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Abstract
Since they rely on the distributional hypothesis, static and contextual language models are closely linked to lexical
semantic relations. In this paper, we exploit this link for enhancing a BERT model. More precisely, we propose to
extract lexical semantic relations with two unsupervised methods, one based on a static language model, the other
on a contextual model, and to inject the extracted relations into a BERT model for improving its semantic capabilities.
Through various evaluations performed for English and focusing on semantic similarity at the word and sentence
levels, we show the interest of this approach, allowing us to semantically enrich a BERT model without using any
external semantic resource.
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1. Introduction

Language models, whether count-based or pre-
dictive (Baroni et al., 2014), and among the latter,
static or contextual (Naseem et al., 2021), have a
twofold relationship to semantic knowledge. On
the one hand, due to their strong link with the distri-
butional hypothesis (Harris, 1954), they have been
used for a long time to extract lexical semantic rela-
tions from corpora (Lenci et al., 2022). On the other
hand, many works have focused on the problem of
injecting semantic knowledge into these models in
order to enhance them (Wang et al., 2023b), either
in the general perspective of improving how the
semantic phenomena are taken into account in the
tasks they are applied to, or for their adaptation to
specialized domains.
The use of language models for the extraction

of semantic relations is closely related to both the
notions of semantic similarity (Budanitsky and Hirst,
2006) and distributional thesaurus (Grefenstette,
1994; Lin, 1998; Curran and Moens, 2002). The
most common way to extract semantic relations
from a language model is to rely on the ability of
these models to evaluate the similarity between
words on a distributional basis, an ability that is
also used for their intrinsic evaluation (Faruqui et al.,
2016). Applied to the vocabulary of a corpus, this
capability is used to build a distributional thesaurus
giving for each target word a list of distributional
neighbors, ordered according to the decreasing
value of their similarity, evaluated by a language
model, with the target word. The first neighbors
are then assumed to be the most semantically rel-
evant, with a principled bias towards paradigmatic
relations given the distributional assumption un-
derlying the language models. Given this general
principle, the main way to improve this extraction is
through work at the level of the semantic similarity

used to build distributional thesauri (Padró et al.,
2014a,b). Nevertheless, some works also focus on
improving the thesauri as such by using reordering
methods, either at a global level (Claveau et al.,
2014) or more locally at the level of each thesaurus
entry (Ferret, 2013).
The problem of injecting semantic knowledge

into language models has been the subject of a
large number of studies, first focusing on static
neural models and then on contextual models. De-
spite the differences between these two main types
of models, they share the same distinction between
methods operating during the building of the model
and those performing the injection after its building.
The latter are clearly more numerous in the case
of static models, in line with Faruqui et al. (2015),
while the situation is more contrasted in the case
of contextual models. If we only consider the in-
jection of lexical semantic relations,1 the LIBERT
model Lauscher et al. (2020) can be cited for the
former category of methods while the latter is typ-
ically represented by the LexFit model Vulić et al.
(2021).

The work presented in this paper combines the
two dimensions mentioned above: it enriches a
BERT-like contextual neural model (Devlin et al.,
2019) by injecting lexical semantic knowledge, but
unlike existing work, this knowledge is itself ex-
tracted automatically through the exploitation of
neural language models. More specifically, the
contributions of this work are:

• the proposal and evaluation of a new method
for extracting lexical semantic relations be-
tween words based on the application of a

1For contextual models, existing work focuses on
knowledge graphs representing factual knowledge more
than on lexical semantic relations, while the trend is re-
versed for static models.
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mask language modeling task to compounds
by relying on a contextual language model
such as BERT;

• the study of the complementarity of the rela-
tions extracted by this method with the rela-
tions extracted from a static language model;

• the analysis through three evaluations of the
interest of the injection of such automatically
extracted semantic lexical relations into a con-
textual language model.

2. Methods

In what follows, we first present in the next two sec-
tions two methods for extracting lexical semantic
relations, one relying on a static language model
while the other is based on a contextual model. In
both cases, the extracted relations are expected to
account for the semantic similarity between words,
as opposed to the notion of semantic relatedness,
as distinguished by (Budanitsky and Hirst, 2006).
The union of the relations extracted by these two
methods is then used as a basis for the injection of
semantic knowledge into a BERT model, which is
the subject of Section 2.3.

2.1. Extraction of Semantic Relations
with a Static Language Model

To extract a first set of semantic similarity relations,
we transpose to a static neural model the principle
of selection by reciprocity in a k-nearest neighbor
(k-NN) graph of words presented in (Claveau et al.,
2014) for count-based models. More specifically,
for each target word, its k nearest neighbor words
are extracted based on the similarity computed be-
tween the target word and the other considered
words by relying on their embeddings from a static
language model, in our case a Skip-gram model
(Mikolov et al., 2013a). This extraction is performed
with the Faiss library (Johnson et al., 2021) using
the Cosine similarity measure.2 The distributional
neighborhood relation is not symmetric by nature,
but we specifically use the presence of such sym-
metry as a criterion for selecting the most represen-
tative neighborhood relations in terms of semantic
similarity. More precisely, such a relation between
words x and y is selected if y is among the k first
distributional neighbors of x and conversely, if x is
among the k first distributional neighbors of y.

2Concretely, we use the IndexFlatIP index, designed
for exact search for inner product, with normalized vec-
tors.

2.2. Extraction of Semantic Relations
with a Contextual Language Model

Transposing the previous approach from static neu-
ral models to contextual neural models is much less
direct than transposing it from count-based mod-
els to static neural models, in particular because
a contextual model produces by definition repre-
sentations of words in a particular context and not
generic representations. The key point for carrying
out this transposition is to be able to build a neigh-
borhood graph of words from a language model,
the neighborhood being based on the notion of se-
mantic similarity. For a contextual model, two main
strategies are possible:

• the building of static word embeddings, which
brings back the problem to the first method of
relation extraction presented in the previous
section;

• the exploitation of the capabilities of such a
model for the language modeling task used for
its training.

The first strategy has already been the subject of
some works (Ethayarajh, 2019; Bommasani et al.,
2020; Vulić et al., 2020b; Ferret, 2022), with two
main variants: one considers for a target word a set
of sentences containing that word and aggregates,
usually by averaging, the contextual representa-
tions produced by the language model for that word
in each of these sentences.3 The second variant
builds a representation from a single occurrence
of the target word in isolation, without the context
of a sentence. However, Ferret (2022) shows that
for building the semantic neighborhood of words,
this first strategy does not give significantly better
results than static embeddings, with an advantage
to the first variant over the second.
Therefore, we have opted for the second strat-

egy. We focus here on BERT-like language models,
which are based on a Masked Language Model-
ing (MLM) task for their training. However, the ap-
proach does not exclude the use of autoregressive
GPT-like models (Radford et al., 2018). The gen-
eral principle is inspired by the use of BERT-like
models for lexical substitution without the use of
reference substitutes (Zhou et al., 2019). Never-
theless, instead of considering word occurrences
in the context of sentences, we restrict ourselves
to word occurrences within compounds. The ap-
plication of lexical substitution to compounds can
also be found in (Wang et al., 2023a) but in the
context of sentences and with the fairly different

3Since existing contextual language models consist
of several layers, the building of the representation of a
word occurrence itself admits different variants.
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Compound structure Examples
ADJ NOUN rough estimate, wearable

device, motherless child
NOUN NOUN prison guard, science

academy, college student
NOUN PREP NOUN lack of food, degree in ed-

ucation, return on invest-
ment

Table 1: Structure and examples of compounds
considered as possible contexts for lexical substi-
tution (ADJ : adjective; PREP: preposition).

goal of validating semantic relations between com-
pounds that are inferred from already known se-
mantic relations between words. In our case, the
restriction to compounds is first justified by compu-
tational cost reasons, since the processing of com-
pounds in isolation by a BERT-like model is much
less expensive than the processing of sentences.4
Moreover, experiments concerning distributional
similarity with count-based models and static neu-
ral models steadily show that semantic similarity,
as opposed to semantic relatedness, is better cap-
tured by a narrow context than by a broad con-
text, which also justifies our choice of considering
compounds. The analysis of attention patterns in
BERTmodels (Clark et al., 2019) further shows that
some of their heads specifically take into account
these short-range interactions, suggesting that this
choice is not too limiting. Finally, this method also
allows, in the context of specialized domains, to
exploit not only terms extracted from corpora but
also terms from reference terminologies for these
domains.
Concretely, the approach consists in submitting

to a BERT model, with its masked word prediction
layer, a set of compounds in which one of the con-
stituents has been masked and collecting the first k
predictions of the model, with their score, excluding
the constituent to be predicted. Each submitted
compound is processed as a separate sequence.
We hypothesize that the predictions made by BERT
for this compound correspond to semantic neigh-
bors of its masked word. Applied to a large number
of compounds, this method leads to the collection of
semantic neighbors for a large set of words, which
can be turned into a k-NN graph of words. Finally,
as in the case of static language models, the prin-
ciple of selection by reciprocity mentioned in Sec-
tion 2.1 can be applied to this graph in order to
select semantic similarity relations. An important
point of the approach is the fact that the same word

4The attention mechanism of transformers has a
quadratic complexity according to the length of se-
quences.

can be associated with as many neighbor lists as
the number of times it appears as a masked word
in a compound. To build a unique neighbor list for
each word, we apply a list fusion method, more pre-
cisely the CombSummethod (Fox and Shaw, 1994)
with the Zero-one method (Lee, 1997; Wu et al.,
2006) for normalizing prediction scores. In addition
to having only one list of neighbors for each word,
this fusion puts forward the predicted substitutes
having recurrently the best scores and thus, ranks
first the neighbors supposedly closest to the target
word.

The prediction of a BERT model concerning a
word to be substituted is clearly dependent on the
linguistic context of this word. In our case, this con-
text is determined by several factors: the form of
the compounds in which these words appear, the
role that the target words play in them, and finally,
the more general context in which the compounds
are placed. Regarding the first factor, since the
work presented was done for English with nouns
as targets, we extracted, taking as a basis the En-
glish version of Wikipedia, the compound terms
including two plain words, thus obtaining the follow-
ing three compound structures of Table 1, the first
being about twice as frequent as the second, which
is itself about twenty times more frequent than the
third one.
Regarding the last factor, we have adopted the

general scheme proposed by Qiang et al. (2020)
in the context of lexical simplification, which con-
sists in conditioning the sequence containing a
unit to be predicted by this same sequence in
its complete form. In our case, if TERM stands
for the compound used as immediate context and
TERM_MSK stands for the same compound with
the MASK token replacing the target word, the se-
quence, named prompt, submitted to a BERT-like
model in masked word prediction mode has thus
the following form:

TERM . [SEP] TERM_MSK .
For instance in our case:

ADJ NOUN . [SEP] ADJ __ .
which can be instantiated as:

civil defense . [SEP] civil __ .
black magic . [SEP] black __ .

where __ is the location of the masked target word
and [SEP] is the tag marking for BERT the sep-
aration between two sequences. This prompt is
referred to as P0 in what follows.
We also tested the following variants, in partic-

ular to give a slightly broader context to compounds:

P1 this is a/an TERM . [SEP] this is a/an TERM_MSK .
P2 TERM . [SEP] this is a/an TERM_MSK .
P3 a/an TERM . [SEP] a/an TERM_MSK .
P4 TERM . [SEP] a/an TERM_MSK is a kind of TERM .
P5 TERM . [SEP] a/an TERM_MSK is a/an TERM .
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P6 TERM . [SEP] a/an TERM is a/an TERM_MSK .
P7 TERM . [SEP] a/an TERM_MSK and a/an TERM .
P8 TERM . [SEP] a/an TERM_MSK or a/an TERM .

2.3. Injection of Semantic Relations into
a Contextual Language Model

For the injection of the extracted semantic relations,
we relied on a contrastive approach related to met-
ric learning. This type of approach has already
been explored to perform this injection task for both
static embeddings (Shah et al., 2020) and contex-
tual language models (Vulić et al., 2021). Our work
takes place in the framework defined by (Vulić et al.,
2021), which itself reused the framework defined by
Sentence-BERT for sentence similarity (Reimers
and Gurevych, 2019). More specifically, the ba-
sic architecture of Sentence-BERT is a Siamese
network exploiting a dual encoder: two sentences
whose similarity is known are encoded separately
by the same BERT model, a representation is built
for each of the two sentences via a pooling process,
and the two resulting representations are taken as
input by a loss function aiming at bringing closer,
through the back-propagation mechanism, the rep-
resentations of the sentences known to be similar
while pushing away from each other the representa-
tions of the sentences known to be dissimilar. The
LexFit model of (Vulić et al., 2021) directly reuses
this architecture by giving word pairs rather than
sentence pairs as input and using semantic lexi-
cal relations as a reference in terms of similarity.
Figure 1 illustrates our instantiation of this architec-
ture where a pair of words (xi, yi) taken as input
is first turned into a pair of vectors (V xi, V yi) by
encoding them with a BERT model and applying
an average pooling before going through a loss
function. The average pooling, in that case, is used
for aggregating the representations of the word-
pieces of a word when it is split by the tokenizer
of BERT. Many loss functions are possible to im-
plement the general principle we have presented
above, and thus indirectly inject lexical relations
into a BERT-like language model; but in light of
the experiments done with LexFit, we chose the
Multiple Negatives Ranking (MNEG) loss (Hender-
son et al., 2019), which is defined as follows for a
batch of B word pairs (x1, y1), . . . , (xB , yB)) such
that each pair (xi, yi) corresponds to a semantic
similarity relation to inject:

L = −
B∑
i=1

S(xi, yi) +

B∑
i=1

log

B∑
j=1,j 6=i

eS(xi,yj) (1)

This loss function adapts the encoder’s language
model to maximize the similarity of each word pair
(xi, yi) in the batch (first term of Equation 1) while
minimizing the similarity of the B−1 artificially built

BERT BERT

(xi, yi)

average pooling average pooling

Loss function: MNEG

Vxi Vyi

Figure 1: Architecture of our model for injecting se-
mantic relations into a contextual language model.
The weights of the two BERT models are tied.

pairs (xi, yj) (second term of Equation 1), where
each yj corresponds to the yi of another pair in
the batch, the (xi, yj) pairs being considered nega-
tive examples of similarity. S(xi, yi) is the function
evaluating the similarity of pairs (xi, yi) and (xi, yj).

3. Experiments

3.1. Evaluation Framework
To evaluate the results of our injection of lexical se-
mantic relations into a contextual language model,
we chose to test the capabilities of the target model
in terms of semantic similarity by means of static
embeddings built from this model. More precisely,
our target model is the BERT base-uncased model
and similarly to (Vulić et al., 2021), we build the
embedding of a word by encoding a single occur-
rence of this word without any surrounding context
with the target model and selecting the represen-
tation of this occurrence produced at the level of
one of the 13 layers of the model (12 internal layers
plus the input layer). Moreover, as in (Bommasani
et al., 2020), when a word is split into several word-
pieces, we build its representation by averaging the
representations of its wordpieces.
The evaluation itself is based on the similarity

between the representations of words produced in
such a way: for each target word wi, the set of its
k nearest neighbors is selected by computing the
similarity of wi with all the other target words wj

and ordering these words according to the decreas-
ing value of their similarity with wi. The similarity
of a pair of words is obtained by applying the Co-
sine measure to their representations. In practice,
k = 10 and the computation of similarities relies
on the Faiss library. We evaluate the relevance
of this ranking by adopting classical measures of
Information Retrieval, more precisely R-precision
(Rprec), MAP (Mean Average Precision), and pre-
cisions at different ranks (P@r). Since we focus
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Model Ref. Rprec MAP P@1 P@2 P@5 P@10
fastText-wiki para 9.9 6.0 36.5 29.9 21.3 15.9

syn 15.5 18.4 21.9 15.7 9.2 5.8
BERT ctxt para 9.5 5.7 36.5 30.4 22.4 17.0

syn 15.6 17.9 21.8 16.0 9.5 6.1
BERT iso para 7.4 4.4 30.9 26.2 19.6 14.6

syn 14.0 15.8 19.2 14.6 8.7 5.5
BERT refsyn para 17.2 12.3 55.7 48.5 37.4 29.0

syn 27.0 31.9 35.9 27.8 17.4 11.4

Table 2: Evaluation baselines and references (val-
ues ×100).

globally on semantic similarity, as opposed to se-
mantic relatedness following (Budanitsky and Hirst,
2006), our references are made of paradigmatic re-
lations. More precisely, we consider two references,
both from WordNet (Miller, 2010) since our target
words are nouns in English: para, which gathers
relations of synonymy, hyponymy, hypernymy, and
cohyponymy and accounts for an extended defi-
nition of the notion of paradigmatic relation; syn,
which is restricted to synonyms only and can be
viewed as the most restrictive definition of paradig-
matic relations. Our evaluations were conducted
for 10,305 nouns previously used in (Ferret, 2022)
and covering a wide range of frequencies.

3.2. Implementation of Proposed
Methods

The implementation of the first method for extract-
ing semantic lexical relations requires static embed-
dings while the second one mainly requires a set
of compounds and a contextual language model.
For both static embeddings and compounds, we
relied on the same corpus, more precisely a dump
of English Wikipedia of 10/01/20185 including 2.16
billion tokens, part-of-speech tagged and lemma-
tized using the CoreNLP tool (Manning et al., 2014)
in its version 3.9.2. Compounds, limited here to
bigrams of plain words, were extracted using the
method defined in (Mikolov et al., 2013b),6 with a
minimum frequency of extracted terms equal to 5
and a minimum mutual information threshold equal
to 0. Our static embeddings were trained following
the Skip-gram model with the word2vectool7 from
the lemmatized version of our Wikipedia dump.
For the implementation of the injection method,

we used the Sentence Transformers library.8 For

5https://www.dropbox.com/s/
cnrhd11zdtc1pic/enwiki-20181001-corpus.
xml.bz2?dl=0

6With the implementation of Gensim: https:
//radimrehurek.com/gensim/models/phrases.
html

7With the following parameters: -size 300 -window 5
-negative 10 -hs 0 -sample 1e-5 -min-count 5

8https://www.sbert.net/

each relation (w1, w2), we also considered the rela-
tion (w2, w1), which can be seen as a very simple
form of data augmentation. Equation 1 in Sec-
tion 2.3 shows that the relations to be injected are
processed in batches, which have a size of 512
relations. The model is trained for 10 epochs, with
a learning rate of 2e-5, the use of the AdamW opti-
mizer (Loshchilov and Hutter, 2019), a number of
warm-up steps equal to 10% of the relations to be
injected, and a linear warm-up scheme.

3.3. Evaluation of Proposed Methods
Baselines and references. Table 2 gives sev-
eral baselines and references according to our
evaluation framework. The first of these baselines,
fastText-wiki, corresponds to the Skip-gram model
used by Vulić et al. (2021) as a reference. This
static language model was trained from the En-
glish version of Wikipedia with the fastText tool
(Bojanowski et al., 2017). The second one, BERT
ctxt, refers to embeddings built from a contextual
language model according to the method of Bom-
masani et al. (2020), i.e., by averaging the rep-
resentations of the occurrences of target words
appearing in a set of sentences. In our case, we
take 10 sentences per target word and the best
results are obtained with the L5 layer. As we can
see, these two first references are very close, which
means that concerning semantic similarity, static
models and contextual models are very close as it
has already been observed by other works (Lenci
et al., 2022). BERT iso corresponds to the starting
point of our process of injection of semantic rela-
tions (see Section 2.3). The best results given in
Table 2 for this model are obtained from the L0 layer.
Using a single out-of-context occurrence of the tar-
get words clearly hurts performance as shown by
the comparison with BERT ctxt but requires fewer
computing resources. Our last reference, BERT
refsyn, can be considered our upper bound since it
corresponds to the injection made in a BERT model
by Vulić et al. (2021) of 1,023,082 semantic rela-
tions from manually built resources, more precisely
WordNet and the Roget thesaurus.9 The results are
given for the L12 layer and the number of epochs
is reduced to 2 given the number of relations.

Extraction of relations with a contextual model.
The method we proposed in Section 2 for extracting
semantic relations from a contextual model raises
several questions that we try to answer here by
first addressing, through the results of Table 3, the
problem of the type of contextual model to adopt
and the syntactic structure of the compounds used
in prompts. The results are given in terms of the

9More specifically, this is our replication of the work
of Vulić et al. (2021), whose code is not available.

https://www.dropbox.com/s/cnrhd11zdtc1pic/enwiki-20181001-corpus.xml.bz2?dl=0
https://www.dropbox.com/s/cnrhd11zdtc1pic/enwiki-20181001-corpus.xml.bz2?dl=0
https://www.dropbox.com/s/cnrhd11zdtc1pic/enwiki-20181001-corpus.xml.bz2?dl=0
https://radimrehurek.com/gensim/models/phrases.html
https://radimrehurek.com/gensim/models/phrases.html
https://radimrehurek.com/gensim/models/phrases.html
https://www.sbert.net/
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Para Syn # relations
BERT 13.9 5.2 17,007
CBERT 22.9 10.9 17,023
CBERT – heads 24.2 11.8 13,465
CBERT – modifiers 16.0 6.7 7,792
CBERT – ADJ NOUN 26.2 12.4 10,511

Table 3: Accuracy (×100) of the relations extracted
by the contextual model according to the type of
model and the structure of the compounds used as
prompts.

accuracy of the extracted relations for our two ref-
erences. Note that they were obtained with a form
of prompt corresponding to P0 but with TERM and
TERM_MSK being part of the same sequence (no
[SEP]). The cohesion threshold of the extracted
compounds by the method of (Mikolov et al., 2013b)
was equal to 10. The first two lines compare the
BERT base-uncased model with the Character-
BERT model (El Boukkouri et al., 2020), which has
the same architecture as the BERT model but has
the characteristic of not splitting words into sub-
words. This comparison illustrates the very signifi-
cant impact of the splitting of words on our relation
extraction task, with a very clear advantage for the
CharacterBERT model, which is used hereafter.

The next three lines of Table 3 deal with the syn-
tactic structure of compounds in prompts and the
syntactic role of the target word in them. First, we
note that fewer relations are produced when the
target word has the role of syntactic modifier com-
pared to the role of syntactic head. Moreover, these
relations are much noisier. This observation is in
line with the work of Ferret (2015), which showed
that for two compounds considered semantically
similar, a semantic similarity relation between their
syntactic heads is more likely to exist, when they
share the same modifier, than the opposite. In our
case, these findings lead us to favor compounds
with the target word as their syntactic head. The
last line of Table 3 shows that the vast majority
of relations are obtained from the term structure
ADJ NOUN (NOUN being the target word), with
here again less noisy relations than for the other
structures. Therefore, we select only terms with the
structure ADJ NOUN for TERM and TERM_MSK
in what follows.
Finally, Table 4 evaluates the different types of

prompts presented in Section 2, still with a cohe-
sion threshold equal to 10 for the extraction of com-
pounds. If most of these prompts give similar re-
sults, it should be noted that P2 and P6 obtain
results that are clearly inferior to the others, without
any obvious reason linked to their structure. The
cause of this phenomenon is perhaps to be found in
the training corpus of the model. The conclusion re-
garding the sensitivity of our method to the form of

P0 P1 P2 P3 P4 P5 P6 P7 P8
Para 32.0 30.3 24.9 31.1 30.9 31.7 26.5 31.7 31.0
Syn 16.0 15.8 12.5 15.6 16.0 16.8 13.0 15.7 16.1

Table 4: Accuracy (×100) of extracted relations
according to the form of the prompt.

Relations Model Para Syn # relations
Extracted Static 30.0 19.4 35,246

Contextual 30.6 15.6 15,473
Selected Static 44.1 34.0 11,298

Contextual 42.6 21.3 8,558
Fusion 41.1 24.2 18,430

Table 5: Accuracy (×100) and number of extracted,
then selected, relations.

the prompts is therefore uncertain: if this sensitivity
is not globally very strong, it can be significant for
certain prompts, without a very clear explanation.
Hereafter, we will retain the P0 prompt, which is the
simplest one and one of the best two prompts.

Extraction and selection of relations: integra-
tion. The extraction of relations from a static
model as described in Section 2 only requires set-
ting the size of the neighborhood k and the target
words to consider. In our case, we have chosen
as targets the words with a frequency higher than
200 in Wikipedia and a value k = 1 for the neigh-
borhood. Concerning the size of the neighborhood,
an important difference between the two types of
language models must be underlined: while the
neighborhood is limited to the first neighbor for the
static model, the quality of extracted relations de-
creasing strongly beyond that point, we extend it
to the first five neighbors for the contextual model
since the degradation of the quality of the relations
is much more limited as the rank of neighbors in-
creases for that type of models.
Table 5 evaluates the quality of the relations ex-

tracted by our two types of models, in compari-
son with their volumetry. The static model pro-
duces many more relations but the two types of
models are closer in terms of quality. More pre-
cisely, they are equivalent from this viewpoint for
paradigmatic relations (para) but the static model
outperforms the contextual model for the relations
of synonymy (syn). The selection by reciprocity
in the k-NN graph reproduces, and even accen-
tuates, this initial bias as far as the quality of the
relations is concerned, but strongly attenuates it for
the volumetry. Finally, the fusion of the two sets of
relations shows their complementarity, with a small
overlap between the two and performance closer
to the contextual model than to the static model.
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Presence in relations Model Ref. Rprec MAP P@1 P@2 P@5 P@10
In-relations BERT iso all 9.4 5.6 39.1 34.0 26.1 19.6
(4,765 words) syns 17.4 19.3 23.5 18.4 11.1 7.1

Fusion all 14.6 9.6 57.6 48.2 34.7 26.0
syns 25.4 28.7 35.8 25.6 14.6 9.0

Out-of-relations BERT iso all 5.7 3.4 23.8 19.5 13.9 10.4
(5,540 words) syns 11.2 12.7 15.4 11.4 6.7 4.2

Fusion all 10.0 6.2 32.6 27.2 20.4 15.6
syns 13.8 16.7 18.9 13.9 8.5 5.5

Table 6: Split of the results of Table 7 for our initial model (BERT iso) and for our final model, after relation
injection (fusion), according to the presence of the test words among the injected relations (values ×100).

Model (L) Ref. Rprec MAP P@1 P@2 P@5 P@10
BERT iso para 7.4 4.4 30.9 26.2 19.6 14.6
(L0) syn 14.0 15.8 19.2 14.6 8.7 5.5
Static para 11.7 7.4 42.2 35.4 26.1 19.7
model (L11) syn 18.8 21.7 25.9 19.0 11.2 7.0
Contextual para 11.9 7.6 42.8 36.2 26.9 20.3
model (L11) syn 18.4 21.5 25.4 18.9 11.1 7.1
Fusion para 12.1 7.8 44.2 36.9 27.0 20.4
(L12) syn 19.2 22.2 26.7 19.3 11.3 7.1

Table 7: Results of the injection of extracted se-
mantic relations (×100). L: best layer.

Enhancing a language model with semantic re-
lations. The last part of this evaluation concerns
the results of the injection of the extracted relations
into a BERT model, illustrated by Table 7. Below
our starting point, BERT iso, the table gives the
results for each set of extracted relations: those
from the static model, those from the contextual
model, and the fusion of these two sets. The first
observation is that the injection of relations obtains
a very significant10 performance gain compared
to BERT iso, with particularly important improve-
ments for all P@r measures. Globally, this gain is
fairly comparable for the relations from the static
model and the contextual model. It logically follows
the same bias as the injected relations: it is more
important in favor of synonymy for the relations ex-
tracted by the static model and larger concerning
all paradigmatic relations for the relations extracted
by the contextual model. The fusion of the two sets
of relations leads to an additional performance gain
for our two references, para and syn. The final level
is of course lower than the level observed after in-
jecting relations from manually built resources (see
Table 2) but it is worth noting that in the absence of
such resources, especially in the quantities used
by Vulić et al. (2021), it is possible to semantically
enrich a BERT-like model with automatically ex-
tracted semantic relations with a very significant
performance gain.

10The significance of differences between BERT iso
and the other models are judged according to a paired
Wilcoxon test with p < 0.01.

4. Discussion and further
experiments

4.1. Generalization Capabilities
The results of Table 7 show that the injection of ex-
tracted relations is globally beneficial for our evalua-
tion set of nouns but they do not give any indication
about the generalization capabilities of the injec-
tion process. More precisely, are the observed
improvements limited to the words that are part of
the injected relations or are they more general? Ta-
ble 6 answers this question by splitting the results
of Table 7 for the initial model (BERT iso) and the
model after the injection of all extracted relations
(fusion) according to whether the target nouns are
part of the injected relations (in-relations) or not
(out-of-relations).

The first observation is that the proportion of in-
relations words and out-of-relations words is fairly
balanced, with 46.2% for the first ones and 53.8%
for the second ones. The second observation is
that the improvement brought by the injection of
relations is clearly not limited to the words that are
part of these relations, which demonstrates the
presence of a generalization effect of such an injec-
tion. This improvement is found both for the para
and syn references but it is higher in terms of value
and percentage for all paradigmatic relations than
for synonyms with the only exception of the MAP
value for out-of-relations. This difference is not sur-
prising since there are more paradigmatic relations,
apart from synonymy relations, than synonymy rela-
tions among injected relations as shown in Table 7.
The improvement in terms of value is globally higher
for in-relations than for out-of-relations, with for in-
stance a noticeable increase of +18.5 P@1 for para.
The trend is also observed in terms of percentage
even if there are some exceptions for the MAP and
Rprec measures in the case of para. These two ob-
servations illustrate the fact that while the injection
process demonstrates generalization capabilities,
it also favors the words that are present in the in-
jected relations, which can be interpreted as a kind
of memorization effect. However, this interpretation
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Figure 2: Impact on the number of injected rela-
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Figure 3: Impact on the number of injected rela-
tions on R-precision.

must also be modulated by another factor. The per-
formance of the initial model for in-relations words
is much higher than the performance of this model
for out-of-relations words, which can be explained
in terms of frequencies. On average the frequency
of in-relations words is 3.7 times the frequency of
out-of-relations words. The influence of this factor
on semantic similarity is well-known in general but
we can not discard the idea that it could also have
a more specific influence on the injection process.

4.2. Influence of the Number of Injected
Relations

Another way to characterize the generalization ca-
pabilities of our injection process is to study the
impact of the number of injected relations on the
performance of the resulting model. Figure 2 shows
this impact for P@1 and Figure 3, for R-precision.
To obtain these figures, we randomly selected an
increasing number of relations to inject, from 0 to
the total number of extracted relations with an in-
crement of 2,500.

The global trend is similar for the two measures:
while an increasing number of injected relations
is steadily associated with an increasing value of
these measures, the most important part of this in-
crease is observed between 0 and 5,000 relations.
The evolution beyond that point is still significant,
especially for P@1 and the para reference, but the
graph is much flatter. The presence among the
injected relations of more paradigmatic relations,
apart from synonymy relations, than synonymy re-
lations is once again a plausible explanation for the
better performance obtained for the para reference:
the impact of this presence is apparently more im-
portant as the difference between the two types of
relations increases in terms of number.

4.3. Intrinsic Evaluation: Word Similarity
All of our previous evaluations were focused on the
characterization of the semantic relations between
a word and its neighbors. Another way to evalu-
ate the semantic capabilities of language models

BERT iso BERT refsyn Fusion
MTurk 771 66.9 69.3 +2.4† 71.2 +4.3†
Stanford Rare Word 33.9 54.8 +20.9 56.6 +22.7
HyperLex 14.2 23.5 +9.3 15.4 +1.2†
MEN 65.9 68.3 +2.4† 78.6 +12.7
Multi-SimLex 51.9 72.1 +20.2 55.1 +3.2†
SimLex-999 49.7 65.0 +15.3 50.9 +1.2†

Table 8: Intrinsic evaluation of the injection of se-
mantic relations (ρ×100). BERT refsyn and Fusion
are compared to BERT iso. The statistical signifi-
cance of differences is judged according to a two-
tailed Steiger’s test with p < 0.01.12 † marks the
non-significant differences.

is to measure their agreement with human judg-
ments about semantic similarity, which is classically
done by computing the Spearman’s rank correlation
for a set of word pairs between human judgments
and the similarity of these words computed from
their embeddings by the Cosine measure. Table 8
shows the results of such a computation for six ref-
erence datasets (MTurk-771 (Halawi et al., 2012),
Stanford Rare Word (Luong et al., 2013), Hyper-
Lex (Vulić et al., 2017), MEN (Bruni et al., 2014),
Multi-SimLex (Vulić et al., 2020a), and SimLex-999
(Hill et al., 2015)) and the embeddings from our
initial BERT model (BERT iso, L0) compared to
the two BERT models with injected relations, either
with reference synonyms (BERT refsyn, L12) or
automatically extracted semantic relations (fusion,
L12).
As for our previous evaluation, we can observe

that the injection of semantic relations, whatever
their source, has a positive impact on results. This
is particularly noticeable in the case of the Stan-
ford Rare Word and illustrates the fact that the in-
jection of semantic relations can mitigate to some
extent the absence of large enough data for rare
words. Interestingly, while BERT refsyn always out-
performed Fusion in the evaluation of Section 3,
the situation is not so clear-cut here since Fusion
outperforms BERT refsyn for three datasets. One

12Implemented by the R package cocor (Diedenhofen
and Musch, 2015).
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Model Pearson Spearman
BERT iso 48.2 50.9
BERT refsyn 72.2 70.1
Fusion 71.7 69.7

(Reimers and Gurevych, 2019)
Averaged GloVe embeddings – 58.02
Averaged BERT embeddings – 46.35

(Cer et al., 2017)
Best baseline (average embeddings) 56.5 –
Lowest baseline (average embeddings) 40.6 –
Best unsupervised 75.8 –
Lowest unsupervised 59.2 –

Table 9: Sentence similarity evaluation on the STS
Benchmark.

possible explanation for this result is that, similarly
to our automatically extracted semantic relations,
the relations underlying the pairs of words in these
three datasets are more diverse than in the other
datasets.

4.4. Extrinsic Evaluation: Sentence
Similarity

The final evaluation we present is an extrinsic eval-
uation focusing on the impact of the injection of
semantic relations in BERT models on the identi-
fication of semantic similarity between sentences.
More precisely, this evaluation is based on the STS
Benchmark dataset about semantic textual similar-
ity (Cer et al., 2017). The principle of this task is
similar to the word similarity task of the previous
section but at the level of sentences: the similarity
of a list of sentence pairs is computed by the model
to evaluate and compared with a correlation mea-
sure against a gold standard produced by human
annotators. Since our objective is to examine the
impact of the injection of semantic relations and
not to achieve state-of-the-art performance for this
task by using training data, we adopt an unsuper-
vised approach and more particularly, a classical
baseline consisting in encoding sentences with the
target model and building their representation by
averaging the embeddings of their wordpieces. We
use the same layers for these embeddings as in
the previous evaluations. The similarity of two sen-
tence representations is computed by the Cosine
measure.
The upper part of Table 9 shows the results of

the three models we consider while the remain-
ing part of the table gives results from baselines
coming from (Reimers and Gurevych, 2019) and
(Cer et al., 2017). We can first note that as for
the evaluations at the word level, the evaluation
at the sentence level shows the benefit of the in-
jection of semantic relations into BERT models,
with a large difference between BERT iso and the
two other models for our two correlation measures,
Pearson and Spearman. More interestingly, BERT

refsyn and Fusion are very close, with no significant
difference according to a two-tailed Steiger’s test
(p < 0.01) for the two measures, meaning that for
the detection of the similarity between sentences,
dictionary-based semantic relations are equivalent
to automatically extracted relations in terms of re-
sults. The comparison with the results reported
in (Reimers and Gurevych, 2019) and (Cer et al.,
2017) also illustrates the fact that baselines relying
on static embeddings outperform baselines rely-
ing on embeddings built from contextual models.
Finally, we can also note that the results of our
enriched BERT models, not specifically designed
for sentence similarity tasks, are close to the best
unsupervised system reported in (Cer et al., 2017).

5. Conclusion and Perspectives

In this paper, we have presented two methods for
extracting lexical semantic relations, one from a
static language model, the other from a contextual
model, and a method for injecting these relations
to semantically enrich a contextual model. We car-
ried out two different evaluations, one focusing on
the semantic similarity at the level of words and
one at the level of sentences, that have shown the
effectiveness of the proposed approach, which can
even compete in some cases with the injection into
contextual language models of large manually built
resources about semantic relations.

Besides extending our evaluations to other tasks,
a possible extension of this work is to test whether,
following a bootstrapping procedure, such a seman-
tically enriched contextual language model could
lead to a better extraction of semantic relations by
relying on the method of Section 2.2, which in turn
could lead to a better enrichment of the contextual
model.
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