a straight answer.
As of my last knowledge update in September 2021, there is no widely known or documented
musician by the name of Teresina Brambilla in the public domain. Therefore, I cannot provide
information about the length of her musical career. It’s possible that she gained recognition
after my last update or that she is not a prominent figure in the music world.

Not given

41 Which female colleague did Giuseppina Ronzi de
Begnis argue with during the rehearsals of Maria
Stuarda? Give a straight answer.

Giuseppina Ronzi de Begnis argued with Maria Malibran during the rehearsals of Maria
Stuarda.

No

5 How old was Wolfgang Amadeus Mozart when he
started to compose? Give a straight answer.

Wolfgang Amadeus Mozart started composing at the age of 5. Yes

Figure 3: Process followed by the analysts to record
the AMR graph’s answerability assessment. If an-
swerability is satisfied, the analysts extract the sub-
graph containing the answer to the question that is
then transformed into text via AMR2text to confirm
the AMR graph’s answerability. If not, they explain
the error observed in the graph.

AMR 

graph

answerab.

Error

description

AMR

subgraph

extraction

AMR2text

Natural

language

answer

correctwrong

not given

and executed the experiments from August 4th to
August 22nd, 2023. At that time, it was not possi-
ble for a user to fine-tune GPT-3.5 (Default) model.
Therefore, we evaluated it in a zero-shot setting.
We tested GPT-3.5 (Default) and our Knowledge
Extraction pipeline on the same questions formu-
lated and collected in the data collection phase
(cfr. 3.2.1). We compared the free text answers to
the questions returned by ChatGPT and the AMR
graphs produced by parsing, with our Knowledge
Extraction pipeline, the Wikipedia sentences con-
taining the answer to the question.

4.1. Evaluation
To perform the evaluation, the analysts had to com-
pare ChatGPT’s answers to the questions and AMR
graph’s answerability. The evaluation was per-
formed by the same interns who conducted the
data collection, with the support of the authors of
this paper for the AMR graph answerability assess-
ment.

4.1.1. ChatGPT answer

To assess ChatGPT’s answer, the analysts had to
submit the questions as prompts to the free on-

line version of ChatGPT and manually assess the
answer returned by ChatGPT. They recorded the
results by adding the following information to the
dataset described at 3.2:

1. ChatGPT answer: ChatGPT’s answer;

2. ChatGPT answer assessment (yes/no/not
given): manual evaluation of whether the
ChatGPT response is correct ("yes"), incor-
rect ("no"), or the model does not give any
answers ("not given").

Given the reduced size of our sample, we man-
ually compared ChatGPT’s and ground truth an-
swers to ensure the high quality of the assessment.
Such a choice was also made in light of the aware-
ness raised by Chen et al. (2019) and Roberts et al.
(2020) on how QA metrics based on tokens overlap
can hinder the evaluation of questions that require
more complex and abstractive answers.

4.1.2. AMR graph

We manually checked the AMR graphs to assess
AMR graphs’ answerability to guarantee the high-
est assessment quality, as stressed out by Ettinger
et al. (2023). The process is depicted in Figure 3.
The analysts transformed the Wikipedia sentences
containing the answer to the question into an AMR
graph via Text2AMR2FRED and then assessed the
answerability of the AMR graph. We define answer-
ability as the ability of the AMR graph to encode the
information needed to answer a question. It is satis-
fied when the AMR graph contains a subgraph that
correctly captures the information needed to an-
swer a question. The subgraph must report the se-
mantically correct PropBank predicates, their core
roles (arguments), and non-core roles (relations)
structure. It must be possible to translate the sub-
graph back to text using an AMR2text model and
obtain a natural language sentence containing an
answer to the question. They recorded the AMR
graphs’ answerability assessment results by adding
the following information to the dataset described
at 3.2:

1. AMR graph (PENMAN): the AMR graph cor-
responding to the Provenance (cfr. 3.2.1);
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2. AMR graph’s answerability (yes/no/not
given): manual assessment of the answer-
ability of the AMR graph;

3. If so, which is the sub-graph containing
the answer?: the AMR sub-graph containing
the answer to the question;

4. AMR graph’s error description: if the value
reported in Does the AMR graph contain an
answer to the question? is "no", an expla-
nation of the error observed.

4.1.3. Metrics

We started from the assumption that finding the
most suitable metrics for QA is a difficult task and
that a metric such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) or METEOR (Banerjee and
Lavie, 2005) can alter the evaluation of free-form
QA (Chen et al., 2019). With this in mind, as we
presented in the previous section, we manually
checked the answers of the two models under anal-
ysis to ensure that the results were not biased. With
the answers manually checked and divided into the
canonical correct, wrong, and not given, we are
able to compute standard precision (P), recall (R)
and F1 (F1) as:

P =
correct

|samples|
, R =

correct

|samples| − not given
,

and
F1 =

2 ∗ P ∗R
P +R

.

5. Results and Analysis

Table 3 compares ChatGPT answers and the
AMR graphs’ answerability assessment. The table
shows that the AMR graphs effectively capture the
answers to the questions 50% of the times, while
ChatGPT’s answer is correct 38% of the times (pre-
cision). We can also see that the recall of ChatGPT
is higher than precision. ChatGPT, in fact, can give
an answer that indicates that it is not able to provide
information. On the other hand, this is not possi-
ble with AMR parsing. We considered a question
prompted to AMR as not given only if the parser
cannot produce a graph. This happened just one
time in our experiments.

In the example with ID 18 reported in Table 2,
ChatGPT’s answer has been assessed as not given.
In fact, ChatGPT replies to the prompt stating that,
to the best of its knowledge, there is no known musi-
cian named Teresina Brambilla, and for this reason,
it cannot answer the question asked ("How long was
Teresina Brambilla’s career as a musician?"). But,
as recorded in Table 1, the sentence from Wikipedia
containing the answer (Provenance) collected for

Table 3: ChatGPT’s answers and AMR graphs’ an-
swerability assessment reported as precision (P),
recall (R), f1-measure (F1) dividing the questions
according to the gender of the named entity in-
volved, female (F) and male (M).

NE’s
gender

ChatGPT AMR
P R F1 P R F1

F 0, 22 0, 31 0, 26 0, 51 0, 51 0, 51
M 0, 54 0, 58 0, 56 0, 49 0, 50 0, 49

Total 0, 38 0, 46 0, 42 0,50 0,50 0,50

this sample states that the correct answer for the
sample’s question is 25 years. In the example with
ID 41 reported in Table 2, ChatGPT’s answer as-
sessment is no, meaning that the answer given
by ChatGPT is not correct. In fact, as recorded in
Table 1, the sentence from Wikipedia containing
the answer (Provenance) collected for this sam-
ple reports that the correct answer for the sample’s
question ("Which female colleague did Giuseppina
Ronzi de Begnis argue with during the rehearsals of
Maria Stuarda?") is Anna Del Sere, while ChatGPT
mentions an argument between Giuseppina Ronzi
and Maria Malibran. In the example with ID 5 re-
ported in Table 2, ChatGPT’s answer assessment
is yes. ChatGPT’s answer correctness is verifiable
by comparing ChatGPT’s answer in Table 2 with the
analyst’s answer reported in Table 1: both contain
the same piece of knowledge, namely that Mozart
started composing at the age of five.

Figure 2 reports the AMR subgraph contain-
ing the answer to the question formulated for the
sample with ID 18 (cfr. Table 1). The subgraph,
extrapolated from the AMR graph resulting from
the text2AMR parsing of the Provenance (sen-
tence from Wikipedia containing the answer) of
the same sample is considered able to answer the
question. It has a root node, z0/soprano, that is
linked to the instance node z1/person by the non-
core role :domain. This triple correctly reflects the
"named-entity-is-noun" semantics. The instance
node z1/person is linked to the instance node
z2/name by the non-core role :name. This triple cor-
rectly states that the instance node z1/person has
a name, therefore is a named entity. It branches
out in three leaves nodes linked by the relation
:op, which reports the three tokens of the sen-
tence that make up the named entity mention
(Teresa, "Teresina", Brambilla). The instance node
z1/person is also linked to the PropBank predicate
node z8/sing-01 by the inverse core role :ARG0-
of. This triple correctly captures the semantics
of relative clauses. sing-01 is also linked to the
node z14/career by the non-core role :duration,
which is itself linked through the same relation to the
instance node z15/temporal-quantity, which cap-
tures the semantics of a specific type of quantity. It
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Table 4: The Wikidata identifier (QID) average frequency and standard deviation distribution across
the named entities of our sample, split per gender and ChatGPT answers’/AMR graphs’ answerability
assessment

NE’s
gender

ChatGPT answer AMR graph answerability
#yes #no #not given #yes #no #not given #Total

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev
F 76 126 37 93 4 3 42 96 30 83, 5 N/A N/A 36 89
M 869 1579 201 600 6 3 776 1627 338.5 739 61 N/A 545 1253

All 639 1372 110 407 4 3 400 1183 184 542 61 N/A 291 919

Table 5: Correlation between the gender/popularity
of the named entities of our sample and ChatGPT’s
answers/AMR graphs’ answerability assessment
reported as Spearman’s Rho coefficient (ρs).

NE’s
feature

Spearman correlation
ChatGPT’s
answer assessment

AMR graph’s
answerability

Popularity 0.48 −0.07
Gender 0.33 −0.02

branches out into the two tokens of the sentence
that make up the temporal quantity mention by its
arguments :unit (z16/year) and :quant (25).

The semantic structure of this subgraph encloses
all the elements required to answer the question
asked, as can also be verified by transforming the
AMR graph back to text employing the same model
used for Text2AMR, i.e., SPRING. The resulting
natural language sentence Teresa Teresina Bram-
billa is a soprano who has sung for a 25-year career
answers correctly the question asked (cfr. the col-
umn Analyst’s Answer in Table 2).

In the AMR graph resulting from the text2AMR
transformation of the sentence from Wikipedia con-
taining the answer (Provenance) of the sample
with ID 41, the named entity Maria Stuarda is in-
correctly classified as a person instead of as a
work-of-art:

(z16 / person
:name (z17 / name
:op1 "Maria"
:op2 "Stuarda"))

The named entity classification reported in the
example above compromises the correctness of the
resulting AMR graph. The AMR graph answerability
criteria is not satisfied.

5.1. Issues
While assessing AMR graphs’ answerability, we
encountered two main issues.

Coreference resolution Some of the sentences
collected from Wikipedia pages (cfr. 3.2.1) contain

only mentions of the entity and not the entity’s refer-
ent. Mentions can be personal pronouns (as in the
sentence "He composed from a very young age,
first studying with his uncle Giovanni Mazzetti and
later with Luigi Caruso in Perugia"), possessive pro-
nouns (as in the sentence "His parents were John
Reeves, a musician of Yorkshire origin, and his
wife, Rosina"), names (i.e., proper nouns in their
shortened forms, as in the sentence "Barnby was
born at York, as a son of Thomas Barnby, who was
an organist"). As reported in paragraph 3.1.2, in
our Knowledge Extraction pipeline, we apply coref-
erence resolution to only a subset of pronominal
mentions (the third-person personal pronouns). As
a consequence, AMR subgraphs extrapolated from
sentences in which the only mention of the entity
is a possessive pronoun or a surname are never
assessed as correct because, at present, we do not
manage them in our Knowledge Extraction frame-
work. Instead, we considered AMR subgraphs ex-
trapolated from sentences in which the only ref-
erence to the entity was a third-person personal
pronoun as correct when they corresponded to our
answerability criteria.

Wikification In assessing AMR graphs answer-
ability, we do not assess the correctness of the
entity linking information. Still, we focus on the
correct recognition of the entity mention and on its
correct classification to a pre-defined entity type8.
This is because, in our particular case, we are using
Wikipedia documents, from which it is possible to
extract unambiguous entity references by disposing
of entity linking altogether.

5.2. Popularity and gender effect
Looking at the results in Table 3 in a more granu-
lar way, we notice that ChatGPT’s answers tend
to be wrong more often when questions regard fe-
male historical characters: ChatGPT’s answer is
correct 22% of the times when prompted with ques-
tions regarding female named entities, and 54% of

8Entity types list (https://www.isi.edu/~ulf/
amr/lib/ne-types.html) and criteria for their assig-
nation are defined in AMR annotation guidance instruc-
tions.

https://www.isi.edu/~ulf/amr/lib/ne-types.html
https://www.isi.edu/~ulf/amr/lib/ne-types.html
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the times when prompted with questions regarding
male named entities. These observations might
corroborate the hypotheses of gender bias in LLMs
(Cheng et al., 2023) and in KBs such as Wikipedia
(Stranisci et al., 2023).

Also, we wanted to verify whether the named
entities’ popularity influenced the results, as other
research suggests (Chen et al., 2021) (Kandpal
et al., 2023). We define popularity as each named
entity’s Wikidata identifier (QID) frequency of occur-
rence as an internal link in Wikipedia9. We added
the following two pieces of information to the bench-
mark described in 3.2:

1. QID: The QID corresponding to the sample’s
named entity Wikipedia page;

2. Popularity (QID_frequency): number of
times an internal link in Wikipedia can be
mapped to a QID.

As we can see in Table 4, male named entities
have, in our dataset, an average QID frequency of
545 against 36 of the female named entities. Sup-
pose we focus on the sub-sample of cases in which
ChatGPT returns the highest number of correct an-
swers: those cases correspond to male historical
characters with the highest QID frequency average
across the whole sample (869).

To strengthen our hypothesis, we calculate the
correlation between ChatGPT’s answers’ assess-
ment and named entities’ popularity using Spear-
man’s Rho coefficient (ρs). As we can see in Ta-
ble 5, the result obtained for popularity (ρs = 0.48)
show a positive correlation. We repeat the experi-
ment for AMR graphs’ answerability, and the results
obtained (ρs = −0.07) demonstrate no correlation.
When considering gender as a feature, we obtain
the same results: a positive correlation with Chat-
GPT’s answers’ assessment (ρs = 0.33), no corre-
lation (ρs = −0.02) with AMR graphs’ answerability.

Notably, the AMR graphs’ answerability is appar-
ently robust to any major bias toward the gender
or popularity of the entities involved. With regard
to ChatGPT’s answers’ assessment, the popularity
bias seems to amplify the gender bias: we even-
tually obtain wrong answers more often when our
questions regard female named entities, which in
our sample also have the lowest average popularity.
This confirms our hypothesis that a simpler knowl-
edge extraction pipeline is more robust to variation
in named entities’ features, such as popularity and
gender, than an LLM such as ChatGPT.

6. Future work

In future work, we plan to expand our benchmark by
adding more samples. The way in which we want

9We used the enwiki-20220120 dump.

to develop the benchmark is dynamic, aligning with
current trends in benchmarking NLP models (Kiela
et al., 2021). We believe that it is necessary since
models like ChatGPT are continuously updated,
and an answer from these models can vary over
time or with slight changes to the prompt. This will
allow us to examine further the interplay between
gender and popularity biases and to deepen the
investigation regarding the difficulties that LLMs
demonstrate when dealing with long-tail knowledge
(Kandpal et al., 2023).

We also plan to transform the AMR graphs out-
put by our Knowledge Extraction pipeline into Re-
source Description Framework (RDF) KGs, as
Text2AMR2FRED allows. This will enable us to
automate the evaluation through structured interro-
gations and develop an automatic evaluation met-
ric.

Eventually, we aim to combine the capabilities
of both the latent and explicit knowledge repre-
sentation models in a single framework in line
with retrieval-augmented generative models (Lewis
et al., 2020) and testing the resulting model on
the same benchmark. Following Mallen et al.
(2023), we want to assess whether using the explicit
knowledge produced by our knowledge extraction
pipeline to apply constraints on LLM’s output will en-
hance the results and reduce hallucination, mitigat-
ing gender and popularity bias on domain-specific
and long-tail entities as the ones in DynaKnowl-
edge.

7. Conclusion

In this paper, we conducted an evaluation of explicit
and latent knowledge representation models. This
evaluation was possible thanks to the development
and release of DynaKnowledge, a new benchmark
for the open-form QA task. The samples included in
DynaKnowledge revolve around named entities of
type person extrapolated from historical periodicals.
The benchmark’s questions are all answerable by
reading a passage from Wikipedia. This first re-
lease serves as a starting point for developing a
dynamic benchmark that will be updated over time
to tackle the continuous improvements that current
LLMs are having. The results of our experiments
show that our benchmark is particularly challeng-
ing. In particular, we found that ChatGPT struggles
to answer questions related to less popular entities.
This result was accompanied by the assessment
of the higher performances of a simple knowledge
extraction pipeline. Such a pipeline demonstrated
to be more robust on the variation of named entities’
features such as gender and popularity.
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8. Limitations

In this paper, we want to provide a feasibility study
for developing a fully automatic model for open-
domain QA founded on AMR-based KGs. On the
one hand, we wanted to test whether our knowl-
edge extraction pipeline correctly encoded the in-
formation required to answer the questions, storing
it in KGs that can be reliably queried to obtain the
answers. On the other hand, we shed light on
the sub-optimal performance of ChatGPT when
elicited to output factual knowledge about less pop-
ular named entities. We concentrated on ChatGPT
among all the LLMs because of its widespread pop-
ularity and commoditization. The capability of our
knowledge extraction pipeline to provide explicit
knowledge that can be automatically queried to ob-
tain reliable answers or that can augment ChatGPT
performance on open domain QA over long-tail enti-
ties should be tested in a fully automatised scenario,
in which subgraphs satisfying the answerability con-
dition are automatically retrieved.
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